
MULTITRACK INTERVAL GRAPHS 

A dr , G ' f' 1. n as yar as 

Computer and Automation Irwtitute, Hungarian Academy of Science.J 
Department of Mathematic&, Univer.Jity of Memphu 

2 
Douglas West 

Department of Mathematic.J, Univer&ity of fllinou 

Abstract. A d-track interval is a union of d intervals, one each from d 
parallel lines. The intersection graphs of d-track intervals are the unions of 
d interval graphs. The multitrack interval number or simply track number 

of a graph G is the minimum number of interval graphs whose union is G. 
The track number for K m,n is determined by proving that the arboricity of 
Km,n equals its "caterpillar arboricity". Recognition of graphs with track 
number 2 is shown to be NP-complete. 

1. Introduction 

Combinatorial properties of interval systems were"investigated as early a..s the 
1930's by Tibor Gallai. His two beautiful unpublished remar.lcs are now phrased 
as saying that interval graphs and their complements are perfect graphs. In 1968, 
Ga.llai suggested considering more general set systems consisting of unions of d 
intervals, one each from d parallel lines. Such set systems have been called uparated 
d-interval.s, since the d parallel Lnes can be viewed as d rusjoint host intervals on 
a single line. Here we propose the term d-trock intervaLs, or multi.track interval& if 
d is not specified. This clistinguishes between these set systems and collections of 
d-intervall or multi-intervau, which a.re arbitrary unions of d intervals on a. single 
line. A collection of d-tra.clc intervals is a special case of a collection of d-interva.ls. 

Combinatorial properties of d-track intervals and d-intervals were studied in 
[6]. There the transversal number r is bounded by a function ·of the matching 
number v for families of d-intervals. The best bound is established for small values 
of d a.nd v. It seems very difficult to find good bounds on r in terms of v. Recent 

1 Supported by OTKA grant 7309. 
2 Supported by NSA/MSP Grant MDA904-93-H-3040. 



developments on this question include a promising approach by G. Tardos [14], who 
applied algebraic topology to prove that T .S 2v for every family of 2-traclc intervals. 
Tardos th.inls there is no elementary proof of this for v 2: 2 (for v = 1 a simple 
proof works [6], even for more general set systems). 

The intersection graph of a family of d-intervals is a d-interval graph. In ad­
dition to [6], the study of d-interval graphs was begun also by Trotter and Harary 
[16] and by Griggs and West [5]. The smallest d for which G is ad-interval graph 
is the interval number i( G). In this language, the result of [6] states that the clique 
cover number is bounded by a function of the independence number for graphs of 
fixed interval number. 

In [9], Kumar and Deo proposed the study of intersection graphs of d-track 
intervals. We call the intersection graph of a family of d-track intervals a d-track 
interval graph or simply a d-track graph. The interval graphs are precisely the 1-
track graphs and also the 1-intervalgraphs. The result of Tardos cited above says 
that the clique-cover number is at most twice the ~dependence number for every 
2-track graph. As observed in [9], 2-traclc graphs may be used to model similarity 
in DNA sequences [7]. 

The multitrack interval number or track number of G (written t( G)) is the 
smallest d such that G is a d-track graph. As observed in [9], t( G) is also the 
smallest d such that G can be expressed as the union of d interval graphs. Kumar 
and Deo (9] called t( G) the dimenJionality of G; we feel that "track number" better 
suggests the meaning of the parameter and its potential applications and avoids 
potential confusion with many other notions of dimension of graphs in the literature 
([2] discusses dimension parameters involving intersection graphs). 

We clarify some remarks in (9] about related problems .. The boxicity of a graph 
G is the minimum number of interval graphs whose intersection is G; since the 
complement of an interval graph need not be an interval graph, boxicity of G does 
not generally equal t( G). Roberts [10] proved that the marimum box:icity of an 
n-verte:x: graph is l n/2J. Trotter [15] characterized the graphs with bo:x:icity l n/2J. 
The observation in [9] that the boxicity of every graph is at least its interval number 
is false; every complete bipartite graph has bo:x:icity at most 2, while complete 
bipartite graphs have arbitrarily large interval number. 

For the interval number, Griggs [4] proved i(G) ~ f(n + 1)/4l for n-vertex 
graphs, and Andreae [1] proved Trotter's conjecture that when n is a multiple of { 
the only graph achieving this is K.;;:z,n/:2: The upper bound of i( G) ~ f( .6. + 1 )/2l 
for graphs with ma.:x::imum degree 6., achieved by triangle-free regular graphs, was 
proved in [5], with a later compact presentation in [17]. The maximum o!"_i_(_G) for 
graphs with e edges is unknown; [13] presents an upper bound of 1 + r Je/2l, but 
the conjectured optimum for e 2: 4 is f(1 + Je)/2l, achieved by K ,fi,,fi· 

Since every d-track representation is a d-interval representation, t( G) 2: i( G) 
for every graph G. We expect most extremal results on interval number (including 
those listed above) to hold also for track number. The interval number of a tree is 



at most 2 (16], and [9] observes that this bound holds also for track number. The 
proof that i( G) :S 3 for planar graphs [ll) shows also that i( G) :S 2 for outerplanar 
graphs; do these bounds also hold for track number? We also aslc whether there 
exist graphs with track number d that are not the union of d pairwise edge-disjoint 
interval graphs. 

For complete bipartite graphs, Trotter and Harary [16] proved that i(Km,n) = 
f(mn + 1)/(m + n)l. Kumar and Deo [9] observed the analogous lower bound 
t(Km,n) :2 rmn/(m + n -l)l and proved that equality holds when m =nor when 
m > 3n. In this paper, we prove that equality holds in this formula for all m, n. 
This result has independent interest in the context of a.rboricity. The a.rboricity of a 
graph is the minimum number of forests needed to cover its edges. It is well known 
that the a.rboricity of Km,n is fmn/(m + n -l)l, and our result says that this·can 
be achieved using only forests of caterpillars, which are the trees that are interval 
graphs (a caterpillar is a tree in which all edges are incident to a single path called 
the &pine of the caterpillar). -

Concerning recognition of graphs with fixed track number, Kumar and Deo 
wrote "it is likely that the recognition problem for this class of graphs can be solved 
in polynomial time." We prove that this is not true; recognizing graphs with track 
number 2 is NP-complete. Our proof is a modification of the proof of Shmoys 
and West [12} for the NP-completeness of recognizing i( G) = 2. As in [12], this 
reduction generates graphs that have triangles but no larger cliques. This suggests 
several open questions for refining the boundary between P and NP (posed for 
interval number in [121). Does recognition of graphs with track number or interval 
number 2 remain NP-hard when the input is restricted to triangle-free graphs? 
Does either remain NP-hard when restricted to planar graphs? We note also that 
recognition of graphs with boxicity 2 is NP-complete [8]. 

2. Complete Bipartite Graphs 

The lower bound t(Kn,m) 2 fmn/(m + n -1)1, proved in [9], follows from the 
remark that every triangle-free interval graph is a forest. It is well known (see [16], 
for example) that a forest is an interval graph if and only if its components are 
caterpillars. Hence equality in the formula follows from partitioning the edges of 
Km,n into fmn/(m + n -l)l such forests. 

Theorem 1. Kn,m can be decompoJed into p(rn, n) 
diJjoint fore&tA of caterpillar&. 

r m.:nn-1 l paJrwue edge-

Proof. We may assume that m 2 n. Observe that if n is odd, then p(n + 1, n) = 

f(n+I)nl n..!.l ( ) s·mil 1 ·~ . h ( 2 .) r(n+2)nl 
:ln = -:l-' = p n, n . 1 ar y, 11 n lS even, t en p n + , n = :ln+l = 

n/2+1 = p(n, n). If His an induced subgraph of G, then a decomposition of H into 
d caterpillar-forests can be obtained from such a decomposition of G by deleting 
the deleted vertices. It thus suffices to prove the claim when rn;::: 2f(n + l)/21 > n. 



Observe that mn = (m + n- 1)p- q, where 0 ~ q < m + n- 1. We can write this 
also as m(n- p) = (n -1)p- q. Since m > n, we have p > n- p (i.e., p > n/2). 

Let the partite sets be A = { a1, ... 1 an} and B = Zm. We define p paths of 
length 2n - 1, each starting and ending in A and visiting n - 1 elements of B. In 
each path, the vertices of A appear in the order a1, ... , an. In the ith path, the 
vertices of B appear in the order Xi 1 Xi+ 1, ... , Xi +(n-1). We will choose the values 
{xi} so that the paths are edge-disjoint and so that each element of B appears on 
at least n - p paths. We prove first that this suffices. 

Each vertex of B on a. path has two neighbors in the path; because the paths 
are edge-disjoint, these neighbors are distinct. In addition to these, each x E B 
appearing in " paths needs n·- 2J additional neighbors. Having appeared in " paths, 
x can be added to p - s more interval subgraphs. Since p - s 2: n - 2s if and only 
if s 2: n - p, it suffices to gain one additional neighbor from each additional track. 
Each vertex of A has a "displayed" interval in e~ch track, and hence the desired 
neighbors may be obtained arbitrarily by adding x as a leaf in the caterpillar forests 
in which it does not yet appear. 

We will choose the p values {xi} so that Xi+l- Xi equals lm/pj or fm/pl for 
all i_ ·. The resulting paths are edge-disjoint if and only if m/ p 2: 2. For fixed n, the 
smallest m we consider is 2f(n + 1)/21. We have already computed that p = m/2 
when m = 2f(n + 1)/21. We also must deal with n odd and m = n+2 by augmenting 
m; in this case p(n+3,n) = (n+3)/2 = p(n+2,n). An additional checlc shows that 
p(m, n) < m/2 when m = n+4 and n is odd, and when m = n+3 and n is even. For 
larger m we compute (m+I)n < ~(~) = ~ + __ n_ < ~ + l 

l m+n m+n-1 m m+n-1 m+n-1 m+n-1 2 • 
Hence p(m + 2,n)::; p(m,n) + 1, and we may assume that mjp 2: 2 for all cases 
that need to be considered. 

It remains to determine how to arrange the lm/pj's and fm/p1's (differences 
b((tween consecutive xi's) so that each element of B appears in at least n-p paths. 
We do this by ensuring that no n - p consecutive differences sum to more than 
n- 1. This ensures that when an element is just about to appear for the first time 
in a path, it appears in the next n - p paths. We have p of these "windows" of 
n - p consecutive differences. Since each unit contributes to n - p windows, the 
average window contains m(n- p)jp ~ n- 1 units, which is the desired bound. 
Hence it suffices to show that we can place m units into a cycLic arrangement of p 

buckets so that the populations of distinct buckets differ by at most 1 and the total. 
populations of distinct windows of n - p consecutive buckets differ by at most 1. 

We prove that this holds for arbitrary positive integers m,p,s, where sis the 
number of buckets in each window and s < p. Index the buckets modulo p (starting 
with 1). If s and pare relatively prime, place them units in the buckets {is: 1:.::; 
i::; m}. Each bucket has lm/pj or fm/p1 units, since no bucket repeats until all 
have been visited. The first unit augments the first .s windows, and each successive 
unit augments the next s of the less populous windows. After the moment when 
all windows reach the same population, the next window augmented is the first. 
Erp.Licitly, writing ms as ap + b v.rith 0 ~ b < p, the population of the first b 



windows is fm/pl, and the population of the others is lm/pj. When 8 and p have a 
coJl)lllOn divisor, the same technique is applied in each congruence class of buckets 
I!lodulo that divisor successively, filling each class with one unit per bucket before 
continuing· to the next. 0 

3, Complexity 

In this section we prove that recognition of graphs with track number 2 is NP­
coi!lplete. It is easy to verify a d-track representation, so the problem is in NP. For 
NP-hardness, the problem we trarisform is that of checking for a Hamiltonian cycle 
through a specified edge of a triangle-free 3-regular graph. The NP-completeness of 
the Hamiltonian cycle problem for 3-regular graphs appears in [3]. The reduction 
to forbidding triangles appears in [12], though this is likely not its first appearance. 

· Specifying an edge of the desired cycle does not make the problem easier, because 
one could run IE( G) I instances of that problem to determine whether G has a 
Hamiltonian cycle. Finally, asking for a Hamiltonian cycle through the edge v 1 Vn 

in a (3-regular triangle-free) graph is equivalent to deleting the edge and asking for 
a Ramiltonian v1, Vn-path. We will show that this can be tested by testing whether 
an appropriate supergraph has a 2-track representation. 

If mn/(m + n- 1) is an integer d, then expressing K"'•" as a d-track interval 
graph requires decomposing Km,n into d caterpillars. In particular, the interval 
representation of the interval graph in each track occupies a contiguous portion of 
the line, with no gaps. Furthermore, symmetry allows us to name any desired pair 
of distinct vertices as the vertices whose intervals are leftmost and rightmost in the 
representation in the first track. 

Theorem 2. Recognizing !.-track interval graphJ iJ NP-c~mplete 

Proof. Suppose G is the graph obtained by deleting the edge v1 Vn from a triangle­
free 3-regular graph. U G has a Hamiltonian v 1 , Vn·path P, then deleting it leaves a 
1-fa.dor. We obtain a 2-track representation of G by representing Pin one track and 
the 1-factor G- E(P) in the other track. We construct a supergraph G' of G such 
that G' has a 2-track representation if and only if G has a Hamiltonian v 1 , Vn·path. 
We will construct G' by adding gadgets so that in every 2-track: representation of 
G', the induced subgraph G must be represented as described above. 

For each v E V(G), let M(v) be a copy of K,,3 ; these are vertex disjoint. Make 
v adjacent to one vertex of M(v). Let H,H' be two B.dditional copies of K,,3 . Add 
one vertex z adjacent to V( G) and to two vertices of degree 3 in each of H, H'. 
Finally, make v1 adjacent to one neighbor of z in H, and make Vn adjacent to one 
neighbor of z in H'. This completes the construction of G' from G, illustrated 
below. Observe that G' - z is triangle-free. The number of vertices and edges 
We have ended is linear in the number of vertices of G, so this is a polynomial 
transformation. 



If G has a Ha.miltonian v1 , Vn-path, then we can use it to form a 2-tra.ck repre­
sentation of G' as illustrated below. In particular, we may partition H and H' into 
two spanning paths that together have all the 3-valent vertices as endpoints, and 
then z can be given the desired neighbors using these paths as the caterpillars for 
Hand H'. 

21._ 
~ V1 Track 1 C 2 -

Track2~ 

z 

M(u)~ 
c==>--u-- M ( v) 

~--·~ 

M(u') ~ 
c=>--rf- M ( v') 

Conversely, suppose that G' has a 2-tra.clc representation f. The 2-tra..clc rep­
resentation of each induced subgraph isomorphic to K 4 ,3 expresses it as an edge­
disjoint union of two spanning caterpillars. The representation for each caterpillar . 
occupies a contiguous portion of its track, as indicated in the illustrations above by ... 
small ellipses. 

We let f( v) denote the union of the intervals for v in the two tracks, and 
f(S) = UvEsf(v) for S ~ V(G). When an interval for z overlaps an interval for ope 
of its neighbors x in H, it cannot intersect any other interval for H in that track, 
because z is not adjacent to any neighbor of x in H, and the caterpillar occupie! 
a. contiguous portion of the track. The same applies also for H', and z has four 
neighbors in H U H'. Hence in each track the interval for z contains the internl 
between f(H) and f(H'). 

Each v E V(G) is adjacent in G' to z and to a. non-neighbor of z (in M(v)). 
Furthermore, v has non-neighbors in H and H'. Hence the interval for v lha.! 

intersech f(z) is contained in f(z). Call this the "inside interval" for v, and call 



the interval for v that intersects an interval for a non-neighbor of z the "outside 
jnterval" for v. 

Since f(M(v)) occupies one interval in ea.ch track, the outside interval for v 
generates no additional edges of G' unless its neighbor in M( v) appears at an end of 
this interval forM( v ). Since M( v) has no other neighbors, we may assume that each 
outside interval appears in this way. Now each outside interval intersects at most 
one other outside interval and no inside intervals. Since each vertex of G has three 
neighbors in G U (HUH'), each inside interval must intersect intervals assigned to 
two vertices in G U (HUH'). Since G'- z is triangle-free, this implies that no inside 
interval is contained in other inside interval. Hence each inside interval intersects 
exll-Ctly two others, except that for its second "inside neighbor" the inside interval 
for v1 intersects f(H), and the inside interval for Vn intersects f(H'). Hence each 
outside interval intersects exactly one other outside interval. 

At this point, we have proved that every 2-tra.ck representation for G' has the 
properties illustrated above. The outside intervals form a 1-factor of G. The inside 
intervalE produce the remaining edges of G by forming a Hamiltonian path from v 1 

to Vn· Hence we can test whether G has a Hamiltonian v1, Vn-path by forming G' 
wd testing whether it has a 2-track inter~ representation. 0 

We remark that [12) also reduced recognition of d-interval graphs to recognition 
of d+ 1-interval graphs, thereby proving that recognition of d-interval graphs is NP­
complete for each fixed d at least 2. The corresponding reduction ford-track graphs 
does not seem as simple. We have not proved that recognition of d-track graphs is 
NP-hard for fixed d greater than 2, though we expect this to be true. 
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Remark added in proof 

The authors have learned that Theorem 1 was proved much earlier by Lowell Beineke~. 
using a somewhat different construction, in "Decompositions of complete graphs into 
forests," Magyar Tud. Al.:ad. Kt!lat.6 Int. Kozl. 9 (1904), 589-594 (1965). 




