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Abstract

It is shown that every graph on n>6 vertices without induced copies of Cs and K4 —e contains
a homogeneous set of size [/n].

1. Introduction

Let Forb(H) denote the family of graphs not containing H as an induced subgraph.
Furthermore, by a(G) [«w(G)] we denote the cardinality of a maximum independent set
(a maximum complete subgraph) of G and set hom(G) = max{a(G),w(G)}. Erdés
and Hajnal [2] conjectured that for each H there exists a positive ¢ = &(H) with
the following property: if G has n vertices and G € Forb(H) then hom(G)=n®. The
conjecture is open even for ‘small’ H, like Cs or Ps. It is known that ¢ = % works
for H = C4 (the four cycle) and for H = K4 — e (the graph on four vertices with five
edges), more precisely hom(G)>(2n)"? if G has n vertices and G € Forb(Cs) or G €
Forb(K4 — e). This was proved in [3] where it was also asked whether hom(G) = /n
holds if G has n vertices and is C4 — forcible, i.e. G € Forb(Cs) N Forb(Ky — e), so
each four cycle induces a K; in G. In this note we settle this problem in the affirmative
proving the following result.

Theorem. If G is a Cas-forcible graph on n>6 vertices then hom(G)=>[\/n].

Remark. Clearly, the lower bound [\/n]| is best possible. Moreover, trivially, the
result holds also for n<S5 provided G is not a cycle of length five.

* Correspondence address: Department of Discrete Mathematics, Adam Mickiewicz University,Matejki 48/49,
60-769 Poznan, Poland. On leave from Mathematical Institute of the Polish Academy of Sciences and Adam
Mickiewicz University, Poznan, Poland. Partially supported by KBN grant 2 1087 91 01.

! Supported by OTKA grant 2570.

0012-365X/96/$15.00 © 1996—Elsevier Science B.V. All rights reserved
SSDI 0012-365X(94)00353-x



264 P. Erdds et al. | Discrete Mathematics 154 (1996) 263-268
2. Elementary properties of Cy-forcible graphs

We start with some simple observations concerning Cj-forcible graphs. Here and
below V(G) and E(G) denote the set of vertices and edges of G, respectively, and
N(v) stands for the neighbourhood of v, i.e. N(v) = {w € V(G) : {v,w} € E(G)}.
Furthermore, each maximal complete subgraph of a graph we shall call cligue.

Fact 1. If K, is a cliqgue of a Cy-forcible graph G then for every v € V(K,,) we have
IN(W) N V(K| < 1.

Fact 2. Let K; and K, be cliques of a Cs-forcible graph G. Then one of the following
three possibilities holds:

(i) K, and K,, are intersecting at a vertex v, i.e. V(K;)NV(Kn) = {v}. In this
case there are no edges of G between sets V(K;)\ {v} and V(Kn)\ {v};

(ii) K, and K,, are contiguous at vertices v € V(K;) and v/ € V(Ky,), i.e. V(K;)N
V(Kn) =0 and {v,0'} is the only edge joining sets V(K;) and V(Kn);

(iii) K, and K,, are separated, i.e. V(K,)NV(Ky,) = @ and no edges of G join sets
V(Ks) and V(Kp).

Our next result is slightly more involved. Let us call a sequence of m complete
graphs K,(,,l),K,(n2),...,K,(,,'”) on m vertices m-sparse if

o VKN VKLY L1 for 1<i < j<m;

o there is at most one edge between V(K,gf)) and V(K,(,,j )), for 1<i < j<m.
Moreover, if V(K N V(KY) = {v}, then no edges join sets V(KD \ {v} and
V(K )\ {v}.

Fact 3. Every m-sparse sequence of complete graphs KD KD, .. K™ contains an
independent set {vi,vs,...,0,} such that v; € V(K,(,,i))for 1<ig<m.

Proof. By induction. For m = 1 the assertion is obvious. Assume that m>2 and let
v, be any vertex from V(K,(,,'"))\Ul'.":_ll V(KDY (since [V(KSH)NV(KP)| <1 for every
1 <i<m—1 such a vertex always exists). Now delete from each V(K,(,,i)), 1<i<m—1,
the only neighbour of v,, (if such a neighbour does not exist remove any vertex) and
use the inductional hypothesis. [

3. Proof of the theorem

We shall show the theorem using the induction with respect to n. For 6<n<9
the assertion follows from the fact that R(3,3) = 6, whereas for 10<n<16 it is
an immediate consequence of the equation R(Cs,K;) = 10 (for the values of small
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off-diagonal Ramsey numbers see [1]). Thus, let G be a Cy-forcible graph on n vertices.
From now on we assume that n = m? + 1, m>4, and every induced subgraph H of
G on at least (m — 1)> + 1 vertices satisfies hom(H) = m. Our goal is to show that
o(G)Y<m implies a(G)=m + 1. Since the inductional step contains many cases, we
state each of them as a separate claim.

Fact 4. Every subgraph of G of at least (m—1)*4+m vertices contains an independent
set of size m.

Proof. Let H be a subgraph of G on (m — 1)* + m vertices such that «(H) < m.
From the assumption hom(H) = m, so H contains a clique K on m vertices. Let
vy € V(KS) and consider the graph H, = H \ {v}. Then, x(H,)<a(H) < m but,
from the assumption, hom(H,) = m, so H, contains a clique K,(,,Z) on m vertices.
Furthermore, due to Fact 2, we have |V (K% )n V(K,(,,z))| <1and if V(KHNV(KE) =
{v}, then no edges join sets V(K4')\ {v} and V(K& \ {v}. Pick v; € V(K), set
H, = H, \ {12}, and apply the above argument to find in H, another clique K} .
Continuing this procedure, one can construct in H an m-sparse sequence of cliques
K,(,,”, ,(,,2 ),...,K,(,,"'). But Fact 3 states that such an H must contain an independent set
of size m which contradicts the assumption that «(H) < m. O

Fact 5. If o(G)<m — 1 then ao(G)zm + 1.

Proof. If G contains a vertex v of degree at most 2m — 2 then the subgraph G\ ({v}U
N(v)), due to our assumption, contains an independent set S of size m, so S U {v}
gives an independent set of size m + 1.

Thus, let v be a vertex of G of degree at least 2m — 1 and let Ky, ,Ky,,..., Ky,
kizky>= -+ >k, denote maximal complete graphs contained in N(v). Note that all
these graphs are vertex disjoint and there are no edges between any two of them. Let
us choose  in such a way that m + 1< ZLI ki<2m—2. Since k, < - <kj€<m -2
such a choice is always possible. Now consider the graph H = G\ ({v}UU;_, V(Ki,)).
H has at least (m—1)? 41 vertices, so, due to the assumption, contains an independent
set S of size m. Furthermore, the fact that G is Cy-forcible implies that each vertex
v € § has at most one neighbour in |J;_, ¥(Ky,). Since ||J]_, V(Ki,)|=m+ 1 one can
find a vertex w in {JI_, V(K ) such that the set S U {w} is independent. (]

Fact 6. If G contains a cliqgue K,,, such that some vertex of K,, has no neighbours
outside V(K,,), then a(G)=m + 1.

Proof. Every vertex v € V(K,,) with N(v) CV(K,,) extends the largest independent
set of G\ V(K,,), which, according to Fact 4, has size at least m. O
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Fact 7. If G contains a cligue K,,, such that o(G \ V(Kn))<m — 1, then «(G)>
m+ 1.

Proof. Because of Fact 6 we may assume that every vertex of K, has degree at least m.
Note also, that if w,w’ € N(v)\ V(K,) for v € V(K,,) and w and w' are not adjacent,
then one can construct an independent set of size m + | by picking one vertex from
N(@')\ V(K,) for each v' € V(K,), V' # v, together with w and w’. Thus, let us
suppose that the neighbourhood of each vertex v € ¥V (K, ) consists of two complete
graphs.

Let us choose any vertex v € ¥V(K,,) and set H = G\ ({v} UN(v)). H has at least
(m — 1)* + 1 vertices, so it contains an independent set S of size m (the assumption
rules out cliques on m vertices). Thus, S U {v} gives the required large independent
set. [J

Fact 8. If G contains two separated cliques of size m, then a(G)zm + 1.

Proof. Let X, and K], be two separated cliques of size m in G, and let S be the
independent set of size m in G\ V(K,) guaranteed by Fact 4. Note first that every
vertex of S sends to ¥V(K,,) at most one edge, so either S can be enlarged by adding
to it one vertex from V(K,,) or there are m disjoint edges between S and V(K ). In
particular, we may assume that sets S and V(K},) are disjoint. A similar argument
shows that either some vertex from V(K}) can be used to expand set S or the edges
between S and ¥ (X,) form a perfect matching. Now, in order to obtain an independent
set of size m + 1, it is enough to remove any vertex s from S and replace it by its
neighbours in V(K,) and V(X,,). O

Fact 9. If K, and K, are two contiguous cliques contained in G then either
W G)=m+ 1 or every vertex v € V(Ky) has degree m.

Proof. Let us suppose that o(G) = m and K,, K, are two cliques contiguous at
vertices v € V(K,) and v/ € V(K,,). Let S be an independent set of size m in the
graph G \ V(K,). Note that, similarly as in the proof of Fact 8, we may and will
assume that the edges between S and ¥(K,,) form a perfect matching.

It is not hard to see that it is enough to study the case when SN V(K},) = v’
Indeed, if SN V(K,,) = 0, then, just as in the proof of Fact 8, we may assume that
not only the edges between S and V(K,) but also the edges joining S and V(K,)
form a perfect matching, and construct an independent set of size m + 1 by replac-
ing any vertex of S which is adjacent to neither v nor v’ by its two neighbours in
V(Kn) and V(K,). On the other hand, if SN V(K,) = w then, since w, as an ele-
ment of S, has neighbour in ¥(K,), and K,, and K], are contiguous, we must have

w=1v.
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Now let us suppose that § N V(K,) = {v'} and the assertion does not hold, i.e.
some vertex of K, has more than two neighbours outside V(K,). We consider two
cases.

Case 1: v has a neighbour w' # t' outside V(K,,). Note that, according to Fact 1,
w’ & V(K}). Furthermore, w’ has no neighbours in S\ {¢'}. Indeed, if ' € N(w)N S\
{v'} and u is the neighbour of #' in K, then w's'uvw’ is a four cycle and, since G
is C4-forcible, w' has two neighbours, # and v, in K, contradicting Fact 1. Thus, the
set &’ = SU{w'}\ {v'} is independent and S’ N V(K},) = §. Now, as we have already
observed, we may assume that the edges between S’ and V(K,,), as well as the edges
between S’ and V(X)) form a perfect matching, so replacing a vertex of S’ adjacent
to neither v nor v’ by its neighbours in ¥ (K,,) and V(K],) leads to an independent set
of size m + 1.

Case 2: There exists w € V(Ky,), w # v, with at least two neighbours, say w' and
w', outside V(K,,). From Fact 2 it follows that neither w' nor w" belong to V(K,).
Furthermore, since there is a perfect matching between S and V' (X},), only one of them,
say w’, belongs to S (if not we can add it to § deleting from S another neighbour of
w). Moreover, we may assume that edges between sets S\ {v'} and V(K],)\ {v'} form
a perfect matching, since otherwise there exists v € V(K],) with no neighbours in
S\ {v'} and set SU{v,v”}\ {v'} is independent. Thus, w' has a neighbour u € V(K,,).
All we have said above remains true also for the independent set SU {w”’} \ {w'}, so
w” must be also adjacent to u. But then vertices w, w', w” and u lie on the cycle of
length four, so # must be adjacent to w which contradicts Fact 2. O

Fact 10. If no two cliques of size m contained in G have a vertex in common then
(G)y=m+ 1.

Proof. If there is either one clique of size m, or there are no such cliques at all, then
the assertion follows from Facts 5 and 7. Thus, let K,(,,”,K,(nz),...,K,(,,/), 2/ <m, be
the list of all cliques of size m in G. If K&’ and K&’ are separated, Fact 8 ensures the
existence of a large independent set. Thus, suppose that KD and K2 are contiguous at
vertices v; and v,. Fact 9 implies that v, is the only neighbour of v, outside V(K,(,,l)).
Now let H = G\ (V(K4)) U {v2,03,...,0/}), where v; € V(KY) for 3<i</. Then,
H has at least (m — 1) + 1 vertices, so hom(H) = m, and, since we destroyed all
cliques of size m, H contains an independent set S of size m. Hence, S U {v;} is an
independent set of size m +1. O

To conclude the proof of the Theorem it is enough to check that, indeed, the above
Facts cover all possible cases and so imply that a(G)=m + 1. If either o(G)<m — 1,
or all cliques of size m are vertex disjoint, the existence of a large independent set in
G follows from Facts 5 or 10. Suppose now that G contains two intersecting K, and
K,,. Then, since m >4, at least one vertex of K, has at least three neighbours outside
V(K,). Thus, due to Fact 9, we may assume that no clique of size m is contiguous
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to K, so either (G \ V(K,))<m — 1 and the existence of a large independence
set in G follows from Fact 7, or there exists a clique X, separated from X, and
the fact that a(G)=m + 1 is implied by Fact 8. This completes the proof of the
Theorem.
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