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Given a tournament score sequence s1�s2� } } } �sn , we prove that there exists
a tournament T on vertex set [1, 2, ..., n] such that the degree of any vertex i is si

and the subtournaments of T on both the even and the odd vertices are transitive
in the given order. This means that i beats j whenever i< j and i# j (mod 2). For
any score sequence, we give an algorithm to construct a tournament of the above
form, i.e. it is transitive on evens and odds in the given order. This algorithm fixes
half of the edges of the tournament and then is similar to the algorithm for
constructing a tournament given its score sequence. Another consequence provides
asymptotics for the maximum number of edges in score unavoidable digraphs.
From a result of Ryser, it is possible to get from any tournament to this special
tournament by a sequence of triangle reversals. We show that n2�2 reversals are
always enough and that in some cases (1&o(1)) n2�32 are required. We also show
that such a sequence of triangle reversals can be found in O(n2) time. � 1998
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1. INTRODUCTION

A tournament T=(V, E ) is an orientation of a complete graph; i.e., it is
a directed graph such that (x, y) # E � ( y, x) � E. If (x, y) # E, we write
x � y and say that x dominates y. The degree of a vertex x, also called its
score and denoted by either d(x) or sx , is the number of vertices dominated
by x (the out-degree with T viewed as a directed graph). The score
sequence of a tournament is the sequence of degrees of its vertices, given in
the decreasing order. Let x be a vertex of a tournament T and S a subset
of T, we denote by dS(x) the number of elements in S which are dominated
by x.

The triple (a, b, c) is called a directed triangle (or simply a triangle) if
(a, b), (b, c), (c, a) # E. We similarly define directed cycles. A reversal of a
directed cycle in a tournament is an operation that reverses the edges in
the directed cycle. This operation does not alter the score sequence. Two
tournaments T and T $ defined on the same set of vertices are cycle-reversal-
equivalent (resp. triangle-reversal-equivalent) if T can be transformed into
T $ by a succession of cycle reversals (resp. directed triangle reversals).

A tournament is called transitive (acyclic) if p � q and q � r imply that
p � r. Two vertices a � b of a transitive tournament T are consecutive if
there is no c in T such that a � c and c � b.

Definition. A tournament is 2-partition-transitive if there exists a
partition of the set of vertices V=A _ B such that the tournaments induced
on both A and B are transitive.

Let T be a tournament on set [n]=[1, 2, ..., n] and, further, let P=[ p1 ,
p2 , ..., pr]/[n] be a set such that P induces the transitive subtournament
given by pi � pj if and only if i< j (we say that P is oriented in the indexed
order). For any point x in T"P, we define the dominancy word of P on x
to be a1a2 } } } ar where ai=1 if pi dominates x, otherwise ai=0. Clearly, if
the word of P on x does not contain 01 then the tournament on P _ [x]
is transitive.

We recall the result of Ryser [15] concerning scores and cycle reversals:

Theorem 1 (Ryser [15]). If two tournaments T and T $ are defined on
the set V and dT (v)=dT $(v) for any v # V then T is triangle-reversal-
equivalent to T $.

This result implies in particular that cycle-reversal-equivalence and
triangle-reversal-equivalence are the same. A tournament is regular if its
score sequence is constant. Following Ryser's theorem all the regular tour-
naments on 2k+1 vertices are cycle-reversal-equivalent. Moreover, there is
only one regular tournament on 2k+1 vertices which is 2-partition-transitive:
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we arrange the 2k+1 vertices around a circle and each vertex dominates
the next k vertices around the circle clockwise.

The following more general question was the starting point for our
investigations. For a given tournament score sequence, does there exist a
tournament having not only this score sequence but also other prescribed
properties such as transitive or bipartite subtournaments of a given size?
We may also ask for the maximal number of edges a digraph Dn on n
vertices can have such that for each score sequence of length n there exists
a tournament having the given score sequence and containing Dn as a sub-
digraph. Digraphs which satisfy this condition are called score unavoidable.

Our main result states that for a given score sequence with s1�s2�
} } } �sn there exists a tournament T on the vertex set [1, ..., n] such that
the degree of any vertex i is indeed si and the subtournaments of T on both
the even and the odd vertices are transitive in the given order. This means
that i dominates j whenever i< j and i# j (mod 2). We say that T is a
balanced 2-partition transitive tournament.

As a consequence of this result we remark that in order to construct a
tournament from a given score sequence we can fix roughly half of the
edges in advance. Thus we immediately obtain the lower bound wn2�4x&
wn�2x for the maximal number of edges in a score unavoidable digraph Dn .
We show that wn2�4x is an upper bound.

Let T be a tournament and T $ be a balanced 2-partition transitive tour-
nament with the same score sequence as T, which we showed exists.
In light of Theorem A, we may ask for the minimal number of triangle
reversals which are necessary to transform T into T $. If |V(T )|=n then we
can bound this quantity between n2�2 above and (1&o(1)) n2�32 below,
thus determining the order of magnitude.

2. PARTITION INTO TWO TRANSITIVE TOURNAMENTS

In this section we prove that for any score sequence, there is a tourna-
ment which is 2-partition transitive.

Theorem 2. Every tournament T is cycle-reversal-equivalent to a
2-partition transitive tournament.

Proof. We use induction on the size of T. It is clear that if T contains
two vertices, then T is 2-partition-transitive. Let |V(T )|=n and assume
that the theorem is true for all tournaments on fewer than n points. Let x
be a point in the tournament. By the inductive hypothesis, there is a
sequence of cycle reversals on T"[x] which makes it 2-partition-transitive.
We may assume that T"[x] is already in this form with partition A _ B
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and that the partition has certain extremal properties with respect to all
possible tournaments in the cycle-reversal-equivalence class of T, specifically:

We consider a partition where A is minimal in size and the dominancy
word of A (where the elements of A are indexed in the transitive order) on
x is maximal with respect to the lexicographic order.

Suppose for contradiction that x cannot be added to A so that their
union is transitive, then the word of A on x contains 01, thus there are two
vertices a and b, consecutive in A, such that x � a, a � b, and b � x
(Fig. 1).

As A is minimal in size, we cannot add b to B, thus there exist c and d
consecutive in B such that b � c, c � d, and d � b. If c � a, then we could
reverse (a, b, c), keeping A and B transitive and increasing the dominancy
word of A on x. Hence, by our assumption that this word is maximal, we
have a � c. But now we reverse the cycle (x, a, c, d, b) and the dominancy
word of A on x is increased. Contradiction. K

We note that Theorem 2 can be derived easily from the following result
of Ryser [14, Theorem 5.2] (see also Fulkerson [7] and Moon [13]).
The cited proofs of this are more difficult than our cycle reversal argument.
We need one more definition before we can state his theorem. If T is a
tournament on vertex set [n] with score sequence (in the increasing order)
s1�s2� } } } �sn , then an upset is an edge i � j for i< j. We now state
Ryser's result which says that the trivial lower bound on the number of
upsets in a tournament with given score sequence can always be achieved
by some tournament.

Theorem 3. For every score sequence s1�s2� } } } �sn , there exists a
tournament T on vertex set [n] such that the number of upsets is

:
i: si>i&1

si&i+1.

Theorem 3 implies that every vertex i satisfies at least one of the following
properties:

Figure 1
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�� For every j<i, we have i � j in T.

�� For every j>i, we have j � i in T.

Thus we can partition the vertices into two sets depending on which
property they satisfy (vertices satisfying both properties are placed
arbitrarily). This gives a 2-partition of the vertex set required for Theorem 2.

We next show that the 2-partition can be done in a balanced way which
leads to a canonical construction of a 2-partition-transitive tournament. It
was suggested by Rigollet and Thomasse� that, given a score sequence in
decreasing order, one can construct a tournament such that the restrictions
on both odd and even indexed vertices are transitive and oriented in the
indexed order. In the next section, we prove that this is possible.

3. BALANCED PARTITION INTO TWO
TRANSITIVE TOURNAMENTS

We wish to prove the above-mentioned theorem by induction. The
problem is that removing a vertex does not keep the score sequence in the
right order, and for this reason it is advantageous to make the statement
stronger so that induction will be easier. We will prove the following
statement concerning subsets of T.

Theorem 4. Let T be a tournament and S any subset [x1 , x2 , ..., xn] of
T with points labeled so that d(xi)�d(xj) whenever 1�i� j�n. Then T can
be transformed by a sequence of cycle reversals into a tournament T $ having
the property that the restriction of T $ to both [x1 , x3 , x5 , ...] and
[x2 , x4 , x6 , ...] is transitive and oriented in the indexed order.

We first need some tools which link cycle reversal and degree. Here is
one fundamental observation:

Lemma 1. Let A be a subset of T such that x # A and y # A. If
d(x)�d( y) and dA( y)&dA(x)� p, then there exist at least p vertices
z1 , z2 , ..., zp in T"A such that x � zi and zi � y for any 1�i� p.

Proof. Let B=T"A, we have dA(x)+dB(x)�dA( y)+dB( y). Since
dA( y)&dA(x)� p, we get dB(x)&dB( y)� p. So there exist at least p
elements of B satisfying the statement. K

Corollary 1. Let x and y be two vertices of T such that d(x)�d( y)
and y � x. Then there is a vertex z of T such that x � z and z � y.

Proof of Theorem 4. We will prove the theorem by induction. For
n=2, the theorem is clearly true.
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We suppose it is true for n, and prove it for n+1, let S=[x1 , x2 , ...,
xn+1] be a subset of T such that for any 1�i� j�n+1, d(xi)�d(xj). In
the following, when we refer to the index of an element, it is always with
respect to its position in S. We apply the inductive hypothesis to the set
[x2 , x3 , ..., xn+1] so that we now have two transitive tournaments E=
[x2 , x4 , x6 , ...] and O=[x3 , x5 , x7 , ...] oriented in the indexed order. Let
R be the set T"S. Thus, [R, O, E, [x1]] is a partition of T.

Our goal is to reverse cycles to add x1 to O in such a way that it
dominates all elements of O. The cycle reversals performed will leave E and
O unchanged, and in this way we achieve our goal.

We assume that this is not possible, and among all possible ways of
reversing cycles of T to make E and O transitive and oriented in the index
order, we consider one that satisfies the following two conditions:

Condition 1. The number of elements of O which x1 dominates is maximal
(in other words dO(x1) is maximal).

Condition 2. The first element from O which dominates x1 has minimal
index.

We now analyze this tournament, determine properties of it, and then
arrive at a contradiction. First we notice that there is an element in O that
dominates x1 . For if there were not, we could add x1 to O, achieving the
claim of the theorem.

Proposition 1. The point x1 dominates x3 .

Proof. If rather x3 � x1 , then by Corollary 1 (here d(x1)�d(x3)) there
must be an element z such that x1 � z and z � x3 . This element z cannot
belong to O because it dominates x3 . Reversing the cycle (x1 , z, x3) leads
to a contradiction of Condition 1. K

Now we denote by v the element of O with lowest index such that
v � x1 . As v is different from x3 , let u be the predecessor of v in O; let p
be the number for which v=x2p+1 and u=x2p&1. Now we call O1 the set
of predecessors of u in O and O2 the set of successors of v in O. Clearly
[O1 , [u, v], O2] is a partition of O. Moreover, any element of O1 is
dominated by x1 by the definition of v. Remark that there is no z # T such
that u � z and z � v. (If there were, then such a z could not belong to O
and we could reverse the cycle (x1 , u, z, v), contradicting Condition 2.)

Proposition 2. There is no z # T"[x1] such that v � z and z � u.

Proof. If there were, then we consider A=[u, v, x1 , z]. We have
d(u)�d(v) and dA(v)&dA(u)=1, thus by Lemma 1 there would be an
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element w such that u � w and w � v, contradicting the preceding
remark. K

Now, except for x1 , the vertices u and v dominate the same set of vertices
(Remark. [u, v] is an interval (or autonomous subset) of T"[x1]). We
discuss now which vertices in E are dominated by u and v: let E1 be the
set of vertices of E which dominate u and v. Conversely, let E2 be the set
of vertices of E dominated by u and v (see the figure at the end of the
proof).

Proposition 3. The set E1 is not empty.

Proof. Assume it were empty. Let w=x2p (we recall that u=x2p&1 and
v=x2p+1). By the labeling, we know that d(w)�d(v). Let A=[x1 , x2 , ...,
x2p+1]. We know that dA(v)= p+1, as v dominates x1 and E2 & A, and
dA(w)� p&1 as w can only dominate the points in [x1 , x3 , ..., x2p&3].
Thus, dA(w)<dA(v) and d(w)�d(v), and by Lemma 1 there exists z # T"A
such that w � z and z � v. We remark that z can be neither in O"A nor in
E"A as it dominates v, thus it is in R (we recall that [R, O, E, [x1]] is a
partition of T ). Now, reversing the cycle (x1 , u, w, z, v) leads to a
contradiction of Condition 2. K

Proposition 4. The vertex x1 is dominated by every element of E1 .
Moreover, every element of E1 dominates every element of O1 .

Proof. Suppose for contradiction that there is an element b # E1 such
that x1 � b. Then reversing the cycle (x1 , b, v) leads to a contradiction
of Condition 1. Suppose for contradiction that there are elements a # O1

and b # E1 such that a � b. Then reversing the cycle (x1 , a, b, v) leads to a
contradiction of Condition 2. K

Proposition 5. The set E1 is an initial section of E and E2 is a final
section of E.

Proof. Suppose for contradiction that there are elements x2i # E2 and
x2i+2 # E1 . We consider A=[u, v, x2i , x2i+2]. We have d(x2i)�d(x2i+2)
and dA(x2i+2)&dA(x2i)=1, thus by Lemma 1 there is an element z such
that x2i � z and z � x2i+2. Following Proposition 4, the element z cannot
be equal to x1 . The element z cannot belong to E, then reversing the cycle
(x2i , z, x2i+2 , v, x1 , u) gives a contradiction of Condition 2. K

Let q=|E1 |>0 and in particular, we know that x2 # E1 . Now, let
A=[x1 , u, v] _ E1 _ O1 , we know that dA(x2)= p+q as it dominates any
element of A. Moreover, dA(x1)= p&1, then dA(x2)&dA(x1)=q+1. So,
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as d(x1)�d(x2), we apply Lemma 1 in order to find a set W=[w1 , w2 , ...,
wq+1] such that wi � x2 , x1 � wi and wi # T"A for any i. Clearly, as x2

dominates all the elements of E, the set E & W is empty. Note that the set
W & R is empty. Indeed, if there were a wi # W & R; reversing the cycle (wi ,
x2 , v, x1) would lead to a contradiction of Condition 1. All the elements of
W are therefore in O2 . We assume that the set [w1 , w2 , ..., wq+1] is
indexed in the transitive order. The element wq+1 (with maximal index
among the elements of W) is essential in the final contradiction.

Proposition 6. Every element of W dominates every element of E2 .

Proof. Assume there were w # W and a # E2 such that a � w. We could
then reverse the cycle (w, x2 , v, x1 , u, a) which would lead to a contradiction
of Condition 2. K

Now, as wq+1 is in O, there exist an m such that wq+1=x2m+1 # O. The
element x2m # E plays now the fundamental role in the contradiction.

Proposition 7. The element x2m belongs to E2 .

Proof. It suffices to remark that wq+1=x2m+1 has at least q elements
preceding it in O with respect to the index, so the element x2m also has q
elements preceding it in E with respect to the index. The number of
elements in E1 is q and E1 is an initial section of E, hence x2m # E2 . K

Now, consider the set A=[x1 , x2 , ..., x2m+1]. We will compare the
degrees of wq+1=x2m+1 and x2m within this set. We essentially have Fig. 2.

Figure 2
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The degree of wq+1=x2m+1 in A is at least |E2 & A|, as wq+1 dominates
every element of E2 . Therefore dA(wq+1)�m&q.

The degree of x2m in A is at most 2m&[(q+1)+(m&1)+2], as any
element of W dominates x2m ; all m&1 first elements of E dominate x2m ;
and both u and v dominate x2m (u and v dominate all elements of E2). So
dA(x2m)�m&q&2.

As d(x2m)�d(x2m+1) and dA(x2m)<dA(x2m+1), we may now apply
Lemma 1 to show that there is an element z # T"A such that x2m � z and
z � x2m+1. We remark that z cannot belong to E"A because x2m+1

dominates any element of E2 ; moreover, z does not belong to O"A because
x2m+1 dominates any element of O2 . Thus z # R.

We now consider the following cycle on seven elements (picture):

(z, x2m+1 , x2 , v, x1 , u, x2m).

Reversing this cycle leads to a contradiction of Condition 2. This completes
the proof of the theorem. K

4. CONSEQUENCES OF BALANCED 2-PARTITIONS

In this section we will give two applications of Theorem 4. A digraph Dn

is called unavoidable if it is a subdigraph of every tournament T on n ver-
tices. There is extensive literature on unavoidable digraphs (cf., e.g., [11]
and the literature cited there). In [11] they determine the asymptotics for
the maximum number of edges in an unavoidable digraph Dn . In a natural
way, we define a digraph Dn on n vertices to be score unavoidable if for
every n component score sequence, there exists a tournament T with the
given score sequence and containing Dn as a subdigraph. We prove the
following similar result.

Theorem 5. Let Dn be a score unavoidable digraph with the maximum
number of edges. Then

\n2

4 �&\n
2��|E(Dn)|�\n2

4 �.

Proof. The lower bound is an immediate consequence of Theorem 4.
To prove the upper bound, we will show that if Dn is a score

unavoidable digraph with outdegrees d1�d2� } } } �dn , then

dk��k&1
2 | , 1�k�n.
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The upper bound then follows trivially from this. The claim follows from
the observation that if a tournament T has k vertices with score at most sk ,
then Dn must have at least k vertices with outdegree not greater than k;
this is equivalent to saying that dk�sk , where the si 's and the di 's are both
in nondecreasing order. Hence, we only need to give for each k, a tournament
score sequence on n vertices with sk=W(k&1)�2X (where sk is the k th
smallest score). We take the score sequence of a tournament which is as
regular as possible on the first k vertices, and for the larger indexed vertices
i, i beats j if i> j. More precisely, this score sequence is given by
si=w(k&1)�2x for i�k�2, si=W(k&1)�2X for k�2<i�k, and si=i&1 for
k<i�n. This completes the proof. K

The next goal of this section is to use Theorem 4 in order to give an
algorithm to construct a tournament from a given score sequence. The
advantage of using this theorem is that we can specify roughly half of the
edges at the beginning.

A bipartite tournament is an orientation of a complete bipartite graph.
The score sequence of a bipartite tournament consists of two sequences
of integers, these are the outdegrees of the vertices of each class of the
bipartite tournament.

First we will recall the characterization of tournament score sequences
and bipartite tournament score sequences. We remark that all of these are
special cases of the characterization by Moon [12] for n-partite tour-
naments. We also mention that Bang and Sharp [2] give a very nice proof
of the first part of the following theorem using Hall's theorem which can
easily be extended to the n-partite case.

Theorem 6 (Landau [10], Gale [8], and Ryser [14]).

(1) A sequence of integers S=(s1 , ..., sn) is a score sequence of a
tournament if and only if for any subset A of [n], we have

:
i # A

si�\ |A|
2 + ,

with equality when |A|=n.

(2) Two sequences of integers S=(s1 , ..., sn) and T=(t1 , ..., tm) are
the score sequence of a bipartite tournament if and only if for any A/[n]
and B/[m], we have

:
i # A

si+ :
j # B

tj�|A| } |B|,

with equality when |A|=n and |B|=m.
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As a consequence of Theorem 4, if S=(s1 , s2 , ..., sn) is a score sequence
of tournament given in the increasing order, we know that we can find a
tournament having this score sequence such that the restrictions on both
evens and odds are transitive tournaments oriented from larger indexed
vertices to smaller indexed vertices. It follows that

Corollary 2. If s1�s2� } } } �sn is the score sequence of a tournament
given in the increasing order, then [s1 , s3&1, s5&2, s7&3, ...] and
[s2 , s4&1, s6&2, s8&3, ...] are score sequences of a bipartite tournament.

This remark gives rise to the following algorithm to construct a 2-partition-
transitive tournament from a given score sequence S:

(1) Order S=[s1 , s2 , s3 , ..., sn] in an increasing way.

(2) Split it into

S1=[x1 , x3&1, x5&2, ...], S2=[x2 , x4&1, x6&2, ...,].

We now apply the algorithm (Beineke and Moon [3, pp. 60�61]) to
construct a bipartite tournament from a bipartite score sequence.

(3) Order S2 in the increasing order, let S2=[ j1 , j2 , ..., jt].

(4) As long as S1 is not empty, pick a minimal integer i in S1 .

(5) Let k be the minimal index such that jk= ji and l be the maximal
index such that jl= ji .

(6) Add the arrows js � i and decrease js by 1 whenever s>l or
k�s�l+k&i. In the other cases, add the arrow i � js .

(7) Delete i from S1 and apply (5)

This algorithm is twice as fast as the usual algorithm used to construct
tournaments from score sequences (see [13, p. 73]).

5. NUMBER OF TRIANGLE REVERSALS

As our proofs give an algorithm to construct a 2-partition-transitive
tournament via cycle (triangle) reversals, it is natural to ask how many
triangle reversals are needed. This question is related to work done by
Brualdi and Qiao [5], where they investigate the interchange graph for a
given score sequence. Let S be a score sequence of length n and let G� (S)
be the graph whose vertices are all labeled tournaments with score
sequence S, and two tournaments T and T $ are connected by an edge if T
can be transformed into T $ via a triangle reversal. Brualdi and Qiao give
an example of two tournaments whose distance is (n&1)2�4 (their
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Corollary 3.9). The difference with our approach is that we are not concerned
with labelings. For our purposes, we are interested in the graph G(S)
whose vertices are (unlabeled) tournaments with a given score sequence;
hence our graph is a contraction of their graph for all isomorphism classes.
In the example in [5], the two tournaments at large distance are
isomorphic and, hence, the same vertex in our graph. The results of Brualdi
and Qiao give an upper bound for the diameter of the graph G(S).
The next theorem is not explicitly stated in [5], but follows from their
techniques.

Theorem 7. For any score sequence S, the diameter of the graph G(S)
is at most (n&1)(n&2)�2.

Proof. Let T and T $ be two tournaments with identical score sequence
S. Consider the simple graph T&T $, with the same vertex set and whose
edges are those directed edges from T that are reversed in T $. The first
observation is that T&T $ is an Euler graph (in the sense that for every
vertex, the in-degree equals the out-degree��it may not be connected).
Thus this can be partitioned into edge-disjoint cycles, and we have a set of
cycles whose reversals gets us from T to T $. At most all of the edges can
be contained in this graph, hence at most ( n

2) edges. The second observa-
tion is that in a tournament, the reversal of a cycle of length k can be
accomplished by k&2 triangle reversals (this follows easily by induction).

Let C1 , C2 , ..., CN be the cycles, ci=|Ci |. Thus we want to bound
�N

i=1 (ci&2). Let t=�N
i&1 ci . We have

t�\n
2+ , t�nN.

The second inequality implies that N�t�n and it follows that the number
of triangle reversals is

t&2N�t&2t�n�
(n&1)(n&2)

2
. K

One approach to get a better bound for the diameter of G(S) is given in
the following problem. Let \(D) denote the maximum number of directed
cycles in an Euler graph D.

Problem 1. Find the best c such that

min
|V(D)|=n

\(D)�cn2.
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We show that there are tournaments which are at a distance cn2 from
a 2-transitive-partition tournament with the same score sequence. We con-
sider the Paley tournament (also called the quadratic residue tournament).
Let p#3 (mod 4) be a prime, and consider the tournament defined on the
finite field of p elements, i.e. [ p&1], given by

i � j if and only if \i& j
p + ,

where (a�p) is the quadratic residue of a modulo p, defined to be 0 if a is
zero, 1 if a is a square modulo p, and &1 if a is not a square. This is a well-
defined tournament as &1 is not a square for such p and, hence, exactly
one of i& j and j&i is a square. This tournament has many interesting
properties and has been studied frequently (cf., e.g., [1, 4, 9, 13]).

We prove the following result. K

Theorem 8. For the Paley tournament on p vertices, at least
(1&o(1)) p2�32 triangle reversals are required to transform it into a balanced
2-partition transitive tournament.

The one important property we will use is that for any two vertices i and
j, the number of vertices dominated by both i and j is ( p&3)�4, independent
of which two vertices we consider. As the proof is rather short, we include
it. The number of vertices d dominated by both i and j is given by the sum
(over all elements of the field of p elements not equal to i and j)

d=
1
4

:
k{i, j \\

i&k
p ++1+\\ j&k

p ++1+
q=

1
4

:
k{i, j \

i&k
p +\ j&k

p ++
1
4

:
k \

i&k
p ++

1
4

:
k \

j&k
p ++

p&2
4

.

We now use the fact that �k (k�p)=0 and that the quadratic character is
multiplicative

d=
1
4

:
k{i, j \

(i&k)�( j&k)
p ++

p&2
4

=
1
4

:
k{i, j \

1+(i& j)�( j&k)
p ++

p&2
4

We notice that the sum is over all numbers in the field except 0 and 1.
Hence its sum is &1 and d=( p&3)�4.
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Proof of Theorem 8. We will get a lower bound on the number of edge
reversals needed, and in this way we get a lower bound on the number of
triangle reversals as well.

Let A and B be the final balanced partition, where A=[a1 , ..., a( p&1)�2]
and B=[b1 , ..., b( p+1)�2], in the transitive order. Consider the edges from
the pair of vertices a2i&1 and a2i to all larger indexed vertices in A. There
can be at most ( p&3)�4 edges correct, so we need to reverse at least
( p&1)�2&( p&3)�4&2i=( p+1)�4&2i edges for each 1�i�( p&1)�8.
Adding these up we get

\p+1
4

&2++\ p+1
4

&4++\ p+1
4

&6++ } } } �
p2+14p+33

64
.

Each of these edges must be reversed, and similarly we need at least that
many in B ; hence at least (1&o(1)) p2�32 edge reversals in the tournament.
Any triangle can correct at most one edge. If all three vertices are in set A
(equivalently in B), then it can correct two, but at the cost of making what
was a good edge bad. If the vertices are in both A and B, then only one
edge is switched. Hence, we need at least (1&o(1)) p2�32 triangle reversals
in the Paley tournament. K

A natural question is that of how fast one can find a sequence of triangle
reversals to get from an arbitrary tournament T to either a given tournament
T $ with equal score sequence, or to a balanced 2-partition-transitive
tournament with equal score sequence. We will show that both of these can
be done in O(n2).

Theorem 9. Given two tournaments T and T $ with the same score
sequence, it is possible to find a sequence of triangle reversals in O(n2) time
that converts T into T $.

As a simple consequence of this theorem and the above algorithm that
constructs a balanced 2-partition-transitive tournament in O(n2) time, we
have the following corollary.

Corollary 3. Given a tournament T, it is possible to find a sequence of
triangle reversals in O(n2) time that convert T into a balanced 2-partition-
transitive tournament.

Proof of Theorem 9. We consider the directed graph D=T&T $
mentioned above where the edges are those of T that are reversed in T $. As
we mentioned before, this graph is Euler (and can be found trivially in
O(n2) time).
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We can find the components of D in O(E(D)) time and then for each
(Eulerian) component Di of D we can apply any algorithm which finds an
Euler circuit in Di in O(E(Di)) time (cf. [6]). After this we can consider
each Di as an Euler circuit as well.

We then consider the components one at a time. In a component, choose
a starting vertex u, called a pivot vertex, of the Euler circuit and in the list
describing the Euler circuit we check the direction of the edge of T from the
given vertex v to the pivot vertex u. Then starting from u, we divide the
Euler circuit into triangles. Every triangle will contain u and two adjacent
vertices in the Euler circuit. We do this recursively by decreasing the length
of the Euler circuit one edge at a time.

To state it more precisely, let C be the current Euler circuit of T, starting
and ending at u with edge sequence starting with e, f, g. We shall use v for
the third vertex of C, i.e. for the endpoint of f. Our algorithm is to apply
the following recursive procedure repeatedly for each i with initial Euler
circuit C=Di .

If u dominates v (in T ) then we apply the algorithm recursively to the
Euler circuit of T we get from the current one by replacing e, f with (u, v)
and then reverse the triangle e, f, (v, u). Otherwise we reverse the triangle
first and we apply the algorithm recursively as before, unless when
g=(v, u), in that case we apply the algorithm recursively to the Euler
circuit we get from the current one by removing e, f, g. This may lead to
the empty Euler circuit, in which case the algorithm stops.

It is easy to see that the algorithm reverses only triangles with all three
edges in T and after its termination precisely the edges of D are reversed.
Therefore, the tournament T $ is obtained.

Clearly at most O(E(Di)) edges have to be checked in component i.
These are additive and, therefore, O(n2)+O(E(D))=O(n2) time (and
space) is enough to find the triangle reversals. K

We end with the following natural question related to Problem 1.

Problem 2. Determine the maximum diameter of the graph G(S) over
all score sequences S.

ACKNOWLEDGMENTS

The first three authors thank the organizers of the October 1995 Combinatorial Workshop
in Ma� traha� za, Hungary, where we started our collaboration on this research. The first two
authors are partially supported by OTKA Grant 16414. The third author is supported by
Coope� ration PROCOPE 94-95 Contract 94140, ``Mathe� matiques Discre� tes.'' The last author
is supported by SFB 343, Diskrete Strukturen in der Mathematik, Universita� t Bielefeld.

1952-PARTITION-TRANSITIVE TOURNAMENTS



File: DISTL2 180616 . By:CV . Date:12:03:98 . Time:11:35 LOP8M. V8.B. Page 01:01
Codes: 6063 Signs: 1865 . Length: 45 pic 0 pts, 190 mm

REFERENCES

1. N. Alon and J. H. Spencer, ``Probabilistic Method,'' Wiley, New York, 1992.
2. C. M. Bang and H. Sharp Jr., Score vectors of tournaments, J. Combin. Theory Ser. B 26

(1979), 81�84.
3. L. W. Beineke and J. W. Moon, On bipartite tournaments and scores, collection, in ``The

Theory and Applications of Graphs, Kalamzoo, MI, 1980,'' pp. 55�71, Wiley, New York,
1981.

4. L. W. Beineke and K. B. Reid, Tournaments, in ``Selected Topics in Graph Theory''
(L. W. Beineke and R. J. Wilson, Eds.), pp. 169�204, Academic Press, London, 1978.

5. R. A. Brualdi and L. Qiao, The interchange graph of tournaments with the same score
vector, in ``Progress in Graph Theory,'' pp. 129�151, Academic Press, Toronto, 1984.

6. S. Even, ``Graph Algorithms,'' Comput. Sci. Press, Rockville, MD, 1979.
7. D. R. Fulkerson, Upsets in round robin tournaments, Canad. J. Math. 17 (1965), 957�969.
8. D. Gale, A theorem of flows in networks, Pac. J. Math. 7 (1957), 1073�1082.
9. R. L. Graham and J. H. Spencer, A constructive solution to a tournament problem,

Canad. Math. Bull. 14 (1971), 45�48.
10. H. G. Landau, On dominance relations and the structure of animal societies, III: The

condition for a score structure, Bull. Math. Biophys. 15 (1953), 143�148.
11. N. Linial, M. Saks, V. T. So� s, Largest diagraphs contained in all n-tournaments, Com-

binatorica 3 (1983), 101�104.
12. J. W. Moon, On the score sequence of an n-partite tournament, Canad. Math. Bull. 5

(1962), 51�58.
13. J. W. Moon, ``Topics on Tournaments,'' Holt, Rinehart, 6 Winston, New York, 1968.
14. H. J. Ryser, Combinatorial properties of matrices of zeros and ones, Canad. J. Math. 9

(1957), 371�377.
15. H. J. Ryser, Matrices of zeros and ones in combinatorial mathematics, in ``Recent Advances

in Matrix Theory'' (H. Schneider, Ed.), Vol. 12, pp. 103�124, Univ. of Winconsin Press,
Madison, 1964.

� � � � � � � � � �

196 GUIDULI ET AL.


