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Summary. We consider some problems suggested by special cases of a conjecture 
of Erdos and Hajnal. 

1. Epsilons 

The problem I am going to comment reached me in 1987 at Memphis in a letter 
of Uncle Paul. He wrote: 'We have the following problem with Hajnal. If G(n) has 
n points and does not contain induced C4, is it true that it has either a clique or 
an independent set with n 10 points? Kind regards to your boss+ colleagues, kisses 
to the E -s.' E.P.' After noting that E have been used in different contexts I realized 
soon that ~ is a good E (in both senses since I have three daughters). About a 
month later Paul arrived and said he meant Cs for C4. And this minor change of 
subscript gave a problem still unsolved. And this is just a special case of the general 
problem formulated in the next paragraph. 

2. The Erdos-Hajnal problem (from [7]) 

Call a graph H-free if it does not contain induced subgraphs isomorphic to H. 
Complete graphs and their complements are called homogeneous sets. As usual, 
w (G) and o; (G) denotes the order of a maximum clique and the order of a maximum 
independent set of G. It will be convenient to define hom( G) as the size of the largest 
homogeneous set of G, i.e. hom(G) = max{a(G),w(G)} and 

hom(n,H1,H2, ... )=min{ hom( G): !V(G)I = n, G is Hi-free} 

A well-known result of Paul Erdos ( [5]) says that there are graphs of n vertices 
with hom( G) :::; 2log n (log is of base 2 here). The following problem of Erdos and 
Hajnal suggests that in case of forbidden subgraphs hom( G) is much larger: Is it 
true, that for every graph H there exists a positive E and no such that every H-free 
graph on n 2 no vertices contains a homogeneous set of n e vertices? If such E exists 
for a particular H, one can define the 'best' exponent, E(H) for Has 

E(H) = sup{E > 0: hom(n, H) 2 nl\for n 2 no} 

The existence of E(H) is proved in [7] for ?4-free graphs (usually called cographs 
but in [7] the term very simple graphs havebeen used). In fact, a stronger statement 
is proved' in [7]: ifE(Hi) exists f()J:''i = '1,2and His a grap'li formed h:Y''puttlng''air 
or no edges between vertex disjoint copies of- H 1 and H2·then E{-H} is also--exists·; · 
Comb.ining this with ~he well.known fact tha~ ?4-fre~ graphs are per~ect ([14]), it 
follows that E(H) exists for those graphs H which can be generated from the one­
vertex graph and from P4, using the above operations. In the spirit of [7], call this 
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class SV S (still very simply). In terms of gniph _replacements (see 4. below), SV S 
is generated by replacements into two-vertex graphs starting from K 1 and P4 . As 
far as I know, the existence of E( H) is not known for any graph outside SV S. 

3. Large perfect s-ubgraphs--

A possible approach to find a large homogeneous set in a graph is to find a large 
perfect subgraph. It was shown in [7) that any H -free graph of n vertices has an 

induced cograph of at least ec(H)~ vertices for sufficiently large n. This shows 
that the size of the largest homogeneous set makes a huge jump in case of any 
forbidden subgraph. In a certain sense it is not so far from nc(H) ... What happens if 
cographs are replaced by other perfect graphs? A deep result of Promel and Steger 
((13]) says that almost all Cs-free graphs are perfect (generalized split graphs). This 
suggest the possibility to find a large (n€) generalized split graph in a Cs-free graph 
of n vertices and prove the existence of E( Cs) this way. 

4. Replacements 

A well-known important concept in the theory of perfect graphs is the replacement 
of a vertex by a graph. The replacement of vertex x of a graph G by a graph H is the 
graph obtained from G by replacing x with a copy of Hand joining all vertices of this 
copy to, all neighbors of x in G. According to a key lemma (Replacen1ent Lemma) 
of Lovasz (see for example in [12)), perfectness is preserved by replacements. The 
property of being H-free is obviously preserved by replacements if (and in some 
sense only if) H can not be obtained from a smaller graph by a nontrivial (at least 
two-vertex) replacement. For such an H, replacements can be applied to get an 
upper bound on E( H). Analogues of the Replacement Lemma can be also useful to 
find large h<?mogeneous sets (an example is Lemma 7.1 below). 

5. Partitions into homogeneous sets 

For certain graphs H, the existence of E(H) follows from stronger properties. An 
H-free graph G may satisfy x (G) s; p( w (G)) or () (G) s; p( a (G)) or more generally 
cc( G) s; p( a( G), w( G)) where p is a polynomial of constant degree and x, (),a, w, cc 
denote the chromatic number, clique cover number, independence number, clique 

· number and cochromatic number of graphs. Using terminology from [10}, p is a 
polynomial binding function (for x, 8, cc, respectively). It is clear that if H-free 
graphs have a polynomial binding function of degree k then E(H) ~ k~l. Binding 

functions for x (for B) in H-free graphs may exist only if H (H) is acyclic. However, 
the existence of a polynomial binding function for cc in H-free graphs is equivalent 
with the existence of E( H). 

6.- Small forbidden subgraphs 

The existence of E( H) follows if H has at most four vertices since these graphs are 
all in SVS. But, as will be shown below, to find E(H) for these small graphs is not 
always that simple ... 
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Since hom(n, H) = hom(n, H) from the definition, it is enough to consider 
one graph from each complementary pair. For H = Km, finding hom(n, H) is the 
classical Ramsey problem. In case of m = 2, 3, 4, E(K2 ) = 1 (trivial), E(K3 ) = ~ 
(from Uncle Paul's lower bound on R(3, m) in [4]), ~ :::;; E(K4) :::;; 0.4 (the upper 
bound is due to Spencer [15] ). If H = P3 or H = P4 then an H-free graph is perfect 
and thus E( H) = ~ . 

There are four more -graphs with-four vertices to look at. Let H1 be K1,3, the 
claw, and let Hz be K3 with a pendant edge. It is not difficult to see that E(Hi) = ~ 
in this case. The construction is simple: let G be a graph on m vertices with no 
independent set of three vertices and with no complete subgraph of much more than 
rm vertices ([4]). Take about v;: disjoint copies of G. This graph is HI-free, has 

3 

rn
2
2 vertices and has no homogeneous subset with I?J.UCh more than m! vertices. 

The complement of this graph is good. for H2. On the the other hand, let G be an 
Hi-free graph with n vertices ( i is 1 or 2). If the degree of a vertex v is at least 

2 
n3 then r(v) (the set of vertices adjacent to v) contains a homogeneous set of at 

1 
least n 3 vertices (in case ·of H 1 by Ramsey's theorem, in case of H2 by perfectness). 

1 
Otherwise G has an independent set of at least n 3 vertices. This gives 

Proposition 6.1. If H is the claw or K3 with a pendant edge then E(H) = ~. 

The remaining two H-s are the C4 and K4 minus an edge (the diamond). The 
following argument is clearly discovered by many of us, could be heard from Uncle 
Paul too. It was used for example in [9], (16]. Let S = { V1, ... , Va} be a maximum 
independent set of a C 4-free or diamond-free graph G. Then V (G) is covered by 
the following (o.i 1

) sets: A(i), B(i,j), 1:::;; i < j:::;; a where 

A ( i) = { v E v (G) - s : r ( v) n s = {vi}} u {vi} 

and 
B ( i, j) = { v E v (G) - s : r ( v) n s :2 {vi, v 1}} 

The sets A( i) induce complete subgraphs by the maximality of S and the sets 
B(i,j) induce homogeneous sets (complete if G is C4-free, independent if G is 
diamond-free). This gives 

Proposition 6.2. If G is C4 -free or diamond-free then cc :::;; ( a't1
). 

1 
Corollary 6.1. If His either C4 or the diamond then hom(n, H) 2: (2n) 3. There-
fore E(H) 2: ~. 

Vertex disjoint union of complete graphs shows that E(H) :::;; ~for any connected 
graph H. In case of H = C4 this upper bound can be improved as follows. Let 
R( C4, m) be the smallest integer k such that any graph on k vertices either contains 
a C4 (not necessarily induced C4!) or contains an independent set on m vertices. 

4 
F.K.Chung gives a graph Grn in [3] which shows that R(C4, m) 2: m3 for infinitely 
many m. Replacing each vertex of Gm by a clique of size r; we have a graph with 
no induced c4 and with no homogeneous subset larger tl:J.an m .. Jhis g~ves. 

Proposition. 6 .. 3. E( C4}:::;; ~-

Notice that if R(C4,·m) 2:: m2 -~:. with every E: > 0 as· asked by Uncle· Paul then 
the replacement described above would show that E( C4) = ~. 

Perhaps the next construction has a chance to improve the upper bound on 
E(H) if H is the diamond. The vertices of Gq are the points of a linear complex 
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([11]) of a 3-dimensional projective space of order q. Two points are adjacent if and 
onl¥ if they are on a line of the linear _complex. -The graph Gq has q3 + q2 + q + 1 

3 
vertices, w(Gq) = q+l and Gq is diamond-free. But is it true that a(Gq) < q2-e for 

_some positive E and for infinitely many q? Thanks for the conversations to T.Szonyi 
who thinks this is not known. 

Problem 6.1. Improve the exponents jn the above estimates of hom(n, H) if His 
either c4 or the diamond. 

What happens if G is C4-free and diamond-free? In these graphs each four cycle 
induces a K4. The sets B(i,j) collapse implying 

Corollary 6.2. hom(n, C4, Diamond) ~ ~- 1 

Problem 6.2. Is it true that hom(n, C4, Diamond)= Vn + o( fo)? 

During the years between the submission and publication of this paper, Prob­
lem 6.2 had been answered affirmatively, in fact hom(n, C4, Diamond) = I fol 
([6]). 

There are eight five-vertex graphs outside SV S. Keeping one from each com­
plementary pair reduces the eight to five: K1, 3 with a subdivided edge, the bull (the 
self-complementary graph different from Cs), C4 with a pendant edge, P5 , Cs. The 
existence of E(H) is open for all of them, perhaps the list is about in the order of 
increasing difficulty. The construction in Proposition 1 shows that E( H) is at most 
~ for all but C5 . In case of Cs repeated replacements of C7 U K3 into itself shows 

E(Cs) ::; 1~0:130 . (Any Cs-free graph G with hom( G)= 3 and with at least 11 vertices 
would improve this.) 

7. Forbidden complementary pairs 

Perhaps an interesting subproblem is to find bounds on hom( n, H, H). In case 
of four-vertex H, the structure of graphs which are both H-free and H-free is well 

- 1 
understood and values of hom.( n, H, H) can be determined as follows: n 2 if H = P4 

(from perfectness); n~ - 1 if H = P3 + K1 (from structure, [10]); n;-1 if H = C4 
(from structure, [2]); n- 4 if H is a diamond (from structure, [10]); ~n if H is a 
claw (fro1n structure, [10]). 

The rest of this section is devoted to the case H = Ps. The upper bound 
- 1 

hom(n, P5 , P5 ) :::; nlogs is shown by replacing repeatedly Cs into itself. The lower 

bound n ~ will follow from Corollary 7.1 which is the consequence of the following 
result. 

Theorem 7.1. If G is Ps-free and Ps -free then G satisfies the following property 
S P*: there is an induced perfect subgraph of G whose vertices intersect all maximal 
cliques of G. 

Notice that property SP* is a generalization of strong perfectness introduced by 
Berge and Duchet in [1]. (Maximal clique is a clique which is not prope~ly contained 
in any other clique.) By Theorem 7.1, if G is·both Ps-free and Ps-free then G can 
be partitioned into at most w( G) vertex disjoint perfect subgraphs. Each of these 
perfect graphs has clique number at most w( G) thus each has chromatic number at 
most w( G). This gives the next corollary. 
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Corollary 7.1. If a graph is both Ps-free and Ps-free then x ::; w2
. 

The proof of Theorem 7.1 i~ combining a -result of Fouquet [8] with the following 
analogue of Lovasz replacement lemma. 

Lemma 7.1. Property SP* is preserved by replacements. 

Proof. The proof of the- lemma is along the same line as the replacement lemma of 
Lovasz. Assume that G and H have property SP* and R is the graph obtained by 
replacing v E V(G) by H. Let G1 and H1 be perfect subgraphs of G and H such 
that ·v ( G 1) intersects all maximal cliques of G and V ( H 1) intersects all maximal 
cliques of H. 

Case 1. v tf:_ V(G1). We claim that V(GI) intersects all maximal cliques of R. Let 
K be a maximal clique of R. If V(K) n V(H) is empty then the claim follows from 
the definition of G 1· Otherwise { v} U ( K n V (G)) is a clique of G which can be 
extended in G to a maximal clique K' intersecting V( GI). Since K is obtained by 
replacing v E K' by K n V (H), K intersects V ( G 1). 

Case 2. v E V(GI). By the Lovasz replacement lemma, the subgraph Z of R 
induced by (V( G1) U V(H1))- { v} is perfect. If a maximal clique K of R intersects 
V(H), it intersects it in a maximal clique of H which (by the definition of H 1 ) 

intersects V(H1). If K does not intersect H then it does not contain v so it intersects 
V( G1) - { v} by the definition of G1. Therefore K intersects Z. 

Theorem 7.2 ((Fouquet, [8])). Each graph from the family of Ps-free and Ps­
free graphs is either perfect or isomorphic to Cs or can be obtained by a nontrivial 
replacement from the family. 

Now Theorem 7.1 follows by induction from Lemma 7.1 and Theorem 7 .2. 

8. Berge graphs 

These are graphs which do not contain induced subgraphs isomorphic to C2k+l or 
to C2 k+l for k 2:: 2. According to the Strong Perfect Graph Conjecture (of Berge), 
Berge graphs are perfect. The following weaker form of this conjecture is attributed 
to Lovasz in [7] (illustrating the difficulty of proving the existence of c(C5 )). 

Problem 8.1. There exists a positive constant E such that Berge graphs with n 
vertices contain homogeneous subsets of n c vertices. 

Similar problems can be asked for subfamilies of Berge graphs for which the 
validity of SPGC is not known. One of them is the following. 

Problem 8.2. Show that C4 -free Berge graphs with n vertices contain homoge-
1 1 

neous subsets of n 2 (or at least en 2) vertices. 

Thanks to an unknown re.feree for valuable remarks.· 
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