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A graph G is called a (p, ¢)-split graph if its vertex set can be partitioned into
A, B so that the order of the largest independent set in A is at most p and the order
of the largest complete subgraph in B is at most ¢. Applying a well-known theorem
of Erdés and Rado for 4-systems, it is shown that for fixed p, ¢, (p, ¢)-split graphs
can be characterized by excluding a finite set of forbidden subgraphs, called (p, ¢)-
split critical graphs. The order of the largest (p, ¢)-split critical graph, f(p, q),
relates to classical Ramsey numbers R(s, ¢) through the inequalities

2F(F(R(p+2,9+2)+1=2f(p,q)=>R(p+2,q+2)—1

where F(¢) is the smallest number of r-element sets ensuring a ¢+ l-element
A-system. Apart from f(1,1)=35, all values of f(p,q) are unknown. © 1998

Academic Press

Split graphs have been introduced by Foldes and Hammer in [ FH] as
graphs whose vertices can be partitioned into a complete graph and an
independent set. It was proved in [ FH] that split graphs can be charac-
terized by the exclusion of three induced subgraphs: C,, 2K,, and Cs. (The
same result is obtained independently in a slightly more general form in
[GL] in the context of 2-track interval systems.) A natural generalization
of split graphs have been considered in [ EG]; here we shall use a special
case of that definition. First some more or less standard terminology is
summarized.

We consider finite undirected simple graphs G=(V, E), where V, E are
the vertex set and edge set of G, respectively. The numbers |V|, |E| are
called the order and the size of the graph G. For A <V, G[ A] denotes the
subgraph of G induced by A, if G is clear from the context, [ 4] will be
used. As usual, a(G) denotes the order of the largest independent set of G
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and w(G) denotes the order of the largest complete subgraph of G. The set
{1,2,.., k} is abbreviated as [k].

A graph G=(V, E) is called a (p, q)-split graph if V can be partitioned
into sets 4, B so that a(G[ A]) <p and w(G[ B]) < ¢. The partition [ 4, B]
will be called a (p, ¢g)-split partition of G.

A graph G is called (p, q)-split critical if G is not a (p, g)-split graph but
all proper induced subgraphs of G are (p, ¢)-split graphs. In a (p, ¢g)-split
critical graph G each vertex v defines a (p, ¢)-split partition [4,, B,] on
V(G)\v and there exists an a-witness , S,, which is an independent set of
p + 1 vertices containing v and disjoint from B,. Similarly, there exists an
w-witness , K, a complete subgraph of G with ¢ + 1 vertices which contains
v and is disjoint from 4,.

Note that a graph G is (p, ¢)-split if and only if its complement G is
(¢, p)-split. A similar remark is valid for split critical graphs. In particular,
(p, p)-split graphs and (p, p)-split critical graphs form self-complementary
families of graphs.

In [EG] the minimum order of split critical graphs studied (under a
more general definition). This paper is focused on the maximum order of
a (p, q)-split critical graph. It is not clear a priori that the maximum is
finite, the main result of the paper is the proof of the finiteness (Theorem
1). This allows us to define the function f{( p, ¢) as the maximum number of
vertices in a (p, q)-split critical graph. 1t is worth mentioning that Theorem
1 is an existence theorem, giving an upper bound which is probably very
far from the actual value of f( p, ¢) which might be difficult to determine in
general.

A more restricted family of graphs, the perfect (p, q)-split critical graphs
is the same as the class of graphs studied by Kézdy et al. in [ KSW]. They
proved (Theorem 2.5 in [ KSW]) that there are finitely many perfect (p, q)-
split critical graphs. Theorem 1 is a more general result but the bound of
Kézdy et al. for the maximum number of vertices of a perfect (p, ¢)-split
critical graph is better than the general bound coming from Theorem 1.

The immediate corollary of Theorem 1 is that (p, ¢)-split graphs can be
characterized by the exclusion of finitely many induced subgraphs
(Corollary 1). An explicit description of these graphs (like C,, 2K,, Cs for
(1, 1)-split critical graphs ) is not expected since (as Proposition 2 will
show) all Ramsey graphs are among them.

The easiest example of a (p, ¢)-split critical graph is the graph
(p+1)K,,,, ie. p+1 vertex-disjoint copies of the complete graph K .
This example is of minimum order as the next proposition shows.

PrOPOSITION 1.  Graphs of order at most pg+ p-+q are (p,q)-split
graphs.
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Proof. Let G be a graph of order at most pg+ p + ¢. Select the maxi-
mum number of vertex disjoint complete subgraphs of G, each with ¢+ 1
vertices. The vertices covered by these complete graphs span a subgraph of
G with no independent set of size p + 1 and the uncovered vertices span a
subgraph of G with no complete subgraph of size ¢+ 1. Thus G is a (p, ¢)-
split graph. |

To get much larger examples of (p, g)-split critical graphs, let R(s, ¢) be
the classical Ramsey number, the smallest integer N for which every graph
G of order N satisfies either a(G) =5 or w(G) = 1t. (s, t)-Ramsey graphs are
the graphs G of order R(s, 1) —1 for which a(G) <s and w(G) < t. Ramsey
numbers (and Ramsey graphs) are known only for small values of s and .
It is known that the (3, 3)-, (3, 4)-, and (4, 4)-Ramsey graphs are unique
(the first is the pentagon, the others can be found e.g. in [ GRS]).

PROPOSITION 2. (p+2, g+ 2)-Ramsey graphs are (p, q)-split critical.

Proof. Let Gbea (p+2,q+2)-Ramsey graph. Assume that G is (p, q)-
split with split partiton A4, B. Then one can add a new vertex to G adjacent
to all vertices of B (and to no vertices of A). The resulting graph G* has
R(p+2,q+2) vertices and a(G*)<p+1, w(G*) <q+ 1. This contradicts
the definition of the Ramsey number R(p+2,¢+2). Thus G is not a
(p, q)-split graph. On the other hand, for each ve V(G) the sets A4,, B,
can be defined as the set of vertices non-adjacent, respectively adjacent
to v. Since G is a Ramsey graph, a(G[A4,])<p, w(G[B,]) <g follows
immediately. Therefore G is (p, g)-split critical. ||

It is tempting to conjecture that the Ramsey graphs are the largest split
critical graphs. For (1, 1)-split critical graphs this follows from the split
graph characterization theorem cited above. However, for p=1, ¢ =2, the
(3, 4)-Ramsey graph has eight vertices (R(3, 4) =9) but the graph obtained
from the regular 9-gon by adding three pairwise non-intersecting shortest
diagonals is an example of a (1, 2)-split critical graph. In fact, it is not clear
whether this is a largest (1, 2)-split critical graph (even the claim that there
is a largest one seems to be nontrivial). The following graph G4 on 18 ver-
tices also beats by one the famous (4, 4)-Ramsey graph. Let M denote the
six-vertex graph obtained by joining a new vertex to two non-consecutive
vertices of a five cycle. The graph M has two vertices with the same set of
neighbors, call them special vertices. Then G, is defined by arranging 18
vertices into a 3 x 6 matrix in which each column forms a triangle and each
row is isomorphic to a copy of M arranged so that the six special vertices
of the three copies occupy distinct columns.

ProrosiTiON 3. The graph Gs is a (2, 2)-split critical graph.
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Proof. Assume that [ 4, B] is a split partition of G 4. Since w([ B]) <2,
B has at most two vertices from each column of G,g. Therefore one can
select a six element subset C<= A4 with all vertices of C from distinct
columns. Now o[ C]) <2 because C< 4 and w([ C]) <2 because only the
columns form triangles in G,5. This contradicts to R(3, 3)=6.

Let v be a vertex of G5 and w be the special vertex in the column of v
(v=w is possible). Then A, is defined by removing w from the row of w
and B, = V(G 5)\(4, U {v}). Since A4, is a five-cycle and B, has two vertices
from each column, (A4,, B,) is a (2, 2)-split partition of V(Gg)\v. |

In terms of f(p,q), the preceeding remarks show that f(1,1)=5,
f(1,2) =9, f(2,2) > 18. It would be interesting to determine f(2, 2); the
antisymmetry of G5 suggests that there are much larger examples of (2, 2)-
split critical graphs.

In the proof of Theorem 1 we shall refer to the diagonal case of a well-
known theorem of Erdés and Rado ([ER]) on A4-systems (later several
other names, like star and sunflower were introduced for A-systems).
A hypergraph (set system) with edges e, e,, ..., ¢, is called a A-system, if
any two distinct edges intersect in the same set K, ie. e;ne;=K for all
1 <i<j<t The set K is called the kernel and the sets ¢,\K are the rays
(or petals) of the A-system. The rank of a hypergraph is the cardinality of
its largest edge. The well-known theorem of Erdés and Rado is generally
stated for simple r-uniform hypergraphs but it is immediate to check that
it remains true if only rank r is assumed and multiple edges are also
allowed. With this consideration the diagonal case of the Erdés—Rado
theorem ([ ER]) can be stated as follows.

THEOREM A. A (not necessarily simple) hypergraph of rank r with more
than F(r)=r!(r)" edges contains a A-system with r+ 1 edges.

THEOREM 1. For any fixed pair of positive integers p, q there are finitely
many (p, q)-split critical graphs.

Proof. Assume that G is a (p, ¢)-split critical graph. Let 4 denote a
subset of V= V(G) such that a(G[A])<p and |A4| is largest with this
property. Set V=[n], A=[m] and, for convenience, 4= V\A4. We are
going to show that m is bounded by a function g(p, ¢). This will imply the
theorem because the same argument can be applied to G to show that
|B| <gl(g, p) for every B< V such that w(G[ B]) <g¢. Then, using a (p, q)-
split partition [A4,, B,] of V(G)\v (with arbitrary ve V') we obtain

V(G <g(p,q)+glq, p)+1.
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For each ie 4, consider a (p, ¢)-split partition [ 4,, B;] of V'\i such that
|A4,\A4] is as small as possible. Set

X,=A\A, Y, = A\4,.

Since Y;< 4, «([Y;])<p. On the other hand, Y,\ic B, therefore
o([ Y,\i])<gq. Thus, by Ramsey’s theorem, |Y;| <R(p+1, g+2). Also,
from the choice of 4, |X;|<|Y,|. Using p+2 to get a more symmetric
formula,

X, |<|Y|<R(p+2,9+2)=r.

The sets X, and Y, form hypergraphs with m edges and the rank of both
hypergraphs is at most r. Set

g(p, q)=F(F(r))

where F is the Erdés—Rado function from Theorem A. The proof will be
finished by proving the following claim.

Claim. m<g(p,q). If the claim is not true then the definition of g
implies that for some /< [m], |I|=r+ 1, the hypergraphs {X,:iel} and
{Y;:iel} are both 4-systems with r+ 1 edges. By rearranging indices, we
may assume that I=[r+1]. Let X, Y denote the kernels of these
A-systems and let X*, Y denote the petals, i.e. X} =X \X, Y*=Y,\Y for
ie[r+1].

We prove first that there is a non-empty petal X* for some ie[r+1].
If this were not true then X=X, for all ie[r+1]. Since |Y|<r, there
exists je [+ 1] such that j ¢ Y, therefore je Y*. Now for any a-witness S,
S;n Y = (J therefore S; can have non-empty intersection with at most p + 1
sets Y;. Since r+1>p+1 (in fact, r+1> >p+1), there is a ke[r+1]
such that S;n Y, = . Since X,;= X, (= X), this implies that

S(A\Y ) v X)) =((A\Y,) v X,) =4,

contradicting to the assumption o[ 4, ]) <p.
Based on the previous paragraph, we may assume that X*# (.
Consider the partition 4§, Bff of V'\{1} where A4} is defined as

Af 1\X1) (BinY)

and Bf =V\(4f u{

1}). We are going to show that [A§, Bf] is a (p, q)-
split partition of V'\{

).
1, 1le. a([AF]) <p and a)([B*])<q. Indeed, if 4}

}
1
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has an independent set S with [S|=p+1, from SN Y=¢J, S can have
non-empty intersection with at most p+1 Y, sets. Therefore, for some
ke[r+1], SnY,=¢. But then Sc(4\Y,)uX<c A4, contradicting
a([A,]) <p. Assume that Bf =(Y\{1})u (4\X) has a complete subgraph
K with |K|=¢+1. Select ke[r+1] such that X nK and {k} n K are
both empty sets. Such a choice is possible, since r+1>¢+ 1, and in fact
r+1>>¢g+1. Now the vertices of K are covered by (Y, \{k})u
(A\X,) < B, which contradicts w([ B;])<gq. Therefore [A}, Bf] is a
(p, q)-split partition of V\{1}. This contradicts to the choice of 4,
because

[AF\A| =4, \(4 0 X7) | = X \XF| < X, ]| =]4,\4]

This final contradiction finishes the proof of the claim and the proof of
Theorem 1. ||

COROLLARY 1. For fixed p, q, (p, q)-split graphs can be characterized by
the exclusion of finitely many forbidden subgraphs.

Combining Proposition 2 and the actual upper bound of Theorem 1
leads to the following estimates on f( p, g).

COROLLARY 2. R(p+2,q+2)—1<f(p,q) <2FF(R(p+2,9+2)))+1.

Remarks. Theorem 1 and its proof remain true for hypergraphs of
fixed rank. Therefore Corollary 1 is also true for hypergraphs but Proposi-
tion 2 (and the lower bound of Corollary 2) collapses. The upper bound of
f(p, q) can certainly be improved. For example, Imre Barany noted [B]
that with a slight modification of the proof of Theorem 1 the iteration of
F can be avoided by doubling the inner function R(p + 2, g + 2).
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