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Abstract 

It is shown that every graph on n 2 6 vertices without induced copies of C4 and K4 -e contains 
a homogeneous set of size [A. 

1. Introduction 

Let Forb(H) denote the family of graphs not containing H as an induced subgraph. 

Furthermore, by a(G) [o(G)] we denote the cardinality of a maximum independent set 
(a maximum complete subgraph) of G and set horn(G) = max{a(G), o(G)}. ErdGs 
and Hajnal [2] conjectured that for each H there exists a positive E = E(H) with 

the following property: if G has n vertices and G E Forb(H) then horn(G) >n”. The 
conjecture is open even for ‘small’ H, like Cj or Pg. It is known that E = f works 
for H = Cd (the four cycle) and for H = K4 - e (the graph on four vertices with five 

edges), more precisely hom( G) 3 (2n) ‘I3 if G has n vertices and G E Forb(C4) or G E 
Forb(K4 - e). This was proved in [3] where it was also asked whether horn(G) > fi 
holds if G has n vertices and is C4 - forcible, i.e. G E Forb(C4) n Forb(K4 - e), so 

each four cycle induces a K4 in G. In this note we settle this problem in the affirmative 
proving the following result. 

Theorem. If G is a C4-forcible graph on n 2 6 vertices then horn(G) >, [fl 

Remark. Clearly, the lower bound [J;I1 is best possible. Moreover, trivially, the 
result holds also for n Q 5 provided G is not a cycle of length jive. 
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2. Elementary properties of C&forcible graphs 

We start with some simple observations concerning Ch-forcible graphs. Here and 
below F’(G) and E(G) denote the set of vertices and edges of G, respectively, and 

N(v) stands for the neighbourhood of 0, i.e. N(o) = {w E V(G) : {o, w} E E(G)}. 

Furthermore, each maximal complete subgraph of a graph we shall call clique. 

Fact 1. If K, is a clique of a G-forcible graph G then for every v Sr V(K,) we have 

(N(o) n V(K,)( < 1. 

Fact 2. Let KY and K, be cliques of a G-forcible graph G. Then one of the following 
three possibilities holds. 

(i) Kf and K,,, are intersecting at a vertex v, i.e. V(Kf ) n V(K,,,) = {v}. In this 
case there are no edges of G between sets V(Kf) \ {v} and V(K,) \ {v}, 

(ii) K/ and K,,, are contiguous at vertices v E V(Ke) and v’ E V(K,,,), i.e. V(Kl)n 
V(K,) = 0 and {v,v’} is the only edge joining sets V(Kc) and V(K,); 

(iii) K( and K, are separated, i.e. V(Kf)n V(K,,,) = 8 and no edges of G join sets 
V(Kr) and V(K,,,). 

Our next result is slightly more involved. Let us call a sequence of m complete 

graphs Kk”, KA2’, . . . , K$” on m vertices m-sparse if 

l IV(Ki:‘)n V(K,o”)J<l for l<i <j<m; 
l there is at most one edge between V(K,!‘) and V(Kki)), for 1 di < j Qm. 

Moreover, if V(Ki)) n V(Khj)) = {v}, then no edges join sets V(K$) \ {v} and 

V(K;‘)) \ {u}. 

Fact 3. Every m-sparse sequence of complete graphs Kk”, Kk2), . . . , K,?’ contains an 
independent set (vi, 02,. . . , v,} such that vi E V(Ki)) for 1 <i <m. 

Proof. By induction. For m = 1 the assertion is obvious. Assume that m Z 2 and let 
v, be any vertex from V(Kim)) \ Uzy’ V(K,$?) (since 1 V(KAm))n V(K$‘)j 6 1 for every 

1 d i < m - 1 such a vertex always exists). Now delete from each V(K$), 1 d i d m - 1, 
the only neighbour of v, (if such a neighbour does not exist remove any vertex) and 
use the inductional hypothesis. 0 

3. Proof of the theorem 

We shall show the theorem using the induction with respect to n. For 6 <n < 9 
the assertion follows from the fact that R(3,3) = 6, whereas for IO<n< 16 it is 
an immediate consequence of the equation R(C4, K4) = 10 (for the values of small 
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off-diagonal Ramsey numbers see [l]). Thus, let G be a Cb-forcible graph on n vertices. 
From now on we assume that n = m2 + 1, m > 4, and every induced subgraph H of 

G on at least (m - 1)2 + 1 vertices satisfies horn(H) = m. Our goal is to show that 
W(G) <rn implies M(G) 2 m + 1. Since the inductional step contains many cases, we 

state each of them as a separate claim. 

Fact 4. Every subgruph of G of at least (m- 1)2 +m vertices contains an independent 

set of size m. 

Proof. Let H be a subgraph of G on (m - 1)2 + m vertices such that a(H) < m. 
From the assumption horn(H) = m, so H contains a clique Ki) on m vertices. Let 

VI E V(Ki)) and consider the graph HI = H \ {vi}. Then, CX(HI)<~(H) < m but, 

from the assumption, hom(Hi) = m, so HI contains a clique Kh2) on m vertices. 
Furthermore, due to Fact 2, we have (V(Kt’)n V(K,$*‘)( d 1 and if V(K~‘))n V(K,f)) = 
{v}, then no edges join sets I’(&)) \ {v} and I’(&‘) \ {v}. Pick v2 E V(Ki*)), set 

H2 = H2 \ {u2)> and apply the above argument to find in H2 another clique Kg’. 

Continuing this procedure, one can construct in H an m-sparse sequence of cliques 
K”’ K(2) 

m , m 1..., Kc*). But Fact 3 states that such an H must contain an independent set m 
of size m which contradicts the assumption that r(H) < m. 0 

Fact 5. Ifw(G)dm - 1 then a(G)>m + 1. 

Proof. If G contains a vertex v of degree at most 2m - 2 then the subgraph G \ ({v} U 

N(v)), due to our assumption, contains an independent set S of size m, so S u {v} 

gives an independent set of size m + 1. 
Thus, let v be a vertex of G of degree at least 2m - 1 and let Kk,, Kkz,. . ,Kk,, 

kl >kz 3 . . >k,, denote maximal complete graphs contained in N(v). Note that all 
these graphs are vertex disjoint and there are no edges between any two of them. Let 

us chooser in sucha way that m+1dC~=,ki<2m-2. Since k,<...<kl<m-2 
such a choice is always possible. Now consider the graph H = G \ ({ v} U lJ=, V(Kk, )). 

H has at least (m - 1)2 + 1 vertices, so, due to the assumption, contains an independent 
set S of size m. Furthermore, the fact that G is &-forcible implies that each vertex 
v E S has at most one neighbour in lJF=, V(Kk,). Since ( lJF=, V(KkZ)I > m + 1 one can 

find a vertex w in lJr=, v(&,) such that the set S U {w} is independent. 0 

Fact 6. If G contains a clique K,,,, such that some vertex of K,,, has no neighbours 
outside V(K,), then cc(G) bm + 1. 

Proof. Every vertex v E V(K,) with N(v) C V(K,) extends the largest independent 

set of G \ V(K,), which, according to Fact 4, has size at least m. 0 
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Fact 7. Zf G contains a clique K,,,, such that w(G \ V(K,,,))<m - 1, then a(G)> 
mt 1. 

Proof. Because of Fact 6 we may assume that every vertex of K,,, has degree at least m. 
Note also, that if W, w’ E N(v) \ V(K,) f or v E V(K, ) and w and w’ are not adjacent, 
then one can construct an independent set of size m + 1 by picking one vertex from 

N(r’) \ W,) f or each v’ E V(K,), v’ # v, together with w and w’. Thus, let us 

suppose that the neighbourhood of each vertex v E V(K,) consists of two complete 

graphs. 
Let us choose any vertex v E V(K,) and set H = G \ ({v} UN(v)). H has at least 

(m - 1)’ + 1 vertices, so it contains an independent set S of size m (the assumption 
rules out cliques on m vertices). Thus, S u {v} gives the required large independent 

set. 0 

Fact 8. Zf G contains two separated cliques of size m, then a(G) am + 1. 

Proof. Let K, and Kk be two separated cliques of size m in G, and let S be the 

independent set of size m in G \ V(K,) guaranteed by Fact 4. Note first that every 
vertex of S sends to V(K,) at most one edge, so either S can be enlarged by adding 
to it one vertex from V(K,) or there are m disjoint edges between S and V(K,). In 
particular, we may assume that sets S and V(Kk) are disjoint. A similar argument 

shows that either some vertex from V(Kh) can be used to expand set S or the edges 
between S and V(KA) form a perfect matching. Now, in order to obtain an independent 

set of size m + 1, it is enough to remove any vertex s from S and replace it by its 

neighbours in V(K,) and V(Ki). 0 

Fact 9. Zf K, and Kh are two contiguous cliques contained in G then either 
a(G)Zm + 1 or every vertex v E V(K,,,) has degree m. 

Proof. Let us suppose that a(G) = m and K,,,, KA are two cliques contiguous at 

vertices v E V(K,) and v’ E V(Kh). Let S be an independent set of size m in the 
graph G \ V(K,). Note that, similarly as in the proof of Fact 8, we may and will 
assume that the edges between S and V(K,) form a perfect matching. 

It is not hard to see that it is enough to study the case when S n V(KA) = v’. 
Indeed, if S f’ V(Kh) = 8, then, just as in the proof of Fact 8, we may assume that 
not only the edges between S and V(K,,,) but also the edges joining S and V(KA) 
form a perfect matching, and construct an independent set of size m + 1 by replac- 

ing any vertex of S which is adjacent to neither v nor v’ by its two neighbours in 
V(K,) and V(KA). On the other hand, if S fl V(Kh) = w then, since w, as an ele- 

ment of S, has neighbour in V(K,,,), and K, and Kk are contiguous, we must have 
w = 0’. 
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Now let us suppose that S n V(Kh) = {u’} and the assertion does not hold, i.e. 

some vertex of K,,, has more than two neighbours outside V(K,,,). We consider two 

cases. 
Case 1: 2; has a neighbour w’ # C’ outside V(K,,,). Note that, according to Fact 1, 

w’ $ V(KL ). Furthermore, w’ has no neighbours in S \ {u’}. Indeed, if u’ E N(w) n S \ 

{a’} and u is the neighbour of u’ in K,,, then w’u’uvw’ is a four cycle and, since G 

is &-forcible, w’ has two neighbours, u and v, in K,, contradicting Fact 1. Thus, the 

set S’ = S U {w’} \ {v’} is independent and S’ n V(K,/,,) = 8. Now, as we have already 
observed, we may assume that the edges between S’ and V(K,), as well as the edges 

between S’ and V(KA) form a perfect matching, so replacing a vertex of S’ adjacent 

to neither v nor v’ by its neighbours in V(K,) and V(KA) leads to an independent set 

of size m+ 1. 
Case 2: There exists w E V(K,), w # v, with at least two neighbours, say w’ and 

W”, outside V(K,). From Fact 2 it follows that neither w’ nor w” belong to V(Kh). 
Furthermore, since there is a perfect matching between S and V(K,), only one of them, 

say w’, belongs to S (if not we can add it to S deleting from S another neighbour of 
w). Moreover, we may assume that edges between sets S\ {v’} and V(KA) \ {v’} form 

a perfect matching, since otherwise there exists v” E V(Kh) with no neighbours in 

S \ {v’} and set S U {c, v”} \ {v’} is independent. Thus, w’ has a neighbour u E V(K,). 
All we have said above remains true also for the independent set S U {w”} \ {w’}, so 
w” must be also adjacent to U. But then vertices w, w’, w” and u lie on the cycle of 
length four, so u must be adjacent to w which contradicts Fact 2. 0 

Fact 10. Zf no two cliques of size m contained in G have a vertex in common then 
cc(G) = m + 1. 

Proof. If there is either one clique of size m, or there are no such cliques at all, then 
the assertion follows from Facts 5 and 7. Thus, let Kt ), Kc2) m ,..., K(‘) 26&dm, be m , 
the list of all cliques of size m in G. If Kk” and Ki2’ are separated, Fact 8 ensures the 
existence of a large independent set. Thus, suppose that Kk”’ and Ki2) are contiguous at 

vertices ui and ~2. Fact 9 implies that 02 is the only neighbour of VI outside V(Kt)). 
Now let H = G\(V(K~))U{V~,Z+ , . . . , II/}), where vi E V(Ki’) for 3 bi <L’. Then, 
H has at least (m - 1)2 + 1 vertices, so horn(H) = m, and, since we destroyed all 
cliques of size m, H contains an independent set S of size m. Hence, S U (01 } is an 

independent set of size m + 1. 0 

To conclude the proof of the Theorem it is enough to check that, indeed, the above 

Facts cover all possible cases and so imply that r(G) b m + 1. If either w(G) 6 m - 1, 
or all cliques of size m are vertex disjoint, the existence of a large independent set in 

G follows from Facts 5 or 10. Suppose now that G contains two intersecting K, and 
KA. Then, since m 24, at least one vertex of K,,, has at least three neighbours outside 
V(K,,,). Thus, due to Fact 9, we may assume that no clique of size m is contiguous 
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to K,,,, so either o(G \ V(K,))<m - 1 and the existence of a large independence 
set in G follows from Fact 7, or there exists a clique Kz separated from K, and 

the fact that a(G) >m + 1 is implied by Fact 8. This completes the proof of the 

Theorem. 
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