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ABSTRACT 

The edges of the Cartesian product of graphs G x Hare  to be colored with the condition 
that all rectangles, i.e., K2 x K2 subgraphs, must be colored with four distinct colors. 
The minimum number of colors in such colorings is determined for all pairs of graphs 
except when G is 5-chromatic and H is 4- or 5-chromatic. 0 1996 John Wiley & Sons, Inc. 

1. INTRODUCTION 

A rectangle in the Cartesian product G x H of two graphs is a four-cycle in the form 
K2 x K2. In this paper the term good coloring is used for edge colorings of G x H such that 
all rectangles are colored with four distinct colors. We determine rb(G, H), the minimum 
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number of colors needed for a good coloring of G x H (‘rb’ stands for ‘rainbow’). We 
shall prove that (with two possible exceptions) rb(G, H )  depends only on x(G)  and x ( H ) ,  
where x denotes the chromatic number. Precisely, rb(G, H )  is the maximum of x(G) and 
x ( H ) ,  if this maximum is at least 6 (Corollary 1). In two cases, when x(G)  = 4, x ( H )  = 5 
and when x(G)  = x ( H )  = 5, we have not determined whether rb(G,H) is 5 or 6. The 
other ‘small’ cases are settled (Theorem 2). 

The problem arose from studying edge colorings of graphs where all four-cycles must 
be colored with four distinct colors. Such a coloring was called rainbow in [2] where 
product graphs, in particular the cube, had been considered for rainbow colorings with 
as few colors as possible. (The term ‘rainbow’ had been used in a similar sense in so 
called ‘ Anti-Ramsey’ Theory where instead of monochromatic structures heterogenous 
structures are investigated.) Our results about good colorings can be interpreted as results 
about rainbow coloring if neither G nor H contains a four-cycle. Indeed, in this case 
the only four-cycles of G x H are rectangles and good colorings are exactly the rainbow 
colorings. 

It turns out that most results depend on the minimum number of colors needed for a good 
coloring of K ,  x KT,. This number is denoted by rb(m, n ) ,  and rb(n., n)  is abbreviated as 
rb(n). Using complementary weak decompositions of graphs the values of rb(m, n) will 
be determined for all values of m and n. The main result is that rb(n)  = n for n 2 6 
(Theorem 1). 

Although it seems to be a formal similarity, it is worth noting that a lemma of Shelah 
[7] is formulated in [4] as a similar edge-coloring problem of K ,  x K,, with a weaker 
condition on the rectangles: rectangles can not be colored with two alternating colors. 
In this case it seems to be very difficult to find the order of magnitude of the minimum 
number of colors (some results are in [31, [51, 161. 

2. RESULTS 

Proposition 1. rb(G, H )  i rb(y(G), x ( H ) )  
Assume that V ( G )  is partitioned into k independent sets A, and V ( H )  is par- 

titioned into 1 independent sets B,, where k = x(G)  and 1 = x ( H ) .  Contract each set 
A,  x BJ in G x H into a single vertex ut3 and view this as M = Kk x KI by adding all 
horizontal and vertical edges. There is a good coloring of A4 with rb(k ,  1) colors. Transfer 
this coloring to G x H by coloring each edge between A, x BJ and A, x Bt with the color 
of v , J ~ , t  in M ,  similarly by coloring each edge between A, x BJ and At x B3 with the 

I 

Proof. 

color of v , ~  ut3. This is a good coloring of G x H.  

Proposition 2. 

Assume that rb(G, H )  = t and let a be a good coloring of G x H with t colors. 
Fix an arbitrary edge e of G, and for each vertex u in H color v with a ( e  x v). Since a 
is a good coloring of G x H ,  we obtain a proper coloring of the graph H with at most t 

I 
In preparation of the main result, Theorem 1, we define a decomposition for complete 

graphs which resembles the well studied concept of cyclic decomposition (see for example 
in [l]). The vertex set of K, will be {0,1,. . . ,n - 1) = [n]. On subsets of [n] we shall 

rb(G, H )  2 max(x(G), x ( H ) ) .  
Proof. 

colors. Therefore x ( H )  5 t .  A similar argument shows that x(G)  5 t .  
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use mod n arithmetic, and for X C [n], -X is defined as {-z : z E X } .  A decomposition 
of K,  into n subgraphs Go,G1,. . . ,G,-l is called weak if V ( G i )  = V(Go) + i for each 
i E [n] and each edge of K, is in precisely one Gi. This is much weaker notion than 
a cyclic decomposition, for example Go can be K ,  and all other Gi’s are graphs with 
vertex set [n] and with no edges. Two weak decompositions of K,, {Gi} and {Hi} are 
called complementary if (-V(Go)) n V(H0) = 0. For certain values of n there exist 
complementary cyclic decompositions of K,  into complete subgraphs. For example, if 
n = 7, V ( G o )  = {0,1,3}  and V ( H o )  = {2,4,5}  with Go and Ho both triangles defines such 
an example. Under the notion of weak decomposition, complementary decompositions 
exist for any large n as shown in the next lemma. 

Lemma 1. 
mentary. 

Proof. 

For each n 2 6 there exist weak decompositions of K,  which are comple- 

Set m = [n/2] and define 

A = {0,1,. . . , m - 3, m - 2, m}. 

For odd n, define B as 

B = {2,3,. . . , m - 1, m, m + a}, 
and for even n, define B as 

B = {1,2 , .  . . ,m  - 2,m - I , m +  I}. 

In both cases - A  n B = 0 holds. Therefore defining Go and Ho as complete graphs 
with vertex sets A and B,  respectively, the condition of complementary decompositions 
is satisfied. Furthermore, if n 2 6 (i.e., m 2 3), the edges of the complete graphs Go + i 
and Ho + i both cover the edges of K,  on [n] because the differences of elements in 
both A and B give all elements of [n]. Therefore recursively defining the edge set E, for 
i = 1 , 2 , .  . . , n - 1 of the graph G, as 

(with Eo = E(Go)),  the graphs G, form a weak decomposition. The graphs H, can be 
I 

Theorem 1. 

Proof. 

defined similarly, writing H instead of G. 

rb(n) = n if n 2 6. 

Since r (n)  2 n from Proposition 2, we have to give a good coloring of M = 
K,, x K,  with n colors. Represent the vertex set of M as a matrix i, j E [n]. Let G, 
and H, be two weak complementary decompositions of K,. Their existence is ensured by 
the lemma. 

Define the coloring of the edges of M with n colors as follows. For k, i E [n], edges of 
color k in row i of M are defined by the image of the graph G,+k under the isomorphism 

z -+ aL,s : 2 E V(G,+k) 

Also, for k ,  j E [n], edges of color k in column j of M are defined by the image of the 
graph HJ-k under the isomorphism 

Y a y , j  : Y E V(H,-k) 
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FIGURE 1. 

Note that the graphs obtained from V(Gz+k) by varying k form a weak decomposition 
so that all edges in the ith row (for each i) are colored once. By varying i for each value 
of k, the weak decomposition also gives that two horizontal edges of an arbitrary rectangle 
are colored with distinct colors. The same argument applies to columns using that H-s 
form a weak decomposition. 

It remains to show that no ‘corner’ of some rectangle can have both incident edges of 
the same color. If not, there is a ‘corner’ of some rectangle with both incident edges of 
color k, for some k E [n]. This means that for this value k and for some i , j  E [n] the 
images of the two maps coincide. Therefore, for some 2 E V(G,+k) = V(Go)  + i + k and 
for some y E V ( H J P k )  = V ( H o )  + j - k, i = y and j = 5.  This means that i = y1 + j - k 
and j = 2 1  + i + k for some x1 f V(Go),yl E V(H0). Adding these equations we get 

I z1 + y1 = 0, contradicting the fact that the decompositions are complementary. 

Corollary 1. rb(G, H )  = m if max{x(G),X(H)} = m 2 6. 

Proof. From Proposition 1 and from Theorem 1 

rb(G, H )  I rb(x(G), x ( H ) )  I rb(m, m) = rb(m) = m. 

On the other hand, from Proposition 2, 

I 

Proposition 3. 

Since G x H contains at least one rectangle, rb(G, H )  2 4. On the other hand, 
r b ( 2 , 3 )  5 4 is shown by the coloring of Figure 1. From Proposition 1 we have, rb(G, H )  5 

I 

rb(G, H )  = 4 if x(G) = 2 and x ( H )  is either 2 or 3. 

Proof. 

rb(x(G),  x ( H ) )  I 7+(2,3)  5 4. 

Theorem 2. 

Proo$ Figure 2 shows that rb(4) 5 5. Therefore, using Proposition 1 we have, rb(G, H )  
I rb(x(G), x (H) )  L rb(4,4) = rb(4) 5 5. 

To prove the reverse inequality, assume that G x H has a good coloring Q with at most 
4 colors. Since both G and H are at least 3-chromatic, they contain odd cycles. Let C, 
and C, be odd cycles of G and H ,  both without diagonals. Clearly, a is a good coloring 
on the subgraph C = C, x C, C G x H.  For i = 1 , 2 , 3 , 4  let M,  denote the set of edges 

Let G, H be three- or four-chromatic graphs. Then rb(G, H )  = 5. 
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Color 1 Color 2 Color 3 Color 4 Color 5 

FIGURE 2 

in C colored with color i. Without loss of generality, 

lMil 51M21 2 1M31 5 I M 4 l .  

Since C has 2pq edges, 

L L J  

Observe that the edge set F = E(C)  \ M I  does not form rectangles in C because cy is 
a good coloring of C. Since C has pq rectangles and each edge of C is in precisely two 
rectangles, F determines at least 

rectangles. Since both p and q are odd, the right hand side of the above inequality is equal 
I to one. This contradiction proves the theorem. 

Theorem 3. 

Proof. 

rb(4,5) = rb(5) = 6. 

On one hand, rb(5) 5 rb(6) = 6 follows from Theorem 1. To prove the reverse 
inequality, assume that there exists a good coloring cy of A4 = K4 x K5 with at most 5 
colors. Since M has 70 edges, one color class, say color class 1 contains at least 14 edges. 
Among these, at most 6 edges are ‘vertical’, so one can select a set F of 8 horizontal 
edges each colored with color 1. We say that f E F spans the columns of its endpoints. 
Consider the following property. 

Property (*): the edges of F in any two rows of M span at most four columns. 

If this were not the case, then at least two of the five vertical edges determined by the 
pair of rows spanning all five columns would receive the same color. 

We claim the property (*) must be violated, which will prove the theorem. Consider 
the row of M containing the largest number of edges from F, say it is row 1. Assume that 
edges of F in row 1 span t columns. From the choice of row 1, t 2 3, and we know that 
t 5 4. 

t = 4. There are at most six edges of F with both endpoints in the spanned 
t columns. Since IF[ > 6, there is an edge of F in row j which spans the column not 
spanned by the edges of F in row 1. Then row 1 and row j spans all five columns of M ,  
contradicting (*) .  

Case 1 .  
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Case 2. t = 3. By the definition of t ,  F spans at most 3 columns in each row. We may 
assume columns 1, 2, 3 are spanned by F in row 1. Since there are at most three edges 
of F with both endpoints in columns 1, 2, 3, there must be a set T c F of five edges in 
rows 2, 3, 4 such that each of them spans either column 4 or column 5. No edge of T 
spans both columns 4 and 5 otherwise ( * )  is violated. For the same reason no two edges 
of T in the same row span both columns 4 and 5.  Thus, in each row, edges of T span at 
most one of the columns 4 and 5. Since T spans at most three columns in each row, T 
appears in 1 - 2 - 2 distribution in rows 2, 3, 4. Without loss of generality rows 2 and 3 
contain two edges of 2'. Since cr is a good coloring, the edges of T in rows 2 and 3 form 
stars with centers in different columns (one of them has its center in column 4, the other 
has its center in column 5). The endpoints of these stars span the same pair of columns 
(among columns I ,  2, 3 )  otherwise (*) is violated. Since a is a good coloring, the edge of 

We close the paper with the two (related) open problems: is it true that rb(G, H )  = 6 
T in row 4 and one of the two stars span all columns, violating (*). a 

if x(G) is either 4 or 5 and x ( H )  = 5? 

References 

[ 11 

[2] 

[3] 

[4] 

[5]  

[6] 

171 

J. Bos& Decompositions of graphs, Vol. 47 in Mathematics and Its Applications, Kluwer 
Academic Publishers (1990). 

R. J. Faudree, A. Gykfis, L. Lesniak, and R. H. Schelp, Rainbow coloring of the cube, J. 
Graph Theory 17 (19931, 607-612. 
R. J. Faudree, A. Gykfas, and T. Szonyi, Projective spaces and colorings of K,,, x K,, Coll. 
Math. Soc. J. Bolyai 60, Sets Graphs and Numbers (1991), 273-278. 

R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, 2nd edition, Wiley- 
Interscience, New York (1990). 

A. Gykfas, On a Ramsey type problem of Shelah, Extremal Problems for Finite Sets, Bolyai 
Soc. Math. Studies 3, (1994), 283-287. 
K. Heinrich, Coloring the edges of K ,  x K,, J. Graph Theory 14 (1990), 575-583. 

S. Shelah, Primitive recursive bounds for van der Waerden numbers, J. Amet: Math. SOC. 1 
(19891, 683-697. 

Received June 6, 1996 


