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Abstract. Paul Erdős liked fruit salad. I mixed this one for him from
ingredients obtained while working on some of his problems. He was pleased
by it and carried it to several places to offer to others as well. It is very sad
that I have to add to the manuscript: dedicated to his memory.

1. Nearly bipartite graphs.

Szentendre, 1994. Although we are in the shade, the summer afternoon is very
hot, the water Paul poured on the warm tiles of the terrace does not give too much
relief. After reciting famous lines of a classical Hungarian poet (slightly rewritten
by changing ‘life’ to ‘theorem’), Paul feels it is time to read from his problem book.
(This has nothing to do with the BOOK, to which even he had no free access.) Soon
he reads something immediately awakening my senses numbed by the humidity. ‘A
problem of Hajnal and myself: assume that G is a graph in which every subset S of

vertices spans a subgraph with at least b |S|2 c − k independent vertices. Then, with
some suitable function f , one can remove f(k) vertices from G so that the remaining
graph is bipartite.’

It is useful to look at special cases in the process of becoming familiar with a
problem. That is precisely what I am doing now, nearly two years after hearing the
problem from Paul. I am looking (and working without success) at the case k = 0.
Then we have a graph in which every subset of 2t vertices spans a subgraph with
at least t independent vertices (the condition for the odd subsets follows from this).
For easier reference, call these graphs nearly bipartite. The problem is whether nearly
bipartite graphs become bipartite after the deletion of a constant number of vertices (to
justify the terminology). There is an example showing that the following conjecture,
if true, is best possible.
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Conjecture 1. Nearly bipartite graphs can be made bipartite by the deletion of
at most five vertices.

It is immediate that nearly bipartite graphs have the following property (P1 ):
they do not contain two vertex disjoint odd cycles. Property P1 alone easily implies
that the chromatic number of nearly bipartite graphs is at most five. In fact, K5 shows
that P1 alone does not imply more. (If G is K5-free then P1 implies that χ(G) ≤ 4.
This was conjectured by Erdős and proved by Brown and Jung in [BJ].) However, it
follows from a deep theorem of Folkman ([F]) that nearly bipartite graphs are at most
3-chromatic. Another property (P2 ) of nearly bipartite graphs is that they do not
contain an odd K4 , which means a subdivision of K4 in which all the six edges are
subdivided with an even number of vertices. (Sometimes odd K4-s are called fully odd
K4-s, here we use the shorter term.) Odd K4-s appear in many interesting conjectures
and results. Toft in [T] conjectured that every 4-chromatic graph contains an odd K4.
A special case was solved recently by Jensen and Shepherd (see [JS] which contains
further references). The next theorem shows that properties P1 and P2 characterize
nearly bipartite graphs. The proof relies on a theorem of Andrásfai ([A]).

Theorem 1. Assume G is a graph without vertex disjoint odd cycles and without
odd K4-s. Then G is nearly bipartite.

Proof. Let α(G) denote the cardinality of a largest independent set of G. Consider
counterexamples for Theorem 1 of minimum order and within those select a graph G
with minimum size. Clearly, G has n ≥ 3 vertices. Every proper subgraph of G is
nearly bipartite, but G is not, so α(G) < bn2 c. If n is odd then deleting any vertex
from G results in a graph G∗ which is nearly bipartite and

α(G) ≥ α(G∗) ≥
n− 1

2
=
⌊n

2

⌋
contradicting to the assumption that G is a counterexample. Thus n must be even.

Next we show that G must be connected. Assume indirectly that G has t ≥ 2
connected components. There is precisely one non-bipartite component C, because at
least two contradicts property P1 and zero contradicts the choice of G. But G[C ] is a

proper subgraph of G so there is an independent set S in G[C] with at least b |V (C)|
2 c

vertices. Then S can be extended by the majority color classes of the other (bipartite)
components to an independent set of G with at least n

2 vertices. This contradicts the
definition of G and we conclude that G must be connected.

If there is an edge e of G whose removal does not increase α(G), then

α(G− e) = α(G) <
n

2

which means that G − e is a counterexample, contradicting the choice of G. This
means that G is an α-critical graph.
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Observe that if G∗ is the graph obtained from G by removing two vertices of G
then G∗ is nearly bipartite so

n

2
− 1 ≤ α(G∗) ≤ α(G) ≤

n

2
− 1.

Thus equality holds everywhere, implying n = 2α(G) + 2.

In summary, we found that G must be a connected α-critical graph with n =
2α(G) + 2 vertices. A theorem of Andrásfai ([A], see also in [L], 8.25 ) states that
such a graph must be an odd K4. This contradicts property P2 and finishes the proof.
*

Theorem 1 can be applied to get a connection between the girth and the inde-
pendence number of a graph. This can be formulated as a Ramsey type problem,
introduced by Erdős, Faudree, Rousseau and Schelp in [EFRS]. Let r(m,n) be the
smallest p for which every graph of order p contains either a cycle of length at most
m or n independent vertices. In case n < m < 2n − 1, it was proved in [EFRS] that
r(m,n) = 2n, with a nice proof which relied on Kuratowski’s characterization of pla-
nar graphs. The next theorem gives the diagonal case, in fact, it also gives a different
proof for the cited result. (Probably this works both ways, i.e. Theorem 2 can be
proved with the method in [EFRS].)

Theorem 2. For any integer n ≥ 3

r(n, n) =

{
2n if n = 4 or n is odd

2n+ 1 if n ≥ 6 and even

Proof. First examples are given to show that the claimed values can not be lowered.
For odd n and for n = 4 we can take the cycle C2n−1 which obviously contains neither
a cycle of length at most n nor an independent set of n vertices.

For n ≡ 2 mod 4, the example is an odd K4 with 2n vertices, in which four edges
of a C4 are subdivided with n

2 − 1 vertices. The length of the smallest cycle is n+ 1.
For n ≡ 0 mod 4, the example is similar. Four edges of a C4 ⊂ K4 are subdivided
with n

2 −2 vertices and the two other edges of K4 are subdivided with 2 vertices. (Here
n ≥ 8 is needed because the smallest cycle is of length min{2n− 4, n+ 2} which does
not exceed n for n = 4). In both cases we have an odd K4 with 2n vertices which does
not contain an independent set of n vertices.

Let G be a graph with N vertices, where N = 2n if n is odd or n = 4 and
N = 2n+ 1 otherwise. If G has two vertex disjoint odd cycles then one of them is of
length at most n.

Assume that G contains a subgraph H which is an odd K4. By summing the
lengths li of the four odd cycles C1, C2, C3, C4 defined by three base points and their
connecting paths in H it is easily seen that the smallest li, say l1 satisfies
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l1 ≤

⌊
|V (H)|

2

⌋
+ 1 ≤ n+ 1

(in the last step, we used that |V (H)| is even and at most 2n+ 1).

However, it is impossible that l1 = n + 1. Indeed, if n is odd then l1 = n + 1
contradicts the fact that l1 is odd. For even n we may assume that |V (H)| = 2n and
li = n+1 for all i. If n = 4 then at most two edges of the base K4 of H have nontrivial
subdivisions therefore there is a cycle of length four using four edges of the base. For
even n ≥ 6 induction works easily. Let v be the vertex of G not in H . If v has degree
at least two in G then v sends two edges to one of the cycles Ci. This immediately
gives a cycle of length at most n because each Ci is of length n+ 1. Therefore v is of
degree at most one so deleting v and its possible neighbor from G we get a graph G∗

with 2n−1 vertices. Then, by induction, G∗ has either a cycle of length at most n−1
or an independent set of n − 1 vertices. The former case gives the required cycle for
G otherwise v extends the independent set to size n in G.

The conclusion is that G contains neither vertex disjoint odd cycles nor an odd
K4. Then, by Theorem 1, G is nearly bipartite so G has an independent set of size n
completing the proof. *

2. A partition of bicolored complete graphs.

Memphis, 1994 December. ‘I ran into this problem by misunderstanding a ques-
tion of Duke and Fowler’- explains Paul in a phone call from Atlanta. ‘Assume that
the edges of the complete graph Kn are colored with red and blue. Can we find a
monochromatic subgraph of 3n

4 vertices which has diameter 2? There is an example
showing that this would be best possible.’

The example comes by partitioning evenly the vertex set of Kn into four sets Ai.
Color all edges of the complete bipartite graphs [A1, A2], [A2, A3], [A3, A4] red and
color all edges of the complete bipartite graphs [A3, A1], [A1, A4], [A4, A2] blue. The
color of the other edges can be arbitrary.

I could prove only a weaker statement (Proposition 1) with a simple proof which
also gives a related result (Proposition 2). The original question was eventually settled
affirmatively by Fowler ([F]), he also treated the case of more than two colors.

A subset A of vertices in a 2-colored Kn is called 2-reachable in color i (i ∈ {1, 2})
if for any two distinct vertices of x, y ∈ A there is path of length at most two in color i
with endpoints x, y. (Observe that A does not necessarily span a diameter 2 subgraph
in color i because the middle vertex of a path of length two in color i may be outside
of A.)

Proposition 1. In any 2-colored Kn there is a subset of at least d3n
4 e vertices

which is 2-reachable in one of the colors.
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Notice that although Proposition 1 is weaker than the original conjecture, Fowler’s
theorem, but it is still best possible, as shown by the same example given above. The
proof also gives the following proposition (which is also best possible).

Proposition 2. A 2-colored Kn is either of diameter 2 in one of the colors or there
is a subset of dn2 e vertices which is 2-reachable in both colors.

Both propositions follow from a simple lemma about partitioning the vertices of
2-colored complete graphs. Call a red edge e of a 2-colored Kn a red spanner if all
vertices of Kn are adjacent in red to at least one end of e. The definition of a blue
spanner is similar. Let R and B denote the set of red and blue spanners in a 2-colored
Kn.

Lemma 1. Assume that in a 2-colored Kn R,B are both non-empty. Then R and
B form vertex disjoint bipartite graphs.

Proof. Assume that xy ∈ R and zy ∈ B. Then a red xz contradicts the definition of
B and a blue xz contradicts the definition of R. Therefore R and B are vertex disjoint.

Assume that there is a cycle C in R. Let e be an edge of B, it is vertex disjoint
from C. Each vertex of C is adjacent to some end of e in blue from the definition of
e. But two consecutive vertices of C can not be adjacent in blue to the same end of e
because the edges of C are in R. This is possible only if C is an even cycle, so R is
bipartite. Interchanging the roles of the colors in the argument we get that B is also
bipartite. *

Consider a 2-coloredKn. If one of the spanners is empty then we have a monochro-
matic diameter two subgraph with n vertices. Otherwise, from Lemma 1, the vertices
of Kn can be partitioned into R1, R2, B1, B2 so that R is bipartite with bipartition
[R1, R2] and B is bipartite with bipartition [B1, B2]. Now a subset required for Proposi-
tion 1 can be obtained by deleting a smallest among the four sets and a subset required
for Proposition 2 can be obtained by deleting Ri ∪ Bj with the smallest union.

3. Two edge disjoint monochromatic complete graphs.

Atlanta, Airport, March, 1995. What can you do at the Atlanta Airport if you
have to wait four hours for the connecting flight? You have no options assuming you are
a mathematician in the company of Paul Erdős who asks immediately after finding a
convenient place to sit down: ‘is it true that if you 2-color the edges of a complete graph
on R(k) vertices then there are two edge disjoint monochromatic complete subgraphs
on k vertices?’(Paul rightly assumes that in the company everybody knows that R(k) is
the smallest integerm with the property: if the edges ofKm are colored with two colors
in any fashion then there is a monochromatic Kk.) After some minutes of thought
Ralph Faudree answers: ‘not true, in our joint paper on Size-Ramsey numbers there is
an easy lemma...’Ralph’s argument is accepted but Paul does not feel that the matter
is settled. ‘Is it true for R(k)+1? ’Pads are out of the handbags and from now on your
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only worry is not to miss your connecting flight. Three hours later the state of the art
is: if f(k) is the smallest m for which there are two edge disjoint monochromatic Kk-s
in every two-coloring of the edges of Km then R(k) + 1 ≤ f(k) ≤ R(k) + k − 1.

Next day we listened to Ralph proving that f(3) = 7 and f(4) ≤ R(4) + 2 = 20.
The next proposition confirms that f(4) = R(4) + 1 = 19. L.Soltes ([S]) found a
different proof at the same time, relying on the result that the extremal coloring of K17

is unique. It seems doubtful whether f(5) = R(5)+ 1 can be decided without knowing
R(5). Erdős and Jacobson ([EJ]) have results concerning edge disjoint monochromatic
Kk-s in 2-colorings of Kn.

Proposition 3. f(4)=19.

Proof. We may restrict ourselves to colorings of K19 which contain monofours in red
only. We may also assume that each vertex x is a center of a monostar S(x) with 10
edges (otherwise the theorem follows from R(3, 4) = 9).

Case 1: some vertex x sends precisely two red edges to a red monofour M which
does not contain x. Then removing at most one vertex from S(x) ∩ M we have a
monostar of nine edges which intersects M in at most one vertex and the theorem
follows from R(3, 4) = 9.

Case 2: there exists a (red) monofive N . Assume there are four vertices not
in N such that each sends at least three red edges to N . Since there are no blue
monofours, two vertices among the four determine a red edge and then their union
with N obviously contains two edge disjoint monofours. On the other hand, if at most
three vertices of V (G) \N send at least three red edges to N then there are at least
11 vertices outside of N sending at least three blue edges to N . However, since we
are not in case 1, each of these 11 vertices sends at least four blue edges to N . This
implies that some vertex of N sends out at least 9 blue edges and the theorem follows
again from R(3, 4)=9.

Assume that none of the cases above is applicable. Let M be a (red) monofour
with vertices xi (1 ≤ i ≤ 4). Since R(4, 4) = 18, for each i, there exists a (red)
monofour Mi not containing xi, under this restriction select Mi so that ti = |Mi ∩M |
is as large as possible. If, for some i, ti < 2 then the proposition follows. If, for some
i, ti = 2 then let xj be the vertex of M not in Mi and different from xi. Since we
are not in case 1, xj sends a red edge to Mi \M which contradicts the choice of Mi.
We conclude that ti = 3 for all i so each Mi has vertex set yi ∪ (M \ xi) where yi
is a vertex not in M . The vertices yi are distinct since we are not in case 2. Since
there are no blue monofours, there is a red edge between two yi-s, for example (y1, y2)
is a red edge. Now the sets {y1, y2, x3, x4} and {x1, x2, x3, y4} are edge disjoint (red)
monofours, concluding the proof.

4. Chromatic bound on cycles and paths.

Szentendre, 1995. One year had gone by but in Paul’s book, like in Santa’s sack,
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there is always a new surprise. ‘A problem with Hajnal: if each odd cycle of a graph
G spans a subgraph with chromatic number at most r then the chromatic number of
the graph is bounded by a function of r.’

If odd cycles are replaced by even cycles, then the first step gives the next result.

Proposition 4. If each even cycle of a graph spans a bipartite subgraph then the
graph is 3-colorable.

The proof is based on a result of Krusenstjerna-Hafstrøm and Toft ([KHT]):

Theorem KHT. Every 4-critical graph G contains an induced odd cycle C (odd
cycle without diagonal) such that G1 = G \ C is connected.

Proof. (of Proposition 4). Assume that Proposition 4 is not true and select a 4-
critical counterexample G. Clearly G is 2-connected with minimum degree at least 3.
Select C according to Theorem KHT.

Case 1: G1 is bipartite. Since G1 is connected it has a unique bipartition
V (G1) = A∪B. The assumption of Proposition 4 implies that it is impossible that two
consecutive vertices of C are adjacent to A or adjacent to B. This gives a contradiction
since each vertex of C must be adjacent to a vertex of A or to a vertex of B (the
minimum degree of G is at least 3).

Case 2: G1 is not bipartite. Let C1 be an odd cycle of G1. The 2-connectivity of
G implies that there exist two vertex disjoint paths P1 = (p1, . . . ) and P2 = (p2, . . . ) in
G1 such that both paths intersect C and C1 only at their endpoints. Select these paths
so that their endpoints, p1, p2 on C are as close as possible. We claim that p1, p2 are
consecutive on C. Assume not, consider the shorter among the two paths connecting
p1, p2 on C, there is an inner vertex R on this path. Since C is chordless and R is
of degree at least three, R is adjacent to a vertex S of G1. Because G1 is connected,
there exists a shortest path P3 in G1 from S to the union of the paths P1 \ p1, P2 \ p2.
If P3 reaches C1 before reaching any of Pi \ pi then P1 and the path starting with the
edge RS and continuing on P3 give two paths from C to C1 contradicting the choice
of P1, P2. Similar contradiction arises if P3 reaches say P1 \ p1 before reaching C1: in
this case P2 and the path starting with the edge RS and using P3 then continuing on
P1 lead to contradiction. This finishes the proof of the claim.

Consider the even cycle C∗ obtained from the following paths: the longer path
connecting p1, p2 on C; the paths P1, P2; the path of suitable parity connecting the
endpoints of P1 and P2 on C1. Clearly, C∗ contains all vertices of C so it is an even
cycle spanning a non-bipartite graph. This final contradiction proves the proposition.
*

It seems that the following weaker version of the original problem (for r = 3) is
interesting.
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Conjecture 2. If each path of a graph spans at most 3-chromatic subgraph then
the graph is c-colorable (with a constant c, perhaphs with c = 4).

Acknowledgement. I am grateful to Paul Erdős, whose questions inspired the results
and problems of this paper. Conversations with Ralph Faudree, Dick Schelp, Bjarne
Toft about some of these subjects are also appreciated. The careful reading of the
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References
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[EFRS] P.Erdős, R.J.Faudree, C.C.Rousseau, R.H.Schelp, On Cycle-Complete Graph
Ramsey Numbers, Journal of Graph Theory, 2 (1978) 53-64.

[EJ] P.Erdős, M.S.Jacobson, in preparation.

[FOL] J.H.Folkman, An upper bound on the chromatic number of a graph, Coll. Math.
Soc. J. Bolyai 4. Combinatorial Theory and its Applications 437-457.

[FOW] T.Fowler, Finding Large Monochromatic Diameter Two Subgraphs. Manu-
script.

[JS] T.R.Jensen, F.B.Shepherd, Note on a conjecture of Toft, Combinatorica, 3, (1995)
373-377.

[KHT] U.Krusenstjerna-Hafstrøm, B.Toft, Special subdivisions of K4 and 4-chromatic
graphs, Monatsh. Math. 89 (1980) 101-110.

[L] L.Lovász, Combinatorial Problems and Exercises, North Holland, Amsterdam,
1979.

[S] L.Soltes, personal communication

[T] B.Toft, Problem 11, in Recent Advances in Graph Theory ,Academia Praha 1975,
543-544.

8


