

Discrete Mathematics 154 (1996) 263-268

DISCRETE MATHEMATICS

Note

Graphs in which each C_4 spans K_4

Paul Erdős^a, András Gyárfás^{b,1}, Tomasz Łuczak^{c,*}

^a Institute of Mathematics, Hungarian Academy of Sciences, Budapest, Hungary

^b Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Hungary

^c Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA

Received 11 March 1994; revised 10 August 1994

Abstract

It is shown that every graph on $n \ge 6$ vertices without induced copies of C_4 and $K_4 - e$ contains a homogeneous set of size $\lfloor \sqrt{n} \rfloor$.

1. Introduction

Let Forb(*H*) denote the family of graphs not containing *H* as an induced subgraph. Furthermore, by $\alpha(G) [\omega(G)]$ we denote the cardinality of a maximum independent set (a maximum complete subgraph) of *G* and set hom(*G*) = max{ $\alpha(G), \omega(G)$ }. Erdős and Hajnal [2] conjectured that for each *H* there exists a positive $\varepsilon = \varepsilon(H)$ with the following property: if *G* has *n* vertices and $G \in Forb(H)$ then hom(G) $\geq n^{\varepsilon}$. The conjecture is open even for 'small' *H*, like C_5 or P_5 . It is known that $\varepsilon = \frac{1}{3}$ works for $H = C_4$ (the four cycle) and for $H = K_4 - e$ (the graph on four vertices with five edges), more precisely hom(G) $\geq (2n)^{1/3}$ if *G* has *n* vertices and $G \in Forb(C_4)$ or $G \in$ Forb($K_4 - e$). This was proved in [3] where it was also asked whether hom(G) $\geq \sqrt{n}$ holds if *G* has *n* vertices and is $C_4 - f$ orcible, i.e. $G \in Forb(C_4) \cap Forb(K_4 - e)$, so each four cycle induces a K_4 in *G*. In this note we settle this problem in the affirmative proving the following result.

Theorem. If G is a C₄-forcible graph on $n \ge 6$ vertices then hom $(G) \ge \lceil \sqrt{n} \rceil$.

Remark. Clearly, the lower bound $\lceil \sqrt{n} \rceil$ is best possible. Moreover, trivially, the result holds also for $n \leq 5$ provided G is not a cycle of length five.

^{*} Correspondence address: Department of Discrete Mathematics, Adam Mickiewicz University, Matejki 48/49, 60-769 Poznań, Poland. On leave from Mathematical Institute of the Polish Academy of Sciences and Adam Mickiewicz University, Poznań, Poland. Partially supported by KBN grant 2 1087 91 01.
¹ Supported by OTKA grant 2570.

2. Elementary properties of C_4 -forcible graphs

We start with some simple observations concerning C_4 -forcible graphs. Here and below V(G) and E(G) denote the set of vertices and edges of G, respectively, and N(v) stands for the neighbourhood of v, i.e. $N(v) = \{w \in V(G) : \{v, w\} \in E(G)\}$. Furthermore, each maximal complete subgraph of a graph we shall call *clique*.

Fact 1. If K_m is a clique of a C₄-forcible graph G then for every $v \notin V(K_m)$ we have $|N(v) \cap V(K_m)| \leq 1$.

Fact 2. Let K_ℓ and K_m be cliques of a C_4 -forcible graph G. Then one of the following three possibilities holds:

(i) K_{ℓ} and K_m are intersecting at a vertex v, i.e. $V(K_{\ell}) \cap V(K_m) = \{v\}$. In this case there are no edges of G between sets $V(K_{\ell}) \setminus \{v\}$ and $V(K_m) \setminus \{v\}$;

(ii) K_{ℓ} and K_m are contiguous at vertices $v \in V(K_{\ell})$ and $v' \in V(K_m)$, i.e. $V(K_{\ell}) \cap V(K_m) = \emptyset$ and $\{v, v'\}$ is the only edge joining sets $V(K_{\ell})$ and $V(K_m)$;

(iii) K_{ℓ} and K_m are separated, i.e. $V(K_{\ell}) \cap V(K_m) = \emptyset$ and no edges of G join sets $V(K_{\ell})$ and $V(K_m)$.

Our next result is slightly more involved. Let us call a sequence of *m* complete graphs $K_m^{(1)}, K_m^{(2)}, \ldots, K_m^{(m)}$ on *m* vertices *m*-sparse if

• $|V(K_m^{(i)}) \cap V(K_m^{(j)})| \leq 1$ for $1 \leq i < j \leq m$;

• there is at most one edge between $V(K_m^{(i)})$ and $V(K_m^{(j)})$, for $1 \le i < j \le m$.

Moreover, if $V(K_m^{(i)}) \cap V(K_m^{(j)}) = \{v\}$, then no edges join sets $V(K_m^{(i)}) \setminus \{v\}$ and $V(K_m^{(j)}) \setminus \{v\}$.

Fact 3. Every m-sparse sequence of complete graphs $K_m^{(1)}, K_m^{(2)}, \ldots, K_m^{(m)}$ contains an independent set $\{v_1, v_2, \ldots, v_m\}$ such that $v_i \in V(K_m^{(i)})$ for $1 \leq i \leq m$.

Proof. By induction. For m = 1 the assertion is obvious. Assume that $m \ge 2$ and let v_m be any vertex from $V(K_m^{(m)}) \setminus \bigcup_{i=1}^{m-1} V(K_m^{(i)})$ (since $|V(K_m^{(m)}) \cap V(K_m^{(i)})| \le 1$ for every $1 \le i \le m-1$ such a vertex always exists). Now delete from each $V(K_m^{(i)})$, $1 \le i \le m-1$, the only neighbour of v_m (if such a neighbour does not exist remove any vertex) and use the inductional hypothesis. \Box

3. Proof of the theorem

We shall show the theorem using the induction with respect to *n*. For $6 \le n \le 9$ the assertion follows from the fact that R(3,3) = 6, whereas for $10 \le n \le 16$ it is an immediate consequence of the equation $R(C_4, K_4) = 10$ (for the values of small

off-diagonal Ramsey numbers see [1]). Thus, let G be a C_4 -forcible graph on n vertices. From now on we assume that $n = m^2 + 1$, $m \ge 4$, and every induced subgraph H of G on at least $(m - 1)^2 + 1$ vertices satisfies hom(H) = m. Our goal is to show that $\omega(G) \le m$ implies $\alpha(G) \ge m + 1$. Since the inductional step contains many cases, we state each of them as a separate claim.

Fact 4. Every subgraph of G of at least $(m-1)^2 + m$ vertices contains an independent set of size m.

Proof. Let *H* be a subgraph of *G* on $(m-1)^2 + m$ vertices such that $\alpha(H) < m$. From the assumption hom(H) = m, so *H* contains a clique $K_m^{(1)}$ on *m* vertices. Let $v_1 \in V(K_m^{(1)})$ and consider the graph $H_1 = H \setminus \{v_1\}$. Then, $\alpha(H_1) \leq \alpha(H) < m$ but, from the assumption, hom $(H_1) = m$, so H_1 contains a clique $K_m^{(2)}$ on *m* vertices. Furthermore, due to Fact 2, we have $|V(K_m^{(1)}) \cap V(K_m^{(2)})| \leq 1$ and if $V(K_m^{(1)}) \cap V(K_m^{(2)}) = \{v\}$, then no edges join sets $V(K_m^{(1)}) \setminus \{v\}$ and $V(K_m^{(2)}) \setminus \{v\}$. Pick $v_2 \in V(K_m^{(2)})$, set $H_2 = H_2 \setminus \{v_2\}$, and apply the above argument to find in H_2 another clique $K_m^{(3)}$. Continuing this procedure, one can construct in *H* an *m*-sparse sequence of cliques $K_m^{(1)}, K_m^{(2)}, \dots, K_m^{(m)}$. But Fact 3 states that such an *H* must contain an independent set of size *m* which contradicts the assumption that $\alpha(H) < m$.

Fact 5. If $\omega(G) \leq m-1$ then $\alpha(G) \geq m+1$.

Proof. If G contains a vertex v of degree at most 2m-2 then the subgraph $G \setminus (\{v\} \cup N(v))$, due to our assumption, contains an independent set S of size m, so $S \cup \{v\}$ gives an independent set of size m + 1.

Thus, let v be a vertex of G of degree at least 2m - 1 and let $K_{k_1}, K_{k_2}, \ldots, K_{k_n}$, $k_1 \ge k_2 \ge \cdots \ge k_s$, denote maximal complete graphs contained in N(v). Note that all these graphs are vertex disjoint and there are no edges between any two of them. Let us choose r in such a way that $m + 1 \le \sum_{i=1}^r k_i \le 2m - 2$. Since $k_r \le \cdots \le k_1 \le m - 2$ such a choice is always possible. Now consider the graph $H = G \setminus (\{v\} \cup \bigcup_{i=1}^r V(K_{k_i}))$. H has at least $(m-1)^2 + 1$ vertices, so, due to the assumption, contains an independent set S of size m. Furthermore, the fact that G is C₄-forcible implies that each vertex $v \in S$ has at most one neighbour in $\bigcup_{i=1}^r V(K_{k_i})$. Since $|\bigcup_{i=1}^r V(K_{k_i})| \ge m + 1$ one can find a vertex w in $\bigcup_{i=1}^r V(K_{k_i})$ such that the set $S \cup \{w\}$ is independent. \Box

Fact 6. If G contains a clique K_m , such that some vertex of K_m has no neighbours outside $V(K_m)$, then $\alpha(G) \ge m + 1$.

Proof. Every vertex $v \in V(K_m)$ with $N(v) \subseteq V(K_m)$ extends the largest independent set of $G \setminus V(K_m)$, which, according to Fact 4, has size at least m. \Box

Fact 7. If G contains a clique K_m , such that $\omega(G \setminus V(K_m)) \leq m - 1$, then $\alpha(G) \geq m + 1$.

Proof. Because of Fact 6 we may assume that every vertex of K_m has degree at least m. Note also, that if $w, w' \in N(v) \setminus V(K_m)$ for $v \in V(K_m)$ and w and w' are not adjacent, then one can construct an independent set of size m + 1 by picking one vertex from $N(v') \setminus V(K_m)$ for each $v' \in V(K_m)$, $v' \neq v$, together with w and w'. Thus, let us suppose that the neighbourhood of each vertex $v \in V(K_m)$ consists of two complete graphs.

Let us choose any vertex $v \in V(K_m)$ and set $H = G \setminus (\{v\} \cup N(v))$. H has at least $(m-1)^2 + 1$ vertices, so it contains an independent set S of size m (the assumption rules out cliques on m vertices). Thus, $S \cup \{v\}$ gives the required large independent set. \Box

Fact 8. If G contains two separated cliques of size m, then $\alpha(G) \ge m + 1$.

Proof. Let K_m and K'_m be two separated cliques of size m in G, and let S be the independent set of size m in $G \setminus V(K_m)$ guaranteed by Fact 4. Note first that every vertex of S sends to $V(K_m)$ at most one edge, so either S can be enlarged by adding to it one vertex from $V(K_m)$ or there are m disjoint edges between S and $V(K_m)$. In particular, we may assume that sets S and $V(K'_m)$ are disjoint. A similar argument shows that either some vertex from $V(K'_m)$ can be used to expand set S or the edges between S and $V(K'_m)$ form a perfect matching. Now, in order to obtain an independent set of size m + 1, it is enough to remove any vertex s from S and replace it by its neighbours in $V(K_m)$ and $V(K'_m)$.

Fact 9. If K_m and K'_m are two contiguous cliques contained in G then either $\alpha(G) \ge m + 1$ or every vertex $v \in V(K_m)$ has degree m.

Proof. Let us suppose that $\alpha(G) = m$ and K_m , K'_m are two cliques contiguous at vertices $v \in V(K_m)$ and $v' \in V(K'_m)$. Let S be an independent set of size m in the graph $G \setminus V(K_m)$. Note that, similarly as in the proof of Fact 8, we may and will assume that the edges between S and $V(K_m)$ form a perfect matching.

It is not hard to see that it is enough to study the case when $S \cap V(K'_m) = v'$. Indeed, if $S \cap V(K'_m) = \emptyset$, then, just as in the proof of Fact 8, we may assume that not only the edges between S and $V(K_m)$ but also the edges joining S and $V(K'_m)$ form a perfect matching, and construct an independent set of size m + 1 by replacing any vertex of S which is adjacent to neither v nor v' by its two neighbours in $V(K_m)$ and $V(K'_m)$. On the other hand, if $S \cap V(K'_m) = w$ then, since w, as an element of S, has neighbour in $V(K_m)$, and K_m and K'_m are contiguous, we must have w = v'. Now let us suppose that $S \cap V(K'_m) = \{v'\}$ and the assertion does not hold, i.e. some vertex of K_m has more than two neighbours outside $V(K_m)$. We consider two cases.

Case 1: v has a neighbour $w' \neq v'$ outside $V(K_m)$. Note that, according to Fact 1, $w' \notin V(K'_m)$. Furthermore, w' has no neighbours in $S \setminus \{v'\}$. Indeed, if $u' \in N(w) \cap S \setminus \{v'\}$ and u is the neighbour of u' in K_m then w'u'uvw' is a four cycle and, since G is C_4 -forcible, w' has two neighbours, u and v, in K_m , contradicting Fact 1. Thus, the set $S' = S \cup \{w'\} \setminus \{v'\}$ is independent and $S' \cap V(K'_m) = \emptyset$. Now, as we have already observed, we may assume that the edges between S' and $V(K_m)$, as well as the edges between S' and $V(K'_m)$ form a perfect matching, so replacing a vertex of S' adjacent to neither v nor v' by its neighbours in $V(K_m)$ and $V(K'_m)$ leads to an independent set of size m + 1.

Case 2: There exists $w \in V(K_m)$, $w \neq v$, with at least two neighbours, say w' and w'', outside $V(K_m)$. From Fact 2 it follows that neither w' nor w'' belong to $V(K'_m)$. Furthermore, since there is a perfect matching between S and $V(K_m)$, only one of them, say w', belongs to S (if not we can add it to S deleting from S another neighbour of w). Moreover, we may assume that edges between sets $S \setminus \{v'\}$ and $V(K'_m) \setminus \{v'\}$ form a perfect matching, since otherwise there exists $v'' \in V(K'_m)$ with no neighbours in $S \setminus \{v'\}$ and set $S \cup \{v, v''\} \setminus \{v'\}$ is independent. Thus, w' has a neighbour $u \in V(K_m)$. All we have said above remains true also for the independent set $S \cup \{w''\} \setminus \{w'\}$, so w'' must be also adjacent to u. But then vertices w, w', w'' and u lie on the cycle of length four, so u must be adjacent to w which contradicts Fact 2. \Box

Fact 10. If no two cliques of size m contained in G have a vertex in common then $\alpha(G) = m + 1$.

Proof. If there is either one clique of size m, or there are no such cliques at all, then the assertion follows from Facts 5 and 7. Thus, let $K_m^{(1)}, K_m^{(2)}, \ldots, K_m^{(\ell)}, 2 \le \ell \le m$, be the list of all cliques of size m in G. If $K_m^{(1)}$ and $K_m^{(2)}$ are separated, Fact 8 ensures the existence of a large independent set. Thus, suppose that $K_m^{(1)}$ and $K_m^{(2)}$ are contiguous at vertices v_1 and v_2 . Fact 9 implies that v_2 is the only neighbour of v_1 outside $V(K_m^{(1)})$. Now let $H = G \setminus (V(K_m^{(1)}) \cup \{v_2, v_3, \ldots, v_\ell\})$, where $v_i \in V(K_m^{(i)})$ for $3 \le i \le \ell$. Then, H has at least $(m - 1)^2 + 1$ vertices, so hom(H) = m, and, since we destroyed all cliques of size m, H contains an independent set S of size m. Hence, $S \cup \{v_1\}$ is an independent set of size m + 1. \Box

To conclude the proof of the Theorem it is enough to check that, indeed, the above Facts cover all possible cases and so imply that $\alpha(G) \ge m + 1$. If either $\omega(G) \le m - 1$, or all cliques of size *m* are vertex disjoint, the existence of a large independent set in *G* follows from Facts 5 or 10. Suppose now that *G* contains two intersecting K_m and K'_m . Then, since $m \ge 4$, at least one vertex of K_m has at least three neighbours outside $V(K_m)$. Thus, due to Fact 9, we may assume that no clique of size *m* is contiguous to K_m , so either $\omega(G \setminus V(K_m)) \leq m - 1$ and the existence of a large independence set in G follows from Fact 7, or there exists a clique K''_m separated from K_m and the fact that $\alpha(G) \geq m + 1$ is implied by Fact 8. This completes the proof of the Theorem.

References

- V.Chvátal and F.Harary, Generalized Ramsey theory for graphs III, small off-diagonal numbers, Pacific J. Math. 41 (1972) 335-345.
- [2] P. Erdős and A. Hajnal, Ramsey type theorems, Discrete Appl. Math. 25 (1989) 37-52.
- [3] A.Gyárfás, Reflections on a problem of Erdős and Hajnal, in: J. Nešetřil and R.L. Graham, eds., The Mathematics of Paul Erdős (Springer, Berlin, to appear).