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ABSTRACT

A graph of even order is called path-pairable, if for any pairing of
its vertices, there exist edge disjoint paths connecting the paired ver-
tices. Extremal problems for path-pairable graphs with restrictions
on the maxiinum degree will be considered. In particular, let f(n,k)
denote the minimum number of edges in a path-pairable graph of or-
der n and maximum degree k. Exact values of f(n, k) are determined
fork=n—-—1,n—-—2and n—3.

. INTRODUCTION

This paper is the last one in a series of papers devoted to graph
theoretic concepts emerging from a practical networking problem of
L. Csaba. The initial problem and its graph theoretical model is
discussed in [1]. A notion related to that model was the concept of
k-path-pairable graphs, where any k pairs of distinct vertices of the
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graph cau be connected by k& edge disjoint paths. (This notion is
similar to the concept of weakly k-linked graphs introduced in [8]
and also considered in [7], where the distinctness of the pairs is not
required in the definition.) It was shown in [3] that there exists k-
pairable 3-regular graphs for each positive integer k (which shows
the drastic difference between k-path pairable and weakly k-linked,
because a graph must be k-connected to be weakly k-linked). The
cases k = 2 and k = 3 were treated in [4]. New types of graph
factorization problems are also related to these network models, and
these are discussed in [1] and [5].

In this paper we focus our attention on the concept of path-pairable
graphs. A graph of even order is called path-pairable, (p.p.) if for
any pairiug of its vertices, there exist edge disjoint paths connecting
the paired vertices. Notice that it is rather complicated to verify
the p.p. property even for small graphs, such as the Cube and the
Petersen graph, both of which are path-pairable. The latter takes
about a three page case analysis (not given in this paper). The p.p.
graphs are simplified models of communication networks which can
simultaneously establish links among any configuration of pairs of
its nodes. We are interested in extremal problems for p.p. graphs
of restricted maximum degree, which is a usual assumption when
dealing with a communications network.

It is obvious that with unrestricted maximum degree, the star has the
least number of edges among the p.p. graphs of a given order. The
first part of the paper is devoted to the problem of finding the min-
imum nunber of edges among p.p. graphs of order n and satisfying
one of the assumptions below:

(1) maximum degree at most n — 2,
(ii) maximumn degree n — 2 or n — 3, and
(iii) maximurm degree n — 4.
For the two problems in (ii) we have exact answers, but for (i) and

(iii) we can give only solutions that are asymptotical correct. (In all
of the cases, the extremal numbers exceed 3n/2 — ¢ -log, n.)
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The secoud part presents further problems and results about p.p.
graplhs.

2. VERY LARGE MAXIMUM DEGREE

A useful tool in studying path-pairable graphs is the cut condition
property. A graph G satisfies the cut condition, if for any partition
of the vertices of G iuto sets A and B with |A] < |B|, the number
of edges in the edge cut between A and B is at least |A|. If G is a
p-p- grapl, then G must satisfy the cut condition, since if each of
the vertices of A is paired with a vertex of B, then at least |A| edge
disjoint paths must cross the cut between A and B. The fact that a
p.p- graph satisfies the cut condition will be used frequently in the
next result, which gives a lower bound on the number of edges in a
p.p. graph of order n that has no vertex of degree n — 1.

Theorem 1. IfG is path-pairable graph of order n and A(G) < n—2,
then |E(G)| > 3n/2 — logy n — ¢ for some constant c.

Proof. The proof will be by induction on n. Using the fact that a
p.p. graph must be connected, |E(G)| >n—12>3n/2—-logan—c
for n < 83, when ¢ = %?— + 1 — logy 83. Thus, the theorem is true for
n < 83, and n > 84 is assumed for the rest of the proof.

If the minimum degree of G is three, then Theorem 1 is obviously
true. Assume that d(z) = 2 for some z € V(G). There exists
ay € V(G), y # z, such that d(y) < 2, for otherwise, G would
have more edges than required. Removing z and y from G leaves a
path-pairable graph G’. To see this, consider any pairing of G' and
extend it to a pairing of G by pairing z and y. The zy path in the
corresponding system of paths of G leaves one free edge at = and at
most one free edge at y. These edges cannot be used in other paths
in the path-matching. Therefore, the other paths use only edges of
G'. Now the theorem follows by induction since

E(G)| > |E(G)] +3 and [V(G)| = V(G| +2.

We may assume for z € V(G) that d(z) # 2, and therefore G has
“many” vertices of degree one. The set of vertices adjacent to vertices
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of degree one will be denoted by yi,¥y2,---,¥.. Assume that y; is
adjacent to t; — 1 vertices of degree omne, and this set of vertices
together with y; is denoted by A;. Thus |A4;] = t; > 2. The fact
that G is p.p. and A(G) < n — 2 implies that t; < n/2. Also, from
the p.p. property, d(y;} > 2t; — 1. The vertex y; is called critical if
d(yi) < 2t;. Let T C {1,2,---,r} denote the set of indices 7 for which
y; is critical. Set |I| = p. We will consider two cases that depend on
the sizes of the sets A; for each 4 € I. In both cases the following
simple lemma is needed.

Lemma 1. If ay,as,---,ax are positive integers, and
Sai# Y a;
i€l i€l
for It # Iy and I U I, C {1,2,---,k}, then
k
k <logs (Zai +1) .
i=1
Proof. The numbers ) ;. a; are all different as I runs through all

non-empty subsets of {1,2,---,k}. Thus, 25 — 1 < Zle a;, and the
lemma follows. B

Case 1: There exist two non empty disjoint sets Iy, Iy C I such that
Yiien ti=iep ti=a.

In this case select I} and Iy so that I; U Iy is as small as possible with
this property. Let s = |I U Ip|. Since I} N Iy = ¢, there exists an
i € I} U Iy such that ¢; > 2a/s. The choice of I} and Iy and Lemma
1 implies

2
s —1<1ogy(2a — «“ + 1) <logs 2a =logs a + 1,
s
and thus

(1) s <logy a+2.

Now the proof can be finished by induction on the order of the graph
G. Removing Ujer,ur, 4; from G leaves a pairable graph G'. To
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see this, consider a pairing of G’ and extend it to a pairing of G by
pairing the vertices of A* = U;¢, A; with the vertices of A’ = U, A4;.
After realizing this pairiug in G by edge disjoint paths, note that the
paths between A* and A’ leave at most one free edge at each vertex
of A*U A’, due to the critical property. Since these edges cannot be
used by paths between pairs of G', the pairs of G’ are connected with
paths entirely in G’.

To estimate the number of edges incident to A = Ujerun4i, two
cases arc considered. If |A4] < n/2, then from the cut condition at
least |A| edges of G are between A and V(G'). Since A spans at least
|A| — s edges incident to vertices of degree 1, at least 2|A| —s = 4a—s
edges are incident to A. Therefore, by induction

-2
|E(G)| > 2|A] — s+ |E(G")| > 4a— s+ ?(_n_z__al —loga(n—2a) —c¢
2a¢ —2s 3 3n
= a2 S+7n——log2(n—2u)~—c_>_—;ﬁ—laggn—c,

because by the definition of A, 2a > 2s.

If |A] > n/2, then we use the fact that the number of edges incident
to A is at least 4a — s — (). This is true since d(y;) > 2t; — 1 for any
i € {1,2,---,r}, and when adding d(y;) for i € I; U I at most (3)
edges are counted twice. To see that the induction works, we have
to show ’

5 3(n—2 3

4q — s — s +—(—n— a)~logg(n—2a)—-czj——loggn—~c,
2 2 2

and it is enough to see that

(2) 20 — s — s> 0.

Since 2a > 2°~! from (1), then (2) follows if 2571 — s — 52 > 0 ie.
for s > 7. If s < 6, then we use the fact that |A| = 2a > n/2, and
(2) follows if n/2 — 42 > 0 (i.e. n > 84), and this was our initial
assumption. Thus, in Case 1 induction gives Theorem 1.

Case 2: For any two distinct sets Iy, Io C I, 3 icr ti # e, bis

In this case

(3) loga(n +1) > |I| =p
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follows from Lemina 1. Let I denote the set of indices for which y;
Is not critical, i.e. Iy = {1,2,---,r}—1I. Now, the sum of the degrees
of G cau be estimated as follows:

(4)

AB(G) = > dlz)= Y d@)+) dly)+ ) dy:)+ Y dis),

zEV(G) d(z)=1 iel el zeV?!

where V’ are the vertices not incident to a vertex of degree one. If
t =37 ,(ti — 1), then the first term in (4) is ¢. The second term
is at least 3 ;crd(ys) > Xicr(2t; — 1), since d(y;) > 2t; — 1 for any
i € {1,2,---,7}. For the third term, Y ;cr d(yi) > Y;er(2t; + 1),
since y; is not critical for ¢ € I;. The fourth term gives at least
3(n —t—r) since the vertices in V' have degree at least three. Thus,

ABG)] > t+D> @L—-1D)+ > @ +1)+3n—t—r)

13 el
- t+z(2ti‘2+1)+Z(zti—2+3)+3(n—t—r).
Coiel el

Therefore,

2Q1E(G)| > 3t+|I|+3|L|+3n—t—r)=p+3|1|+3n—3r
= p+3|L|+3n—-3(+|L])=3n-2p.

We only need to show that

3n
In—2p>2 (—2——1092 n-c> =3n—2-logy n — 2c,
which is equivalent to loga 7 + ¢ > p. This is insured by (3) and the

fact that c is large. This completes the proof of Case 2 and of the
Theorem 1. H

It seems likely that the error term logn can be eliminated from The-
orem 1. Perhaps even a stronger statement is true which we put
forward as a conjecture. Assume G is a graph of order 2n. An even
cut of G is a partition of the vertices of G into two equal parts. We
say that G satisfies the even cut condition if each even cut of G has
at least n edges. Obviously, each p.p. graphs satisfies the even cut
conditon. The obvious example of a C4 shows that the even cut
condition is not equivalent to p.p.
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Conjecture: If G is a graph of (even) order n with the even cut
condition and A(G) < n — 1 then for n sufficiently large, |E(G)| >

3n/2 — O(1).

It is not trivial that |E(G)| is significally more than n if |A(G)| <
n—1 and G has the even cut condition. However, Z. Fiiredi (private

Communication) has a nice proof showing that with these conditions
|E(G)] > §n.

For even n, n > 4, let f(n,k) denote the minimum number of edges
in a p.p. graph of maximum degree k. If there are no p.p. graphs of
order n and maximum degree k, set f(n,k) = oo

Proposition 1. If k <n —2 then f(n,k) >n+ '“2—13-

Proof. Let G be p.p., and let z € V(G) with d(z) = k = A(G).
Since A(G) < n — 2, there is a y € V(G) that is non-adjacent to z.
Then, since G is p.p. (the cut condition), a connected component
of V(G) — z must cover V(G) — z — I'(z) (here I'(z) denotes the set
of neighbors of z), and this component C containing y must have at
least % +1 vertices. Assume that |[CNT(z)| =t Then A—t+1 < F
S0 from the cut condition t > A —¢+1 (i.e.2F1 <t). Then G must
have at least |C|—1+A=t+n—-—A-24+A -t+n 2>n+ 853
edges. This completes the proof of Proposition 1.

Theorem 2.

fln,n—2) = %—2
fn,n—=3) = %ﬁ~3

Proof. Proposition 1 implies the required lower bound. The ex-
tremal graphs are shown in Figure 1 (in fact, they are unique). It is
easy to check that both graphs are p.p.

The next theorem shows that there is a “jump” in f(n, k) at & = n—4.

3n
Theorem 3. f(n,n—4) > < + —{1—5 — 4.
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A=n-2 A=n-3

Figure 1: Extremal Path Pairable (p.p.) Graphs

Proof. Let G be path pairable, and let z € V(G) with d(z) =
A(G) = n — 4. Theu, just as in the proof of Propoosition 1, since G
is p.p. (and thus the cut condition must be satisfied), a connected
component C of V(G) — z must cover V(G) — z — I'(z), and this
component C' must have more than 7 vertices. Assume that C has
n/2 + k vertices for some positive integer k.

We first claimn that C' cannot have as many as 2k+1 vertices of degree
1. If so, then there would be at least 2k — 2 vertices of degree 1 in C
that are adjacent to the vertex z, since only 3 vertices of G are not
adjacent to z. Consider any pairing of vertices of G where the 2k — 2
vertices of degree 1 in CNI'(z) are paired with each other, and each
of some n/2 — k remaining vertices of C are paired with the n/2 — &
vertices not in C.

Cousider a system of edge disjoint paths that realizes this pairing.
With no loss of generality, you can assume the paths between the
2k — 2 vertices of degree 1 in C contain the vertex z. All of the
remaining paths in this systein contain the vertex = with one possible
exception. Therefore, there are n/2 — 1 paths that, with at most one
exception, contain 2 edges incident to z and the possible exceptional
path contains at least 1 edge incident to z. This implies that d(z) =
n — 3, a contradiction that completes the proof of this claim.

The component C also does not contain a suspended path (a path
whose inner vertices are of degree two in C') with 2k vertices. Assume
that such a path existed, say with consecutive vertices a1, az, -, ag,
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by, ba,- -, b. Consider a pairing of vertices of G such that a; and b;
are paired for each 7, and that each of the remaining n /2 — k vertices
of C are paired with the n/2 — k vertices not in C. Consider a path
system that realizes this pairing. With the pairing of vertices on the
suspended patl, at most 1 path for these pairs in the path system will
uot use the vertex . Therefore, just as in the proof of the previous
claiin, there must be at least n — 3 edges incident to z. This gives a
contradiction that comnpletes the proof ol this claimn.

We will next show that G must have ‘321‘— + @ — 4 edges by counting
the nuinber of edges in C. We will use the fact that in C' there are
restrictions on the number of vertices of degree 1 and on the length
of suspeuded paths.

Let nj be the nunber of vertices of degree j in C. Then, we have
the following:

Y i-n; = 2/B(C)
j=1

t
an = n/2+k
j=1

In addition, we know that n; < 2k. Shrink each suspended path in
C to an edge to get a graph H that has no vertices of degree 2. The
graph H has n; vertices of degree j for each j # 2. Thus, since no
suspended path of C' can have 2k — 2 vertices of degree 2, we have
the nunber of vertices of degree 2 in C is no more than 2k — 2 times
the nuinber of edges in H. Thus,

ng < %(2/37-—2) (Zj-nj) .

72

This results in the following series of inequalities.



2k:2

ngy < Z] n;) | (C)]
We have
t t t
QE(C) = Z]—ES “nj+ 3 Z'n.] =Z)—37LJ+32+k)
: J =1 :
3n ¢
= 3 —2n1—n2+21—3

i>3

This results in the following inequalities involving |E(C)].

3
2AE(C)| > 7”+3k 9y — 12

21B(C)| > %+3k 2(2k) — ;:_11}3( )|

;E(C)|(2+§::f) > 3y

= 2
|E(C)] =

3_n<2k—1)  k(2k-1)
2 \6k—4 6k — 4

This gives the following inequalities involving |E(G)].

3n 2k —1\ Kk(2k+1)
Nl > 2 _ _
BG) 2 5 <6k—4) k1 Tt
n 2%2 + 25k — 16
5 > _ .
) 1B 2 5+ 1555 6k — 4

In addition, we also know that

(6) B(G)| > 3—” k-5,
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since |C| = n/2 + k.

If k > Y™ 4 1, then (6) implies that |E(G)| > % + Y& — 4, and
if kb < 1475, then (5), along with some straightforward arithmetic,
implies the same lower bound for |[E(G)|. This completes the proof
of Theorein 3.

3. PROBLEMS ON PATH-PAIRABLE GRAPHS

It is easy to see that the maximum degree of a p.p. graph tends to
infinity as the order of the graph tends to infinity. More precisely we
have the following.

Theorem 4. If G is a path pairable graph of (even) order n and
A(G) =k, then
n < 2kF.

Proof. For k > 2 and t > 2, the number of vertices of distance < ¢
from a vertex v is at most 1 + k(k — 1)*"! < k. Thus each vertex v
of G has at least n — k? vertices at a distance greater than ¢ from v.

Form a new graph H; that has the same vertices as G, but two
vertices are adjacent if their distance is > t. Let

7
t= [logk —2—j ,

so t+1 > log, n/2. Therefore, each vertex in Hy, has degree at least
n/2, and so H; is Hamiltonian by a theorem of Dirac [2]. Thus, there
1s a perfect matching in H;, which implies the vertices of G' can be
paired so that the distance between each pair of vertices is at least
t+1 > log; n/2. The nunber of edges needed to realize the pairing
is at least (n/2)(t + 1), and so we have the following bounds on the
number of edges in G:

kn

n n
= C< <M
(2>logk 5 < |E(G)| < 5

It follows immediately from the previous ‘equation that n < 2kF,
which completes the proof of Theorem 4. Il
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Problem: Give a good estimate of f(k), the maximum order of a
Dp.p. graph with maximuin degree k.

It seems hopeless to determine f(k) exactly. Even to determine f(3)
causes a lot of difficulties. Theorem 4 says that f(3) < 54. This is
far from the truth, as the following result indicates.

Theorem 5. f(3) = 12, and the unique 12-vertex p.p. graph is
shown in Figure 2.

Proof (outline). A refinement of the proof of Theorem 4 for the
special case of k = 3 shows (with a very tedious case analysis) that
f(3) < 14. It should be mentioned that the graphs Ky, K33, Q3
(the Cube), Pyo (Petersen’s graph), and the graph G9 in Figure 2
are 3-regular p.p. graphs of orders 4, 6, 8, 10, and 12 respectively.

Figure 2: A Path Pairable Graph of Order 12

To show that no 3-regular p.p. graphs exist with 14 vertices is not
easy. The most difficult case is to eliminate the Heawood graph, the
unique 3—regular graph of girth 6 (see [6]). Interestingly, to show
that G5 on Figure 2 is p.p. also requires long case analysis. (Even for
smaller order, like for Petersen’s graph we have only a complicated
proof of the p.p. property). R
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