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Abstract 

Let d, k be any two positive integers with k > d > 0. We consider a k-coloring of a graph G 
such that the distance between each pair of vertices in the same color-class is at least d. Such 
graphs are said to be (k,d)-colorable. The object of this paper is to determine the maximum size 
of (k, 3)-colorable, (k, 4)-colorable, and (k, k -  1 )-colorable graphs. Sharp results are obtained for 
both (k, 3)-colorable and (k, k -  1 )-colorable graphs, while the results obtained for (k, 4)-colorable 
graphs are close to the truth. @ 1998 Elsevier Science B.V. All rights reserved 
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1. Introduction 

Using the concept of distance, there is a natural way to generalize colorings and 

the chromatic number. For natural numbers k,d ~>2 a k-coloring of the vertices of a 

graph is called a d-distant coloring if  dist(u, v)>~d for each pair of distinct vertices in 

the same color class. The minimum k for which a graph G has a d-distant k-coloring 

is denoted )~j(G), and is called the d-distant chromatic number o f  G. Clearly, 2- 

distant colorings are the usual colorings so that z 2 ( G ) =  z(G)  for every graph G. For 

example, 
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is the d-distant chromatic number of  the cycle Cn for 2 ~< d ~< n. This d-distant chromatic 
number of a cycle was considered in an equivalent form as early as 1972 by Kramer 
[7] and also appears in [10]. Several other articles on d-distant k-colorings have been 
written by various authors [see 3-6, 8, 9]. 

It is worth mentioning that the concept of d-distant coloring can be expressed by 
using one (of the many) definitions of graph powers. If  G t is the graph obtained from 
G by joining all pairs of distinct vertices which are at distance at most t then it is 
immediate that G is d-distant k-colorable if and only if G d-1 is k-colorable (in the 
usual sense). 

There are some trivial d-distant k-colorable graphs we wish to avoid. If  n ~<k then 
any graph on n vertices is d-distant k-colorable for every d and this remains true for 
graphs whose components have at most k vertices. To avoid these trivial colorings 

we define (k, d)-colorable graphs as those connected graphs which have more than k 
vertices and have d-distant k-colorings. We shall also use (k, d)-colorings for d-distant 
k-colorings. 

The purpose of this paper is to address the following extremal problem: what is the 
maximum number of  edges in (k, d)-colorable graphs with n vertices? This maximum 
is denoted by f ( n , k , d )  and the graphs attaining the maximum are called extremal 
graphs. Usually we keep k and d fixed and let n tend to infinity. 

We note first that the transition from d = 2  to d~>3 changes the character of 
d-distant colorings. If  d~>3 then the set of edges between any two color classes of 
a (k, d)-coloring must be pairwise disjoint. This observation relates d-distant colorings 
to acyclic colorings, introduced by Grfinbaum [2], where the set of edges between any 
two color classes must form an acyclic subgraph. Clearly, the acyclic chromatic num- 
ber of  a graph is not larger than its d-distant chromatic number (for any d~>3). The 
order of magnitude of n in f ( n , k , d )  also changes with the transition. Observe that 
the maximum number of edges in a (k,2)-colorable graph is precisely the Tur~in num- 
ber. The unique extremal graph is the Turfin graph (the complete k-partite graph with 
evenly distributed vertex set), so (assuming that k divides n) f (n ,  k, 2 ) =  n2(k - 1 )/2k. 

However, as the next theorem shows, f ( n , k , d )  is linear in n if d~>3. 

Theorem 1. Assume that d >~3. Then the maximum degree o f  a (k,d)-colorable graph 
is at most k - d + 2. Consequently, 

f (n ,k ,d)<~ (k - d + 2)n 
2 

Proof. Assume that G is (k,d)-colorable and consider a (k,d)-coloring of G. Let v 
be a vertex of  G and let A denote its neighbors in G. Clearly, {v) O A is colored 
with distinct colors because d~>3. This shows that IAl<~k- 1 and since G is con- 
nected and I v ( a ) l > k ,  there is a connected subgraph H of  G with k + 1 vertices 
such that {v} U A C V(H). From the Pigeonhole Principle, there exist two vertices 
x, y E V(H)  in the same color class. Let P be a shortest path connecting x, y in H. 
Since P can intersect the star {v} U A in at most three vertices, the length of  P is at 



G. Chen et aL /Discrete Mathematics 191 (1998) 65~82 67 

most 2 + (k + 1) - (IAI + 1 ) = k  + 2 - da(v). Since the length of  P is at least d, it 

follows that d<~k 4- 2 - de(v), i.e. the degree o f  v is at most k - d + 2, proving the 
theorem. 

Theorem 1 and its proof have the following immediate consequences. 

Corollary 1. I f  G is (k,d)-colorable then k >~d. 

Corollary 2. I f  d>~3 then the (d,d)-colorable 9raphs are the paths o f  length at least 
d and the cycles o f  length sd for s >~2. 

Based on the cases covered so far, it will be assumed throughout (unless otherwise 

stated) that n > k  > d  >2 .  Next we define a natural candidate for the extremal graphs. 

For our purposes it is enough to consider those values of  n for which k divides n. 

The necklace N(n,k ,d)  for n = k s  is defined as the following graph. Take s vertex 

disjoint copies GI , . . . ,G~ of  the complete graph Kk-a+3. Remove an edge 1)iW i from 

each G i. Then connect wi to vi+l for l<~i<~s (with v~l  = v l )  by a path Pi of  length 

d - 2 so that the set of  inner vertices of  the Pi ' s  are disjoint from each other and also 

from the vertices o f  the Gi's. It is easy to check that N(n,k ,d)  has n = k s  vertices, 
(n/k)((k-J +3) 4 - d -  3) edges, and is a (k,d)-colorable graph. Notice that for k = d the 

necklace is a cycle, in accordance with Corollary 2. 

For d = 4, there is another useful graph which can be obtained by modifying the 
necklace and then adding some attachments to it. To describe the attachments consider 

st vertex disjoint copies Hi,j, 1 <.i<.s, 1 <~j<<.t of  the complete graph / (k- l ,  where 
t<.k - 4 .  For each i a n d /  select t + 2  special vertices a~ a~j,, "• "' at+l,..1 , ui, j o f  Hi~, 

and remove edges ui, ja~/ for • ~ 1 ,2 , . . . ,  t 4- 1. Let zi, z2 . . . .  ,z~ be s additional vertices 

disjoint from the vertex set o f  each Hi./. Every H~,j is joined to z~ by the edge u~.jzi 
to form a graph Li for each i (1 <~i<~s). Each of  the graphs L~ will be appropriately 

attached to a modified necklace described below. 

To modify the original necklace we need to remove additional edges from each of  

the graphs G~,G2,...,Gs used in its construction. For a fixed t, t<~k--4 ,  select t 

vertices b], b~ . . . . .  b~ in Gi, different from both vi and wi, and remove in addition to 

edge viwi edges ribS, wib~ for ( =  1,2 . . . . .  t. For each path Pi of  length 2 used in 
the construction let yi denote its middle vertex. The constraint t ~< k -  4 guarantees the 

modified necklace is connected. With these modifications to the necklace, form 

the graph NA(n,k,4, t) by identifying vertices yi and zi for all i, keeping the graphs L, 
and the modified necklace otherwise vertex disjoint. We refer to this graph NA(n, k, 4, t) 
as a necklace with attachments. Observe 

that NA( n, k, 4, O) =- N ( n, k, 4), a usual necklace. 

One can easily check that NA(n,k, 4, t) is (k,4)-colorable, has 

s [ ( t + l ) (  k - l ) 2  - t ( t + l ) - ( 2 t + l ) + ( t + 2 ) ]  
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edges, and 

s[( t+ 1 ) ( k -  1 ) +  1] 

vertices. Therefore 

[E(NA(n,k,4,t))[ (t + l)(k~ ') - t 2 - 2t + 1 
max = max 

0~<t~k-4 ]V(NA(n,k,4, t)) I 0~t~<k-4 ( t +  1 ) ( k -  1 ) +  1 

which produces a better lower bound than the necklace for sup, f (n ,k ,4 ) /n  (at least 
for large k). However, this example cannot be generalized for general d. Indeed, it is 

likely 

that for d~>5 the lower bound of supn f (n ,k ,4 ) /n  given by 
the necklace cannot be significantly improved. 

The next theorem gives f ( n , k , 3 )  for every n and shows that the necklace is an 
extremal graph for d = 3 (if k divides n). 

Theorem 2. Assume n = q k  + r where O<.r~k  - 1. Then 

Proof. Let G be a (k,3)-colorable graph with the color classes Xr, Xz . . . . .  Xk and 
[X][~< IX2[ ~ . . .  ~< [Xkl. For each pair of  X/ and Xj (1 <~i<j<<.k) the edges between X, 
and X / f o r m  an independent edge set since every pair of  vertices of  X,. (X/) are at 
distance ~> 3. Thus, there are at most ]Xi] edges between X, and X/, which implies the 

following. 

e ( G ) ~ ( k - 1 ) ' Y l [ - ~ - ( k - - 2 ) ] X 2 ' ~ - ' " q - 2 i Y k - 2 l - F - ' X k  l[~<(:)qq- (~) - 
Equality holds throughout the above expressions when IX,.I = q for i = 1, 2 , . . . ,  k -  r, 

[X/[ = q +  1 for i = k  - r +  1 .. . .  ,k, and there is an appropriate matching from X/ to X/ 
for all i < j  making G connected. 

The next result is for the case d = k - 1 and it is sharp if k divides n. Its proof is 
given in Section 2. (The uncovered case, k = 5, is covered in Theorem 4.) 

Theorem 3. I f  k>.6 then f ( n , k , k -  1)~<n(k + 2)/k. The necklace N ( n , k , k -  1) shows 
that equality is possible. 

Our most difficult result concerns the case d = 4. 

Theorem 4. For k ~ 4 

(k~]) -4- 1 

k 
~< sup ~< max 

n O<~t<~k--3 

( k ~ )  + 1 + t((k~ ') - t) 
(t  + l ) ( k  - 1 ) +  1 
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The proof of  Theorem 4 will be given in Section 3, here we only give some 
comments. The lower bound is obtained from the necklace N(n,k,4). The compli- 
cated expression in the upper bound comes from the proof attempt that the necklace 
is frequently extremal. Notice that the term in the upper bound with t = 0 is pre- 

cisely the lower bound, so the theorem is sharp and the necklace is really extremal 
when the maximum is attained at t = 0. This happens for k = 4 (in accordance with 

4 15 _ 7 and Corollary 2) and also for k = 5 , 6  (when the upper bound is max{~,~, ~ } - ~  
max{~ ,2°  27 32 tl, 16, ~ }  = ~-)" This gives the following corollary. 

7 and sup,( f (n ,  6 ,4 ) /n )=  ~.  The necklaces Corollary 3. sup,( f (n ,  5,4)/n) = ~ 
N(n, 5,4) and N(n,6,4)  9ire equality. 

The bounds in Theorem 4 are separated if k >~ 7. It was thought at first that the gap 
is due to the proof method and the lower bound is the truth, i.e. the necklace is always 
an extremal graph. However the proof of the upper bound lead to the construction of 

the necklace with attachments which improves the lower bound (at least for large k). 
We conclude that it is probably very difficult to find f (n,  k, 4) for k >i 7 even for the 

case when k divides n. Notice though that the gap between the upper and lower bound 
in Theorem 4 is less than ½. In fact, the lower (upper) bound can be approximated by 
(k - 3) /2((k - 2)/2) for large values of  k. 

2. Proof of Theorem 3 

We will prove Theorem 3 by contradiction. Suppose G is a ( k , k -  1)-colorable 
graph with n vertices and more than (k + 2)n/k edges. Further, we assume that G is 

a counterexample of  Theorem 3 with the minimum number of  vertices. Since G is a 
(k, k -  1)-colorable graph, the maximum degree of G is at most 3 by Theorem 1. Since 
e(G) > (k + 2)n/k, G must contain a vertex of degree three with all of  its neighbors of 
degrees at least 2. Since k ~> 6 and IV(G)] ~>k + 1, easy counting shows that G contains 
a vertex induced connected subgraph H with k + 1 vertices such that H has a vertex 
z of  degree 3 and all its neighbors have degree at least 2 in H. 

Let //]1, V2 . . . . .  I~ be a partition of the vertices of G which gives G a (k, k - 1 )- 
coloring. We will simply refer to each V: as the color class determined by color i. 
By the Pigeonhole Principle, H contains two vertices x and y which are in the same 
color-class, say in Vi. Let P[x, y] be one of the shortest paths in H joining x and y. 
Since distc(x, y ) > ~ k -  1, P[x, y] contains at least k vertices. Because d , ( z ) =  3, P[x, y] 
contains exactly k vertices. Let w be the vertex of H which is not on the path P[x, y]. 

Note that w must be either the vertex z or one of the neighbors of z. I f  w = z, then 
since P[x, y] is of  minimal length w is adjacent to three consecutive vertices on the 
path P[x, y]. By the minimality of  the length of P[x, y], we have that if w ¢ z then w is 
either adjacent to three consecutive vertices on P[x, y], or two consecutive vertices on 
P[x, y], or two vertices of distance two on the path P[x, y]. In particular, the following 
result holds. 
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x y 
A A A A A 
W W W W W V W W 

1 2 1.2 i-1 1 1+2 !+3 k 1 

F i g .  1. 

Claim 1. H is a subgraph of  the 9raph shown in FiT. 1 with the possibility that one 
edge from the /)ertex w to P[x, y] is removed. Each vertex vi c Vi for 1 <~ i <~ k and 

Y =/)k+l E VI. 

Note that in Fig. 1, the possible neighbors o f  w are v t - i ,  re, and ve,+e. We also 

assume that we choose H such that, rain{f, k - f}  as large as possible, that is, trying 

to place vc- in the 'approximate'  middle o f  the path P[x, y]. In the following, we will 
show that we can assume that x and y are the only two vertices in H having possible 

neighbors outside H.  To do so, let u be a vertex o f  V(H) - {x, y} having a neighbor 

/) outside H.  Without loss o f  generality, we assume that 

dis t .  ( u, x) ~< dis t .  ( u, y ). 

Suppose that v E V,.. Since distc(/), v i ) ~ > k -  1, the only possibility is that u = w = vf+i 

and v E Vk and N(w)  M V(P[x, y])  = {Vl, v2 }. Since k ~> 6 and G is a (k, k - 1 )-colorable 
graph, in this case, we either have that x does not have neighbors outside H or both 

u = v2 and x = Vl have a common neighbor v E Vk outside H.  In both cases, we let 

H *  be the graph induced by V(H) U {/)} - {y}. Then the only two vertices which 

may have neighbors outside H*  are v and vk. Thus, without loss o f  generality, we can 
assume that the only vertices in H which may have neighbors outside H are x and y. 

Clearly, H does not contain (k + 2)(k + 1)/k edges. Hence, n > k  + 1. In the fol- 

lowing, we will study the structure o f  H and vertices nearby. Then, we will show 
that e(G)<,(k + 2)n/k if  n<,2k or that there is a counterexample to Theorem 3 with 

smaller order (which is impossible by assumption). 

2.1. Suppose that k + 1 < n <~ 2k 

In this case, we will show that G does not contain both edges/)/+iv(_ 1 and vr+i vf+2. 
Suppose, to the contrary, vr+lvr-i c E ( G )  and ve+lvr+2 cE(G) .  I f  both x and y have 

neighbors outside H,  we can extend H step by step to show that G contains the graph 
shown in Fig. 2 as a vertex induced subgraph. 

Note, if we cannot extend H to the above graph, then at some step the terminal vertex 

must have degree 1, which contradicts our assumption that G is a counterexample with 
the minimum number o f  vertices. Since n ~< 2k, it is readily seen that G is a subgraph 

of  the graph in Fig. 3, which implies that e(G)<.(k + 2)n/k, a contradiction. 
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/~ i+1 

1+2 1+3 k 1 i-1 i 1+2 k 1 1-2 1.1 

Fig. 2. 

71 

2 

1 1 

1+2 i I-1 

Fig. 3. 

Hence, one of  x and y does not have a neighbor outside H.  Without loss o f  gen- 

erality, we assume that x is the one. Since G is a counterexample with the minimum 
number of  vertices, the minimum degree 6(G)>~2. Thus, x =  v/ i, that is, ( = 2 .  Note 

that x does not have a neighbor outside H implies that y must have a neighbor out- 

side H.  Since G is a (k, k - 1)-eolorable graph, the neighbors of  y outside H can only 

be in V2 t3 V3. I f  y has only one neighbor y* outside H,  say in V2, let G* be a graph 
obtained from the graph G by removing the vertex x and adding an edge v3v~. It is 

readily seen that G* is a ( k , k -  1)-colorable graph and tV(G*)I = n -  1 >~k + 1 and 

e(G*)>~e(G) - 1 > (k + 2)(n - 1) 
k 

which contradicts the minimality o f  the number o f  the vertices of  G. Therefore, y has 

two neighbors y* and y** outside H.  Since G is a ( k , k -  1)-colorable graph and 

k>~6, the neighbors o f  y* and y** outside V ( H ) U  {y* ,y**}  must be in V4 and the 

neighbors must be the same one if both of  them have a neighbor outside H. Using the 

property that any pair o f  vertices in the same color class must have distance at least 
k - 1 and G has at most 2k vertices, we can show that G is a subgraph of  the graph 
shown in Fig. 4. 

Then, it is readily seen that e(G)<~(k + 2)n/k, a contradiction. 

Hence, one o f  edges re+iv/-1 and v/+lvr+2 is missing in H.  Without loss of  gener- 

ality, we assume that the edge re+iv/_1 is missing, that is, d(v/+l)= 2 and v/~Lv/ and 

v/=~v/+2 are edges o f  G. In the same manner as above, we can show that if both x 
and y have neighbors outside H,  then G contains the vertex induced subgraph shown 
in Fig. 5, where the dotted lines indicate possible edges, and the two end vertices in 

V/+l at the two ends may be the same. 
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1 2 4 k 1 2 4 5 k-I k 

Fig. 4. 

" 1+3 k 1 I 1+2 1+3 k 1 I-1", 

0'I+2 "O 
I 

Fig. 5. 

~ +1 

I 1+2 

1+2 I I-1 

Fig. 6. 

Since G has no more than 2k vertices, it is readily seen that G is a subgraph of  one 

o f  the two graphs shown in Fig. 6. 

In either case, we have e(G)<~(k + 2)n/k, a contradiction. 
Thus, we can assume that x does not have a neighbor outside o f  H.  Then, y must 

have a neighbor outside o f  H.  Let G* be the graph obtained from G by removing the 

vertex x and adding an edge o21) 4. Since/)k does not have a neighbor outside o f  H,  we 

see that G* is also a ( k , k -  1)-colorable graph with e(G*)>(k + 2 ) ( n -  1)/k, which 

contradicts the minimality o f  the number o f  vertices o f  G. 

2.2. Suppose that n >~2k + 1 

Claim 2. Both x and y have neighbors outside H. 

Proof.  Suppose, to the contrary, x does not have a neighbor outside H.  Then, y is 
the only vertex o f  H which may have neighbor outside H.  In particular, we see that 
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1+3 k 1 I 1+2 k 1 

Fig. 7. 

!.1 

G - ( V ( H )  - {y})  is connected. Note that H - y is incident to at most k + 2 edges. 

Thus, 

e(G)<~e(G - ( V ( H )  - y ) )  4. (k + 2)~< - -  
(k + 2)n 

a contradiction. [] 

I f  x has two neighbors x~ and x~ outside H,  then we can assume that x~ C Vk and 

x~ E V/,_ l and we have either ~ = k - 1 or # = k since V~, V2 . . . . .  Vk give a (k, k - 1 )- 

coloring of  G. Since k >~ 6, y has exactly one neighbor y* outside H which lies in 

V2. In this case, the subgraph induced by V ( H )  U {y*} - {x} will contradict the 

maximali ty  of  m a x { & k  - (}.  Thus, x has exactly one neighbor x* E V~. outside H 

and y has exactly one neighbor y * ~  V2 outside H.  We will consider the subgraph 

G* = (G - V ( H  - y ) )  U { x ' y } ,  that is, by removing all vertices in H except y and 

adding an edge x * y .  

Clearly, G* is connected. I f  G* is a (k,k - 1)-colorable graph, then 

(k + 2)n 
e ( G ) < ~ e ( G * ) -  1 4. (k 4- 3)~< k 

a contradiction. 

Therefore, there are two vertices u and v in V ( G * )  and they are in the same color 

class, say Vi, such that d i s t c . ( u , v ) < ~ k - 2 .  Since Vi, V2 . . . . .  V~. give a ( k , k -  1)-coloring 

of  G, u and v must be in different components of  G - V ( H  - y) .  Without loss of" 

generality, we assume that u and x* are in the same component and v and y are in the 

same component in G - V ( H  - y) .  I f  i ¢ E + 1 or i = # + 1 and H contains both edges 

v /+lv /_  1 and v/+iv/÷2, then dista(x,  vi) + dis tcO' ,  vi) - k - 1. Since distc(u,  vi) 7> k - 1 

and distc(v,  v i ) > ~ k -  1, then 

distc;(u,x) + distc/(y, v) >~2(k - 1 ) -- (k - 1 ) -- k - 1. 

Thus, 

distc,* (u, v) = distG(u,x* ) + 1 + d is tc (y ,  v) ~> k -- 1, 

a contradiction. Therefore i = {  + 1 and one of  the edges Vt+lt?l_ 1 and v /~v /+2  is 

missing. Without loss of  generality, we assume that v t - l v / _ l  is missing. Then, G 

contains the graph shown in Fig. 7 as a vertex induced subgraph. 
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1 1+2 

Fig. 8. 

,@ 
1+1 

,qw , qp  W 

1 !+2 !+3 

W W W 

1-1 1 1+2 

Fig. 9. 

Since G -  V ( H -  y)  is a disconnected graph, the graph G has the structure shown in 
Fig. 8, where HI and H2 are connected subgraphs. Now we form two new connected 
graphs G1 and Gz as shown in Fig. 9. 

Clearly, IV(GI)[>~k + 1 and IV(G2)I>~k + 1. It is also not difficult to check that 
both G1 and G2 are ( k , k -  1)-colorable graphs. Then, 

e(G) = e(G~ ) 4- e(G2) - 7 

k + 2' V(al)  ' l  I + k + 2' V(G2) ' 1  I - T -  7 

-- k + 2 ( n + 5 ) _  7 
k 

k + 2  
~ - -T -n ,  

since k/> 6, a contradiction, completing the proof of  Theorem 2. [] 

3. P r o o f  o f  Theorem 4 

Define f ( k , 4 ) =  sup, f(n,k,4)/n.  The lower bound is provided by the necklace 
N(n,k,4). To prove 

(k~l) + 1 + t ( ( k ~  ')  - t )  
f ( k ,4 )  <~ max 

0~<t~<k-3 (t + 1 ) ( k -  1)4- 1 

let 
( k 2 1 ) 4 - 1 + t ( ( k 2  ' ) - t )  

g(k) = max 
0~<t~<k-3 ( t +  1 ) ( k -  1 ) +  1 

Clearly, g(k)>~((k2 ') ÷ 1)/k, the value at t = 0 .  
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i x  i x i x i x  
H H H H 

-: ............... i -:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I ................... 

t>l ,  r=s=l  t=2, r=s=2 t= l ,  r=-s=l t=l ,  r=s=2 

Fig. 10. 

Suppose, to the contrary, G is a (k,4)-colorable graph with n>~k + 1 vertices and 

more than g(k)n edges. Further, we assume that G has the minimum number of  vertices 

with the given properties. Suppose the vertex partition V = Vi U V2 U - .. U Vk gives a 

(k,4)-coloring o f  G, that is, if u and v are in the same II/,. for some i then dist(u, v)~>4. 

Let H be a subgraph of  G. As usual, we will let e(H) denote the number o f  edges of  

G with both ends in H and O(H) denote the number o f  edges with one end in H and 

the other one is not in H.  We will use O*(H) for e(H)+d(H) ,  that is, the total number 

of  edges incident with H.  We will prove the theorem by highlighting the following 

claims. First, we notice that the maximum degree A(G)<<,k - 2 by Theorem 1. 

Claim 3. G contains a connected induced subgraph H of  k vertices such that 
1. Some vertex x of  H has degree k - 2, 
2. a*(H)<~ (k2 ' )  q-Z, and 

3. i f  equality holds in 2, then H is one of  the graphs shown in Fig. 10 (including the 
connections into the the rest of  G as shown). 

P r o o f .  Since e ( G ) > ( ( k 2 ' ) + l ) n / k ,  G contains a vertex o f  degree k - 2 .  Let x be one 

such vertex. Without loss o f  generality, we assume that x E VI and the neighbors of  x 
are in V2 . . . . .  Vk_ ~ respectively. Since G is connected and G has at least k q. 1 vertices, 

there exist vertices in Vk which have neighbors in N(x). Let y be one o f  those vertices 

such that IN(y)  n N(x)[ is maximum. 
Note that N[x] U {y} contains a vertex in each color class. Assume 

NIx] U {y} = {x - x l , x 2  . . . . .  xk-l ,xk = y}, 

where xi E Vii for each i = 1,2 . . . . .  k. 
Let T = N ( x )  A N ( y )  and 

S =  {xi I N ( y ) N  V i e 0  and N ( x ) n N ( y ) N  V~ = 0}, 

that is, S is the set o f  the neighbors of  x for which y has a neighbor in the same 

color-class outside N[x]. 
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Let R be the set o f  vertices in N(x)  - T having neighbors outside N[x]. Since G is 

a (k,4)-colorable graph, all neighbors of  R outside H are in Vk. 

Since every pair o f  vertices in the same color-class are at a distance at least 4, there 

is no edge from S U R  to T. There is no edge inside R if  IT[ = 1 by the maximality o f  

[TI. Let s = ]S[, t ---ITI, and r = IRI. Now Nix] contains k - 1 vertices and a total o f  
(k21) possible edges. Thus, the number o f  edges incident to H is at most 

k - 1 ) + s + t + r - t × [ S U R [ .  
2 

Since G is connected and ] V ( G ) I ~ k +  1, then [SUR]~>I. 

I f  t ~> 3, then s + t + r - t x [S U R I < 2 unless s = r = 1 and S = R. Therefore, Claim 3 

is true in case t/> 3. 

I f  t = 2 ,  then t + s + r - t × ] S U R [ = 2  + s + r - t × [SUR[~<2, with equality 
holding only if S = R and R induces a complete subgraph, and the later implies that 

[N(R) - N[x]l = 1. In particular, r~<2 by the maximality o f  t. Therefore, Claim 3 is 

true in case t = 2. 

I f  t = 1, the number o f  edges incident to H is at most 

+ s + t + r - t x  ]SUR[ - 
2 

Note that - [ R - S [  + ( r - ( 2 ) - 1 ) ~ <  0 and the equality holds if  and only if either r - -  1 
or r = 2  and R C_ S. Further, by the maximality o f  [T[, each vertex in R is adjacent to 

different vertices if  [R I = 2. Therefore the claim follows. [~ 

Our purpose is to investigate the structure o f  G - V(H) which will lead to a con- 

tradiction to the minimality o f  the number o f  vertices o f  G. Basically, we will divide 
the remaining proof  into two main cases D * ( H ) <  (k~,)  + 2 or c3*(H)= (k~l) + 2. In 

the first case, we will simply remove the subgraph H from G. In the later case, we 

need to remove the vertices o f  H and add one or two edges to the remaining graph 

and the following claim is needed. 

Claim 4. G contains a vertex induced suboraph H with k vertices with the maximum 
degree A ( H ) = k -  2 and one of  the followin9 three conditions holds: 

1. D * ( H ) < ( k 2  ' )  + 2 .  
2. O * ( H ) =  (k2 ' )  + 2 and there exists an edge e ~ E ( G )  such that the 9raph ( G -  

V(H))  U e has the property that each pair o f  vertices in the same color-class are 
at distance at least 4. 
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t = l ,  r=-s=l t = l ,  r --s=2 el  
t = l ,  r=s=2 

F i g .  1 l .  

3. a * ( H ) =  (k2 ' )  + 2 and there exist three edges el,e2 and e3 such that e, 6 E ( G )  

and e2,e3 q~ E(G) and (G - V(H)  - el )U {e2, e3} has the property that each pair 

o f  vertices in the same color-class are at distance at least 4. 

Proof. Let H be a vertex induced subgraph of G guaranteed by the previous claim. 
Claim 4 clearly follows if 0 * ( H ) <  (k~l) + 2 .  Assume that (3*(H) = (k21) ÷ 2 .  Then, 

H is one of the four graphs shown by the previous claim. In Fig. 11, we indicate 

where the edge e will be added to G -  V(H). 
It is readily seen that in cases I-Ill ,  (G - V (H) )U  {e} has the property that every 

pair of  vertices in the same color-class are at distance at least 4. In the following we 
will show that if  there is no subgraph such that condition (2) holds in case IV of 
Claim 3, then condition (3) of  Claim 4 holds. Without loss of  generality, we assume 
the graph H has been labeled as shown in Fig. 12, where the numbers indicate the 

color-classes to which the vertices belong. 
Since O * ( H ) =  ( k ~ l ) +  2, y has exactly two neighbors outside of H. Since G is 

a (k,4)-colorable graph with the color-classes V1, ~ . . . . .  Vk and G(N[x]) contains ev- 
ery possible edge from x2 to xi except x3 and x4, where we assume that two neigh- 
bors of y outside H are in 1/3 and V4 respectively. Let H * = G ( N [ x ] U { y * } )  and 
H** = G(N[x] U {y**}) where y* and y** are the neighbor x3 and x4 respectively out- 

side H. If  ~?*(H*) < (k~1)+2,  the claim follows. Thus, we assume ~*(H*) = (k2 ' )  +2. 
In particular, we have that y* has exactly two neighbors outside H* and they are in 

and V3 respectively. In the same manner, we can show that y** has exactly two 
neighbors outside of H** and they are in ~ and V3, respectively. Let 

• z3 E ~ and z4 E V4 be two neighbors of y outside of  H; 
• z* E ~ and z~ < E V4 be two neighbors of  y* outside of  H*; 

** Z~* • z 2 E V2 and E V3 be two neighbors of y** outside of  H**.  
Since H does not satisfy condition (2), GI = ( G - V ( H ) ) U  {z~y*} contains two vertices 
u and v in the same color-class at distance at most 3. Clearly, one of u and v must 
be in {z3,z4,zf ,z*}.  Since V1, V2 . . . . .  V~ give a (k,4)-coloring of G, u and v must be 
in V4. Then, {u ,v}={z4 , z~} .  In particular, we have z3z4~E(G).  Similarly, we car, 

show that * * ** ** z2z 4 E E ( G )  and z 2 z 3 ~E(G) .  Let el =z3z4, e~=z3y*,_ and e3--z4y**. 
Then, G contains graph shown in Fig. 13 as a subgraph. 
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1 x H 

t 

Fig. 12. 

Z 3 Z 4 Z~Z~ Z~*Z3** 

Fig. 13. 

xz ~ . z  Xk.1 

x k 

Fig. 14. 

It is readily seen that ( G -  V ( H ) -  el)U {e2,e3} satisfies condition (3). [] 

Let H be the vertex induced subgraph guaranteed by Claim 3. We let G @H 
denote 

• G -  V ( H ) i f  ~3*(H)< (k+2) _[_ 2, 
• (G V(H))  tO {e} if O*(H) = k+2 - -  ( 2 ) + 2 and condition 2 is met, 
• ( G -  V ( H ) -  el)t2 {e2,e3} if ¢?*(H)< (k~-2) _+_ 2 and condition 3 is met. 

The components of G O H are called good components if either the component is of 
order > k  or if the edge density of these components <~9(k). Components with larger 
density and order ~<k are called bad components. Note that since we have chosen G 
to be a smallest order graph (of order ~>k + 1) where the density exceeds g(k), all 
components of order > k have density ~< g(k). Furthermore, without loss of generality, 
we also assume that G O H  has a minimum number of bad components. Since G is a 
counterexample, there must be at least one bad component in G @ H. 

Claim 5. Let Ll =Kl,k-2 and L2 -~Kl,k-2 be two vertex disjoint stars in G and let 
L3 be the graph shown in Fig. 14 and vertex disjoint from L> 

Then, 
1. at most one end vertex o f  Ll is adjacent to an end vertex o f  L2, and 
2. i f  xk is adjacent to some set of  end vertices o f  L2, then no xi (l  <<.i<<.k - 1) is 

adjacent to an end vertex of  L2. 

Proof. (i) Label the vertices of 

V(LI )=  {yl ,  Y2 . . . . .  Yk-1} 

where Yl is the center vertex of  Ll and let 

V(L2) = {zl, z2 . . . . .  zk_ ~ } 
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good components 

Fig. 15. 

bad coml~onents 

where zl is the center vertex of  L2. Suppose there are at least two edges YiZj and y/zt 
with 1 ~ i , j , ( ,  t < ~ k -  1, and i ¢ f  o r j ¢ t .  Assume j ¢ t .  Then zj and zt each receives 

a color different from the k colors assigned to the vertices of  L~. But there are at most 
k - 1 different colors, so that zj and zr receive the same color, which contradicts G is 
a (k,4)-colorable graph with the coloring VL, V2,..., Vk. 

(ii) Note that x~ has a color distinct from those assigned to vertices of  L2 since xk 
is adjacent to some set o f  end vertices of  L2. But then if some xi, 2~i<<.k - 1, were 
adjacent to a vertex zt o f  L2, then xi also receives a color different from these of  L2 
implying that xi and xk have the same color. This contradicts distc(xi,xk)>~4. ~5 

Claim 6. Each bad component of  G ~3 H has k -  1 vertices and G has a cutvertex z 

such that G has the structure shown in Fig. 15. 

Proof .  By definition a component is bad if it has edge density > g ( k ) > ( ( k ~  1 ) + l)/k. 
Clearly, any component of  order ~< k - 2 has edge density ~< (k - 3)/2 < ( (k ~, ) + 1 )/k, 

so that such components are good. Also, from the proof  of  Claim 3, we see that no 
component of  order k can have more than (k21) + 1 edges and be connected to a 

vertex of  H,  which implies that all components of  order k are good. 
Let BI be a bad component  in G @ H  and let H contain L3 as shown in Fig. 14. 

Since B~ has edge density >( (k2~ ) + 1)/k, B~ contains a vertex y of  degree 
k - 2. Then, N[y] spans B1. Let L2 be a spanning star of  Bl with center at y. Let 
V ( B l ) = { y = y l , y 2  . . . . .  Yk-1}. Applying Claim 4, L2UL3 spans one of  the graphs 
shown in Fig. 16. 

We claim in either case z is a cutvertex of  G and all the other vertices in N(xl ) are 

not cutvertices. I f  not, the graph spanned by {z, yl,  Y2 . . . . .  Yk} can replace H and the 
deletion of  this graph with fewer bad components than G G H ,  a contradiction. 

Let G* be the graph obtained by deleting from G all good components indicated in 
the above claim. Then G* is one of  the graphs shown in Fig. 17. 

Note that there can only be one bad component  in the second possibility shown 
above since all neighbors of  z outside H have the same color. 
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Kk-1 

X k 

Yk-I 

x 2 ~ z X ~  x k-1 

qMx k 

Y 

Fig. 16. 

bad components 

Second Type U 

only one bad component 

Fig. 17. 

Claim 7. The inequafity e( G*) <<.g(k )n holds. 

Proof. We first show when G* (of the second type) shown above has a maximum 
number of edges, then it is isomorphic to one of the first type. Split {x2 . . . . .  xk-1 } -  {z} 
into three sets A, D, C as shown in Fig. 18 where C is the set of the neighbors of  xk 
and hence nonneighbors of z, A is the set of  remaining nonneighbors of z, and D is 
the set of  the rest vertices in N(x). Let B denote the one bad component connected 
to z. Further, let [C I ---j, IAI =q ,  and IOl =m.  

Observe that the k - 2 vertices of B - {b} must receive their colors from the distinct 
set of k -  1 colors given to A U D U C U {Xl, xk}. Also, each of the vertices of B -  {b} 
which are assigned the colors of  D U {x} must be nonadjacent to b. Hence G* (of the 
second type) has at most 

- -  - -  - - m  2 J q + J +  2 

edges and this is maximized by choosing m = q = 0 which makes that G* be of the 
first type. We only need to maximize the number of edges for G* in this case. 
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Fig. 18. 

--X 1 

Z J 

bt 

Fig. 19. 

Split N(x) into three sets A, D, and C as shown in Fig. 19 where C is the set of  

the neighbors of  z and no vertex in C is adjacent to a vertex in A, while some vertex 

of  C is adjacent to each vertex o f  D. Let Bt,B2 . . . . .  Bt denote the bad components. 

Let j = }C I. 
Observe that the colors given to {bl,b2 . . . . .  bt} (see Fig. 19) must be a subset of  

the colors assigned to vertices o f  A so that JA] >~ t. Also any neighbor of  bi in B, must 

have a color different from each color given to b/, j ~ i, and also different from the 

colors o f  C U {z}. Thus, since each B~ - {b~} has k - 2 vertices, there must be at least 

j + t -  1 vertices in Bi-{bi} which are not adjacent to bi. (Here we have also used that 
all colors o f  Bi a r e  distinct and the same as those k colors given to {x} UA UD U C.) 

Therefore, G* has maximum number of  edges when the only nonadjacencies are those 

indicated in the above discussion. Hence the maximum number of  edges is G* is 

(choose IAI = t) 

2 - t j + j + t + t  2 - ( t + j - 1 )  

for appropriately chosen t and j .  
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Clearly, e(G*) will reach its maximum when j = 1 (Assuming t > 0). Thus, assuming 
t > 0 ,  the density e(G*)/((t + 1)(k - 1) + 1) is maximized by maximizing 

(k~l) + 1 + t((k2 I) - t) 

(t + 1 ) ( k -  1 ) +  1 

where O < t ~ < k - 3 .  [] 

Since the G* is obtained from G by deleting the good components of  G O H, the 
density of G is no more than the density of G*, which contradicts the assumption that 
e(G)>9(k)n. Therefore Theorem 4 follows. 
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