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Abstract 

Simple proofs are given for results of Edwards concerning the size of the largest bipartite 
subgraphs of a graph. © 1997 Elsevier Science B.V. 

A widely applied remark of Paul Erd6s [4] is that a graph with e edges always 
contains a bipartite subgraph of at least e/2 edges. The importance of this remark 
justifies the search for improvements. Let f(e) be the largest integer such that any 
multigraph with e edges must contain a bipartite subgraph with f(e) edges. Edwards [2] 
proved that 

"1 "' 
We shall refer to this lower bound for f(e) as Edwards's formula. The purpose of 
this note is to give a simple proof of (1) which seems to be much more transparent 
and shorter than the original proof in [2]. Our approach also provides some other best 
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possible lower bounds for the size of the largest bipartite subgraphs in terms of the 
size and order of the underlying graph (see Theorem 4). 

It is easy to see that Edwards's formula gives f ( e )  exactly when e = (2) for some 
integer m, and one may check that e = 1 9  is the first case in which (1) is not 
tight: 12 = f ( 1 9 ) >  11, the value given by Edwards's formula. This raises the ques- 
tion whether the difference between f ( e )  and the value given by Edwards's formula 
is bounded. This question was circulated through [3] and has already been answered. 
Alon [1] proved that if n is even and e=n2/2, then 

1 S(e, F + ( l-l,l ce'J4 (2) 

for some absolute constant c > 0. On the other hand, a construction given in [ 1] shows 
that, for any positive integer e, the left-hand side of (2) is bounded from above by 
Ce 1/4 for some constant C. A slight improvement of (1) was proved by Hofmeister 
and Lefmann (cf. [6, Corollary 2.4]). Alon [1] and Hofmeister and Lefmann [6] have 
independently found a short, nonconstructive (in today's terminology, probabilistic) 
proof of (1). Our methods are constructive. 

We note that the asymptotics of f ( e )  can be determined not only for graphs but 
for hypergraphs as well, even in a more general form. This was done by Erd6s and 
Kleitman [5] with the probabilistic method. In this note, however, we restrict ourselves 

to graphs. 
Assume that G is a multigraph with e edges. We shall use E(G) and V(G) to denote 

the set of edges and vertices of G; their respective cardinalities are called the size and 
the order of the graph G. The subgraph induced by a subset S of vertices of G is 
denoted by G[S]. If G[S] is bipartite, connected and has at least two vertices, we call 
it a bipartite block. Since a bipartite block is an induced bipartite subgraph, its partite 
classes are independent sets in G. We refer to these classes as the classes of the block. 
A partition P of V(G) into pairwise disjoint sets /, S1, $2 . . . . .  St is called a partition 
of G if I is an independent set in G (called the independent block) and each G[Si] 
is a bipartite block. The sum of the orders (respectively, sizes) of the G[Si] (1 <~i<~t) 
are referred to as the order (respectively, size) of P. Let us also define the pseudosize 
of the partition P to be the total number of parallel classes of edges in the bipar- 
tite blocks of P. Thus the pseudosize of P is its 'size' when the multiplicity of the 
edges are disregarded. The r61e of partitions will be clear from the following simple 

lemma. 

Lemma 1. I f  a graph G of  size e admits a partition P of size s, then G has a bipartite 
subgraph of  at least ½(e + s) edges. 

Proof. Starting from the bipartition (A,B)=(LO), take the bipartite blocks of P in 
turn, in any order, and at each step add one of its classes to A and the other to B, 
favouring the choice which brings as many edges as possible to (A,B). [] 
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We shall apply the above lemma with suitable partitions. As customary, let v(G) 
denote the maximum number of pairwise disjoint edges in G. In what follows, we 
only consider v-partitions of G, namely, partitions of G with t = v ( G )  bipar- 
tite blocks. Note that any maximum matching of G gives such a partition. More- 
over, observe that the bipartite blocks of any v-partition are induced stars (possibly 
having multiple edges), since any two edges of any fixed block must meet. Among 
all v-partitions of G, consider the ones with largest possible pseudosize. Amongst 
those, select one, say PI, with smallest possible independent block 1. Let s be 
the size of P1. The following properties are immediate from the definition of 

/'1. 

Property 1. The order of  Pl is at most 2s. 

Property 2. Each bipartite block of  P1 that has at least 3 vertices sends no edge 
into 1. 

Property 3. I f  a bipartite block of  P1 sends an edge into I, then it sends exactly 
two, one from each o f  its two vertices. These two edges, wh&h may have multiplicity 
larger than 1, are incident to the same vertex in I, thus forming a triangle with the 
bipartite block. 

The next observation is a little less obvious. 

Lemma 2. I f  G & connected, the partition P1 may be chosen so that its independent 
block I contains at most one vertex. 

Proof. Suppose to the contrary that III ~>2 for all possible choices for PI. Among all 
these choices, let Pl be a partition of G with smallest possible separation within I, 
that is, such that minu, v d(u, v) is smallest, where the minimum is taken over all pairs 
of distinct vertices u, v E1 and d(u, v) denotes the distance between u and v in G. 
Let this minimum be attained by the pair u0, v0 E I. Let uo,xl,x2 . . . .  , Vo be a minimum 
length uo-vo path in G, and, for each i = 1,2 . . . . .  let Yi be a neighbour of xi within 
the bipartite block of xi. 

Property 3 immediately gives that d(uo, v0)~>3. Suppose d(uo, v0)= 3. Again by 
Property 3, we have that uoyl and y2vo are edges of G. We now obtain a contradiction 
by observing that u0, y l,xi, x2, Y2, v0 is an augmenting path that contradicts the fact that 
P1 has v(G) bipartite blocks. 

Let us now assume that d(uo, v0)>/4. Replace the block {Xl, yl } of the partition P1 
by the block {u0, yl} to define a new partition pi of G. Note that P/ is a 
v-partition, it has the same pseudosize as Pl, and, furthermore, the independent blocks 
of Pl and P'  have the same cardinality. However, P '  has separation no greater than 
d(xl,vo)<d(uo, vo), which contradicts the choice of P1. This contradiction shows that 
indeed Ill ~< 1, as required. [] 
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Before we proceed, let us state the following consequence of the above lemma, 
which may be of independent interest. 

Coronary 3. Any connected graph G contains a forest F, all components of  which 
are induced stars, with F covering all but possibly one vertex of  G. [] 

Properties 1, 2, and 3 combined with Lemmas 1 and 2 give lower bounds for the 

size of the largest bipartite subgraphs of a graph in terms of  its size and order. The 
bounds are sharp in the sense that there are infinitely many graphs where these bounds 

are attained. The second assertion in Theorem 4 below is also due to Edwards (see 
Theorem 6 in [2]). Here we give a shorter, more transparent proof. 

Theorem 4. Let G be a graph of order n and size e. I f  G has no isolated vertices 
then it has a bipartite subgraph of  size at least ½(e + ½n). I f  G is connected, then it 
has a bipartite subgraph of  size at least ½(e + ½(n - 1)). 

Proof. Let us first assume that G has no isolated vertices. In view of Lemma 1, to 
prove the first assertion in our theorem it suffices to prove that n ~< 3s. Let E(P1 ) denote 

the set of  edges that belong to the bipartite blocks of  Pl. Thus s = IE(Pl )1. Define a 
function ~o : V(G) ---, E(PI ) as follows. I f  v is a vertex in a bipartite block, let ~0(v) be 
any edge of this bipartite block that is incident to v. Now suppose v belongs to the 
independent block I of  Pl. Since G has no isolated vertices, our vertex v and some 

bipartite block of P1 form a triangle (cf. Property 3). Let ~o(v) be any edge in this 
bipartite block. It is now easy to see that any edge in E(PI) is the image of at most 

3 vertices of  G. Thus n<~3lE(P1 )[ = 3s, as required. 
Let us now assume that G is connected. By Lemma 2, we may assume that P1 has 

order at least n -  1. Combined with Property 1, this gives that n -  1 ~< 2s. The second 
assertion of our theorem now follows from Lemma 1. [] 

We now prove (1). Amongst all v-partitions of  G, let P2 have the maximal possible 

size. Then Properties 1, 2, and 3 hold for P2. Moreover, because of  the maximality of  
the size of  P2, the following extra property holds. 

Property 4. Let T be a triangle of G induced by a vertex & the independent block 
of P2 and a bipartite block of  P2. The side of T determined by the bipartite block of  
P2 has multiplicity at least as large as the multiplicity of  the other two sides. 

Let H = G - I be the subgraph of G obtained from G by removing all the vertices 
in the independent block I of P2, and let h be its size. By Property 1, the graph H 
has order at most 2s, where s is the size of  P2. Therefore, considering a factorization 
of K2s, one sees that there is a partition P3 of G with size at least h/(2s - 1), all of  
its bipartite blocks are (possibly multiple) edges. Property 4 implies that h>~e-  2s. 
Applying Lemma 1 to the partitions P2 and P3, we obtain the following result. 
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Proposition 5. Assume that G is a graph o f  size e. Then G has a bipartite subgraph 

with at least 

e l . { { e - 2 s } }  
+ ~ mm max s, 

edges, where the minimum is taken over 1 <<.s<~e. [] 

Edwards's lower bound (1) follows from the above proposition on solving the equa- 
tion s = (e - 2s)/(2s - 1 ) for s. 
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