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some properties of MNNPGs, w e  show that the only MNNPGs with neighborhood 
independence number one are the 3-sun and K. Also two further classes of 
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1. INTRODUCTION 

Given a graph G = (V, E )  and a vertex u E V, we denote by G ( u )  the subgraph of G induced 
by v and all its neighbors. A neighborhood cover is a set S of vertices such that every edge of 
G lies in at least one subgraph G(s )  for s E S. The neighborhood cover number of G ,  denoted 
by e N ( G ) ,  is the smallest size of a neighborhood cover of G. This notion was introduced in [6]. 
Two edges of G are said to be neighborhood-independent if there is no vertex u of G such that 
the two edges both lie in G(u) .  The neighborhood independence number, denoted by c r ~ ( G ) ,  
is the largest number of pairwise neighborhood-independent edges. Clearly ( Y N  (G)  5 e N ( G )  
holds for every graph G. A graph is called neighborhood-perfect if ~ N ( G ’ )  = eN(G’)  holds 
for every induced subgraph G’ of G. This notion introduced in [ S ]  is strongly related to C. 
Berge’s perfectness concept. First we summarize some observations and results in [S] showing 
the nature of this relationship. 

A trampoline qf order k is a graph with 2k vertices a l ,  . . . , ak, bl, . . . , bk such that for every 
1 5 i 5 k, { U ~ , U ~ + ~ }  is an edge and bi has just two neighbors: a; and ai+1(ak.+1 = a l ) .  The 
trampoline is complete if a1 , , ak induces a k-clique. Complete trampolines are simply called 
here suns. A complete trampoline of order k is called a k-sun and is denoted by sk. Let Pk and 
Ck denote the induced path and cycle on k vertices. Bipartite graphs and also the class of graphs 
containing no P4 and no C4 as induced subgraph are classes of neighborhood-perfect graphs. 

A chordal graph (a graph which is Ck-free for every k 2 4) is neighborhood-perfect iff it 
does not contain an odd trampoline as induced subgraph (Theorem 4 in [S]). 

The complement of a graph G is denoted by c; Ck and c, is usually called a hole 
and antihole, respectively. Since odd holes and odd antiholes are not neighborhood-perfect, 
neighborhood-perfect graphs do not contain an odd hole or an odd antihole as induced subgraph. 
A graph is said to be perfect if for every induced subgraph the maximum size of a clique is 
equal to the chromatic number. The well-known Strong Perfect Graph Conjecture of C. Berge 
states that a graph is perfect iff it does not contain an odd hole or an odd antihole as induced 
subgraph. Graphs without odd holes and antiholes as induced subgraph are nowadays called 
Berge gruphs. Consequently, neighborhood-perfect graphs are Berge graphs and the Strong 
Perfect Graph Conjecture would imply that they are also perfect graphs. The question raised 
in [ 5 ]  whether neighborhood-perfect graphs are perfect is still open. 

It is worth noting that the class of neighborhood-perfect graphs is not contained in known 
large classes of perfect graphs. Examples might be obtained using the result (Theorem 4.1 in 
Section 4) that the line graph L(G) of any bipartite graph G is neighborhood-perfect. Let K m , n  
denote the complete m by n bipartite graph. Then, L ( K ~ , J )  is not strongly perfect, L(K3,3) 
is not quasi-parity and does not belong to the class BIP* (for the definition of these perfect 
classes see [ 11). Bipartite graphs such that their line graphs are not preperfect or not locally 
perfect are given in [4] and [7]. 

Related to the question whether neighborhood-perfect graphs are perfect, we proposed their 
characterization in terms of minimal forbidden induced subgraphs. We call a graph G minimal 
non-neiRhborhood-perfect graph, abbreviated MNNPG, if a~ (G)  < eN (G) ,  but every proper 
induced subgraph G’ of G is neighborhood-perfect, i.e., aN(G’) = e,,,(G’) holds. 

For every odd k 2 5 ,  Ck is an MNNPG, since it is non-neighborhood-perfect, and its one- 
vertex deleted subgraph, Pk-1, is neighborhood-perfect, since it is bipartite. It is easy to check 
that ck, is an MNNPG for k = 7 and 8. The complement of three independent edges, m, 
is called the octuhedron graph. The octahedron is an MNNPG with ( Y N  = 1 and eN = 2. 
For every k 2 9, is non-neighborhood-perfect, however not minimal, since it contains the 
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FIGURE 1 

octahedron. One may check easily that among non-neighborhood-perfect graphs in [5] odd 
suns are MNNPGs. The 3-sun is an MNNPG with aN = 1 and eN = 2. In Section 3 we 
show that the 3-sun and the octahedron are the only MNNPGs with ( Y N  = 1 (Theorem 3.5). 
Observe that the octahedron graph and the 3-sun are examples of non-neighborhood-perfect 
graphs belonging to large classes of perfect graphs. Indeed, the octahedron is strongly perfect, 
quasi-parity and locally perfect; the 3-sun is BIP* and preperfect (c.f. [ l ] ,  [4], and 171). 

In addition to Cg, C,, Cg, and Sg, we give further examples of MNNPGs with LYN = 2 
and e N  = 3 in Figure 1 ((d) is the disjoint union of the cliques K4 and K5 together with an 
alternating 9-path between them). 

We know several other MNNPGs with CYN = 2, although we are far from their characteri- 
zation. A challenging open problem in this direction, whether e n ( G )  = ~ N ( G )  + 1 holds or 
not for every minimal non-nieghborhood-perfect graph G. 

The paper is organized as follows. A reduction operation (edge contraction) preserving the 
property of being an MNNPG is introduced in Section 2. In Section 3 we show that there 
are exactly two MNNPGs satisfying (YN = 1. Finally, in Sections 4 and 5 two new classes of 
neighborhood-perfect graphs are presented: the line graphs of bipartite graphs (Theorem 4. I ) ,  
and the class of P4- and octahedron-free graphs (Theorem 5.1). 

_ _  

2. CONTRACTION MINIMAL GRAPHS 

We present an operation based on edge contraction, which, among others, preserves the property 
of being an MNNPG. Let G be a graph and let xi, y~ be two adjacent vertices of G such that 
&(XI) = d ~ ( y 1 )  = 2. Furthermore, let x I  have another neighbor x and let y 1  have another 
neighbor y such that x and y are distinct vertices of G.  We denote by P the path (x, X I ,  y l ,  y )  
of G.  In the next two propositions we show how to get a graph G’ from G by contracting 
edges of C such that 

aN(G’) = a N ( G )  - 1 and eN(G’) = e N ( G )  - 1 (*) 
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are satisfied. 

Proposition 2.1. 
conditions, given above. Furthermore, let {x,y} E E(G).  We define G’ to be the graph with 

Let G be a graph and let x, y ,  x1, y1 be vertices of G fulfilling the 

and 

Then G’ satisfies (*). 

ProoJ: Let M c E ( G )  be a maximum set of pairwise neighborhood-independent edges of 
G .  If M contains at most one edge of P ,  then obviously ~ N ( G ’ )  2 ~ N ( G )  - 1. Otherwise, 
{x, XI}  and { y1, y }  both belong to M ,  hence ( M  - { {x ,  X I } ,  { y ~ ,  y } )  U {{x, z } }  is a set of pairwise 
neighborhood-independent edges of G’, again showing ~ N ( G ‘ )  

On the other hand, let M’ be a maximum set of pairwise neighborhood-independent edges 
of G’. Suppose, neither { x ,  z }  nor { y ,  z }  belong to M’, then M ’  U { { X I  , y l }}  is a set of pairwise 
neighborhood-independent edges of G .  Otherwise, w.1.o.g. we may assume { x , z }  E M’. 
Then (M’ - { { x , ~ } } )  U { { x , x ~ } , { y ~ , y } }  is a set of pairwise neighborhood-independent edges 
of G, showing that ~ N ( G ’ )  + 1 5 ~ N ( G ) .  Consequently, altogether we obtain aiy(G’) = 

To verify that the neighborhood covering number also decreases by one, let S c V ( G )  be a 
minimum neighborhood cover of G.  Clearly, S must contain either xl  or y I .  W.l.o.g., we may 
assume S fl { x l , y l }  = {XI}, hence y belongs to S. Then the set S - {XI} is a neighborhood 
cover of G’, showing that enr(G’) 5 e N ( G )  - 1. 

On the other hand, let S’ be a minimum neighborhood cover of G’, thus S’ n {x, y ,  z }  # 0. 
If z E S’ then (S’ - { z } )  U { x l , y }  is a neighborhood cover of G.  Otherwise, we may assume 
x E S’, thus S’ U { y ~ }  is a neighborhood cover of G, both showing e N ( G )  i eN(G’)  + 1 .  
Altogether, we obtain eN(G’)  = e N ( G )  - 1. 

Proposition 2.2. Let G be a graph and let x, y ,  X I ,  y~ be vertices of G fulfilling the 
conditions, given above . Furthermore, let {x, y }  @ E ( G )  and there exists no common neighbor 
w E V ( G )  of x and y .  We define G‘ to be the graph with 

~ N ( G )  - 1. 

CYN(G) - 1. 

1 

and 

Then G’ satisfies (*). 

Let M C_ E(G)  be a maximum set of pairwise neighborhood-independent edges of 
G. If M f l  ( E ( G )  - ( E ( G )  - E(G’)) contains at most one edge, then M n E(G’) is a set of 
pairwise neighborhood-independent edges of G’ of size at least ~ N ( G )  - 1. Otherwise, both 
{x,xI} and { y ~ , y }  belong to M ,  thus (M - { { x , x l } , { y l , y } } )  U {{x,y}} is a set of pairwise 
neighborhood-independent edges of C’, also showing aiy(G’) 2 a”(G) - 1. 

ProoJ 



MINIMAL NON-NEIGHBORHOOD-PERFECT GRAPHS 59 

On the other hand, let M’ be a maximum set of pairwise neighborhood-independent 
edges of G’. If { x , y }  E M’, then (M’ - {{x,~}}) U { { x , x ~ } , { y l , y } }  is a set of pairwise 
neighborhood-independent edges of G. Otherwise, M’ U {{XI, y l } }  is a set of pairwise neighbor- 
hood-independent edges of G, showing aN(G) 2 aN(G’) + 1. Consequently, aN(G’) = 

( Y N ( G )  - 1. 
To verify that the neighborhood covering number also decreases by one, let S V ( G )  be a 

minimum neighborhood cover of G. W.1.o.g. we may assume S f’ { x l , y l }  = { X I }  and y E S. 
Then, S - {XI} is a neighborhood cover of G’, showing eN(G’) 5 &(G) - 1. 

V(G’) be a minimum neighborhood cover of G’. Since there is 
no w E V(G’) which is a common neighbor of x and y ,  it follows that S’ f l  { x , y }  # 0, say 
x E S’. Then S’ U { y l }  is a neighborhood cover of G, showing that eN(G)  I eN(G’)  + 1. 
Thus, eN(G)  = eN(G’ )  + 1 follows. I 

Before we give the consequence of the propositions to MNNPGs, we mention the case of 
two adjacent vertices x l , y l  of degree 2, which have a common neighbor in G, say x. Then x 
is cut vertex of G (except when G = K3) and it is not hard to see that ~ N ( G  - y I )  = aN(G) 
and eN(G - y l )  = &(G) hold. Consequently, such a graph G cannot be an MNNPG. It is 
worth noting that a similar easy argument shows that an MNNPG contains no adjacent vertices 
with the same set of neighbors. 

Now, let G be an graph fulfilling the conditions of Proposition 2.1 or Proposition 2.2. It is 
a matter of routine to check that after the corresponding contraction of G we obtain a graph 
G’ which is also an MNNPG. Therefore, an MNNPG is said to be contraction minimal if it 
cannot be reduced by one of the contractions defined in Proposition 2.1 or Proposition 2.2. An 
easy consequence is the following 

Theorem 2.3. 
no adjacent vertices of degree two. 

On the other hand, let S’ 

A contraction minimal non-neighborhood-perfect graph different from C5 has 

This justifies looking for a list of contraction minimal MNNPGs to characterize 
neighborhood-perfect graphs instead of a list of MNNPGs, i.e., minimal forbidden induced 
subgraphs. The question whether the “extension”, i.e., the inverse of a contraction, of an 
MNNPG is again an MNNPG remains open so far. 

3. MINIMAL NON-NEIGHBORHOOD-PERFECT GRAPHS WITH 
NEIGHBORHOOD INDEPENDENCE NUMBER ONE 

We are going to show that there are exactly two MNNPGs with ~ N ( G )  = 1, namely the 3-sun, 
and K ,  the octahedron graph. First, we need some preliminary results. The first lemma is a 
corollary of a theorem of Cozzens and Kelleher [3]. 

Proposition 3.1 [3].  If a graph H has at least 2 vertices, is connected and does not contain 
Ps,  Cs and the complement of the 3-sun as induced subgraph, then H has a dominating edge. 

A set D C V ( G )  is called a dominating set of G if every vertex of V ( G )  - D is adjacent 
to some element of D .  In the case of D = {u,  u }  E E(G) ,  we say that {u ,  u }  is a dominating 
edge of G,;  if D = {x} then x is called a star vertex of G. We say that a connected graph 
has diameter d if between any pair of its vertices there is a path containing at most d edges. 
As usual, K ,  denotes the p-clique, a complete graph with p vertices, and qK, is the union 
of q disjoint copies of K , .  
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Lemma 3.2. 
subgraph, then G has a star vertex. 

Since G has diameter 2, for any two non-adjacent vertices u,  u of G there is a 
vertex w adjacent to both, thus no { u ,  u }  E E ( c )  can be a dominating edge of the complement 
G. Consequently, c has no dominating edge. Now, we are going to apply Proposition 3.1 for 
H = C. By our first observation and the assumptions on G, we have that H has no dominating 
edge, furthermore, H does not contain any of 2K2, Cs and the complement of the 3-sun as 
an induced subgraph. Thus by Proposition 3.1, H cannot be connected. On the other hand, H 
cannot have two non-trivial connected components since it does not contain 2K2. Consequently, 
H has an isolated vertex, implying that G has a star vertex. 

Now, let G = ( V , E )  be a graph, S and T disjoint subsets of V. We denote by [S, T] the 
bipartite graph with color classes S ,  T and edge set E ( S ,  T )  := {{s, t }  E E ( G )  : s E S ,  t E T}. 
Let G = (X, Y , E )  be a bipartite graph. Then G = (X, Y{{x , y }  : x E X , y  E Y , { x , y }  @ 
E(G)})  is called the bipartite complement of G .  

Lemma 3.3. Let G = ( V , E )  be a graph, let S and T be disjoint subsets of V such that 
the bipartite complement of [S, T ]  has no 3K2 as induced subgraph. If T dominates S in the 
bipartite complement of [S, TI, then there are at most two vertices of T dominating S in [S, TI. 

We consider the bipartite graph [ S , T ] .  Let R(t )  be the open neighborhood of 
t E T in [ S , T ] .  Since T dominates S in [ S , T ] ,  we have U { f i ( t )  : t E T} = S. Let T’ = 

{ t , ,  t 2 ,  . . . , t k }  be a minimal set with the property that U{R(t) : t E T’} = S. We are going 
to show that k = IT’( 5 2. By the minimality of T’, for each t ,  E T’ there exists s, E S 
such that s, E iff j = i(1 9 j 9 k ) .  Then ( $ 1 ,  SI,. . . , SX, / I ,  t 2 ,  , t k }  induces a kK2 
subgraph of [ S , T ] ,  thus, by the assumption, k 5 2 follows. 

Before presenting one of the major theorems of this paper, it is worth noting the following 
relation of our problem to domination. 

Proposition 3.4. 

If G has diameter 2 and contains neither of C4, C5 and the 3-sun as an induced 

Proof. 

- 

I 

N 

N 

Proof. 
N N 

N 

I 

The following two properties are equivalent: 

(i) G satisfies (YN(G) = 1 and e,(G) > 1 ;  
(ii) c has no isolated vertex and no dominating set inducing 2K2, P4, or C4. 

Proof. Clearly, eN(G) > 1 implies that G has no star vertex, thus G has no isolated vertex. 
If c has a dominating set D = {al,a2, bl ,  b2} inducing 2K2, P4, or C4 with { a l , ~ }  @ E ( c )  
and {bl ,  b2) @ E(??), then { a , ,  a*} and {bl, bz} are neighborhood-independent edges of G, 
contradicting (YN(G) = 1. On the other hand, two neighborhood-independent edges {a1 , az} 
and {bl,  bz} of G induce a 2K2, P4, or C4 in G and c, respectively, and there is no vertex 
adjacent to all the four endpoints of the two edges, consequently, { a ] ,  a2, bl,  b2} is a dominating 
set in C. I 

Now, we are going to show that there are exactly two MNNPGs with neighborhood 
independence number one. 

Theorem 3.5. If G is a minimal non-neighborhood-perfect graph and a N ( G )  = 1, then G is 
the 3-sun or the octahedron graph. 

Let G be an MNNPG with (YN(G)  = 1 different from the 3-sun and from the 
octahedron. Then G cannot have an induced subgraph G‘ which is an MNNPG with &,(GI) > 
1. In particular, G is a graph without C5 and G. Clearly, since G is an MNNPG, it is also a 
graph containing neither a 3-sun nor an octahedron. 

Proof. 
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For x E V ( G ) ,  we denote by N ( x )  the (open) neighborhood of x, i.e., the set of all vertices 
of G adjacent to x, and for a set A C V ( G ) ,  GA denotes the subgraph of G induced by A .  
Let x E V ( G )  be a vertex of maximum degree in C and select a vertex y E V ( G )  - N ( x )  
different from x. Since &(G)  > 1, G has no star vertex and such a vertex y exists. Now 
we set A := N ( x )  n N ( y ) .  A cannot be the empty set. Otherwise, an arbitrary edge incident 
to x and an arbitrary edge incident to y would be neighborhood-independent, contradicting 
“ ( G )  = I .  (Note that every MNNPG is connected.) 

Claim 1. GA has diameter at most two. 

If u,  u E V ( G A )  and { u , u }  @ E ( G ) ,  then ~ N ( G )  = 1 implies that the edges { x , u )  and 
{ y ,  u }  lie in one subgraph G ( w )  and such a vertex w is necessarily a vertex of A .  

Now GA does not contain a Cs or a 3-sun as induced subgraph, by the choice of G. 
Furthermore, GA does not contain a as induced subgraph, since otherwise these vertices 
together with x and y would induce an octahedron in G.  Thus, Claim 1 and Lemma 3.2 imply 
that GA has a star vertex. 

Let S be the set of all star vertices in GA, clearly, S is a clique in G.  (If GA is a single 
vertex, then S = A , )  We set T := N ( x )  - A .  T is not empty, since otherwise a star vertex 
of GA would have degree larger than x, contradicting the choice of x. Furthermore, no vertex 
s E S is adjacent to all vertices of T ,  for otherwise such a vertex would have larger degree 
in G than x, contradicting the choice of x. Thus, T dominates S in the bipartite complement 
of [S,  TI. 

Claim 2. 
corresponding vertices SI, s2 E S and t l ,  t2 E T induce a C d  in G .  

I 

If the bipartite graph [S, T ]  contains a 2K2 as induced subgraph, then the 

Since S is a clique, { s I , s ~ }  E E ( G )  holds. If { t l , t2}  @ E(G) ,  then the vertices 
, T I ,  <s2, t l ,  t2, x, y would induce a 3-sun in G.  Consequently, we have { t l , t z }  E E ( G ) ,  
thus {s l , s2 , t l , t2 )  induces a Cd in G .  
Claim 3. Let the vertices s I ,  s2 E S and tl, t2 E T induce a Cd in [S, T ]  such that {s;, t i }  @ 
E ( G )  for i = 1, 2. Then w E N (  y)  - N ( x )  implies {w, r l }  @ E ( G )  or {w, r 2 }  @ E(G).  

Assume {w, t l }  E E ( G )  and {w , t2 )  E E ( G ) .  If {w,si} @ E ( G )  for some i E {1,2} then 
{ x , y , w , s i , t i }  induces a Cs. Otherwise, {w,s l}  E E ( G )  and {w,s2}  E E ( G )  implies that 
{x, w, S I ,  s2, t l ,  t2) induces an octahedron. Both contradict the choice of G.  

Claim 4. There are at most two vertices t l ,  t2 E T ,  dominating S in the bipartite complement 
of [S, TI.  

Suppose not. T dominates S in the bipartite complement of [S, TI.  Thus by Lemma 3.3, 
[ S , T ]  has a 3K2 as induced subgraph. The fact that S is a clique and Claim 2 imply that the 
vertices of such a 3K2 in [ S ,  T ]  induce a 

Claim 5. 

I 

I 

N 

N 

in G ,  contradicting the choice of G .  I 
A - S # 0. 

Assume on the contrary that A = S. According to Claim 4 we consider two cases. 

Case 1. There are two vertices t l ,  t2 E T dominating S in the bipartite complement of 
[ :S ,T]  and every vertex of T has at least one neighbor in S. 

With the notation of the proof of Lemma 3.3, we have that f l ( t l )  and N ( t 2 )  cover the 
set S, but neither of the two sets is equal to S itself. We select SI E N(t1)  - N(t2)  and 
s2 E N ( t 2 )  - N ( t l ) .  Consequently, {sI ,  s2 ,  tl, 12) induces a 2K2 in [S ,  TI.  Hence, {SI, s2, t l ,  t 2 )  

induces a Cq in G ,  by Claim 2, furthermore, {sl, t ~ }  @ E ( C )  and (s2, t 2 )  @ E ( G )  hold. The 
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edges { t l , t2}  and {sl,y} have to lie in some G ( w ) .  By Claim 3, w has to be adjacent to 
x, thus w E A holds. On the other hand, every vertex of A = S is not adjacent to tl 

or t2. Consequently, w cannot be in A,  thus the two edges are neighborhood-independent, 
contradicting the choice of G .  

Case 2. There is one vertex t E T which is not adjacent to all the vertices of S. 

Let s be an arbitrary vertex of S. The edges { t , x }  and {s,y} have to lie in some 
G ( w ) .  Such a vertex w has to be an element of A, but no vertex of A = S is adjacent 
to t .  Consequently, w cannot be in A,  thus the two edges are neighborhood-independent, 
contradicting the choice of G .  

Claim 6. 
I 

The diameter of GA-S is two. 

By Claim 4, at most two vertices of T dominate S in the bipartite complement of [S, TI.  

Case 1. There are two vertices t l ,  t 2  E T dominating S in the bipartite complement of 
[ S , T ]  and every vertex of T has at least one neighbor in S. 

Define SI, s2 as in Case 1 of the proof of Claim 5.  We set B := {u  E A - S : {u, t l}  E 
E(G),{u, t2}  E E(G)}.  Consider the edges { t l , t z }  and {y,sl}. ( Y N ( G )  = 1 implies, that there 
is a vertex w such that both edges lie in G ( w ) .  w @ N ( x )  is impossible, since Claim 3 would 
imply {w, t l }  @ E ( G )  or { w ,  t 2 }  @ E(G) .  Hence, we have w E A and by the choice of tl  and 
t2 no vertex of S is adjacent to both of them. Thus, t l  and t2 have a common neighbor in 
A - S, i.e., B # 0. Furthermore, B is a clique, since { h l ,  b2} @ E ( G )  with bl, b2 E B would 
result in an octahedron induced by {bl, bz, SI, s 2 ,  t i ,  t 2 } .  

Since A - S is non-empty by Claim 5, and by the definition of S the graph GA-S is not a 
clique, it is enough to show that for every pair u, u of non-adjacent vertices in A - S there 
is a common neighbor w E A - S. Since B is a clique we remain with two subcases. 

Subcase 1.1. 
The edges { t l , t 2 }  and { u , y }  must lie in some subgraph G ( w ) .  By Claim 3 ,  { w , x }  @ E ( G )  

is impossible. Hence, w is an element of B,  i.e., w is a common neighbor of u and u in 

u E B and u @ B. 

B C A - S .  
Subcase 1.2. 
Consider the edges { t i ,  t 2 }  and { y ,  u} .  Now a N ( G )  = 1 implies that there is a vertex w 1  

such that both edges lie in G(w1). Similar to subcase 1.1, wl has to be an element of B and we 
have { W I ,  u }  E E(G) .  Analogously, the neighborhood-independence of the edges { t l ,  t 2 }  and 
{ y,  u }  implies the existence of a vertex w2 E B such that {w2, u }  E E ( G )  holds. Since B is 
a clique, {w1,w2} E E ( G )  holds. If { w I , ~ }  E E ( G )  or {w~, u }  E E ( G )  would hold, then we 
had a common neighbor of u and u in A - S. Thus, let us assume that this is not the case. 
Consequently, {u,  u ,  w1, w2} induces a P4 in G .  

The condition u, u @ B implies that both are not adjacent to at least one of the vertices t l  and 
t 2 .  If {u ,  t l }  @ E ( G )  and { u ,  t l }  @ E ( G )  for i E { I ,  2) then the vertices u,  u ,  W I ,  w2, t , ,  and s,, 
with j E {1,2} and j # i, induce a 3-sun in G. Finally, by symmetry, we remain with {u,  t l }  @ 
E ( G )  and { u ,  t 2 }  @ E(G) ,  but {u ,  t 2 }  E E ( G )  and { u ,  t l }  E E(G) .  Now, {u ,  u ,  y,  t l ,  t 2 )  induces 
a C5 in G .  

Since, all of these consequences contradict the choice of G ,  the diameter of GA-S is two 
under the assumptions of case 1.  

Case 2. 
We set B := {u  E A - S : { u ,  t }  E E(G)}.  Then B cannot be empty, since the edges {t ,  x} 

and { y ,  s}, for some s E S ,  have to lie in one G ( w ) ,  and such a vertex w has to be an element of 

u @ B and u @ B. 

There is one vertex t E T which is non-adjacent to all the vertices of S. 
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B.  Furthermore, every vertex u E A - (S U B )  has at least one neighbor z E B. To see this, 
consider the edges {f, x} and { y ,  u}. A vertex z with G(z )  containing both edges is a neighbor 
of u in B. Now, we have to show that every pair of non-adjacent vertices u ,  u E A - S has 
a common neighbor in A - S. 

Subcase 2.1. u E B and u E B. 
The edges {f, u }  and { y ,  u }  require the existence of a vertex w such that the subgraph G ( w )  

contains both edges. Suppose, w @ A. Hence, {w,x} @ E ( C )  and { w , x ,  s, t ,  u,  u }  induces an 
octahedron in G ,  contradicting the choice of G. Therefore, w belongs to B ,  since no vertex of 
S is adjacent to the vertex t ,  and w is a common neighbor of u and u .  

Subcase 2.2. 
The edges { t ,  u }  and { y ,  u }  require the existence of a vertex w such that the subgraph G ( w )  

contains both edges. If w E N ( x ) ,  then w E B ,  and we have a common neighbor of u and u 
in B C A - S. Thus, we may assume that w E N(p) - N ( x ) .  Hence, {s, w }  E E(G) for any 
s E S. Otherwise, { w ,  t , x ,  s , y }  would induce a Cs in G. 

As mentioned above, u has a neighbor z E B. We may assume { z ,  u }  @ E ( G ) ,  for otherwise 
z is already a common neighbor of u and u in A - S. If { z ,  w} E E(G) ,  then {w,x, u,  z ,  s, t }  
induces an octahedron in G. If { z ,  w }  @ E ( C ) ,  then { w , x , y ,  t ,  u ,  u,  z }  induces a G. Either 
contradicts the minimality of G.  Consequently, u and u always have a common neighbor in 
B C A - S, if u E B and u @ B hold. 

u E B and u @ B. 

Subcase 2.3. 
Let w1 E B be a neighbor of u E A - (S U B). We may assume { w l ,  u }  @ E(G) ,  otherwise 

w1 is already the common neighbor we want to find. By Subcase 2.2, u and W I  have a common 
neighbor in B ,  say w2 E B. w2 is a common neighbor of u and u ,  if {wz, u }  E E(G) .  On the 
other hand, {w2, u }  @ E ( G )  is impossible, since {s, t ,  u,  u ,  W I ,  w ~ }  would induce a 3-sun. 

Now, GAPS has diameter two, has neither a C5 nor a 3-sun, and does not have a z, since 
its vertices together with x and y would induce an octahedron in G.  Therefore, Lemma 3.2 
implies that GA-s has a star vertex, which would be a star vertex of GA, too. This contradicts 
the definition of S, and completes the proof of the theorem. 

u @ B and u @ B. 

I 

I 

4. NEIGHBORHOOD-PERFECT LINE-GRAPHS 

The line graph of a graph G, denoted by L(G) ,  is defined on E ( G )  as its vertex set, and 
for e ,  f E E(G) ,  { e , f }  is an edge of L ( G )  iff e n f # 0. In this section we prove that the 
line graphs of bipartite graphs (which form a well-known large class of perfect graphs) are 
contained in the class of neighborhood-perfect graphs. 

Theorem 4.1. The line-graph of any bipartite graph is neighborhood-perfect. 

Proof. Let B be a bipartite graph and C = L(B) .  We will show that G is neighborhood- 
perfect by induction on the number of its vertices. The fact is trivial if G has one vertex. Now 
assume that G has at least two vertices and that the theorem holds for any proper induced 
subgraph of G. Since e N  and aN are additive functions over the collection of all components 
of a graph, we may assume that B is connected. For every vertex x of B we let C, denote 
the clique of G consisting of all the edges incident to x in B. Remark that every edge e of 
G is induced in exactly one such set, which we denote C ( e ) ;  moreover e is induced in the 
neighborhood graph G ( y ) ,  for some y E V ( C ) ,  iff y E C(e) .  Also observe that C, C, if 
and only if x is a vertex of degree one in B. 

To calculate &(G) and (YN(C) ,  we distinguish between two cases. 
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Case 1. 
Note that under this assumption every clique C,(x E V ( B ) )  has cardinality at least two. Let 

us consider a neighborhood cover S of G .  By the preceding remark this means that S must 
intersect every clique C, of G. In B this translates to the fact that S is a set of edges incident 
to every vertex, i.e., S is an edge-cover of B. It follows that e N ( G )  is equal to the minimum 
size of an edge-cover of B ,  denoted by e ( B ) .  

Now let M be a set of neighborhood-independent edges of G .  We define a set XM of vertices 
of B by the property that x E X M  iff some element of M lies in C,. It is a routine matter to 
check that X M  is a stable set of B and IXMl = [MI .  Conversely, let X be any stable set of B. 
By the assumption of this case, for each x E X the clique C, has cardinality at least two, and 
we can arbitrarily choose an edge e, induced by C, in G .  It is easy to check that {e,lx E X} 
is a set of cardinality 1x1 of neighborhood-independent edges of G .  It follows that ~ N ( G )  is 
equal to the maximum size of an independent set of vertices of B ,  denoted a(B).  Then, by a 
famous theorem of Konig, e ( B )  = a ( B ) ,  so e N ( G )  = e ( B )  = ~ N ( G )  follows. 

B has no vertex of degree 1 .  

Case 2. 
Let x be a vertex of degree one in B and y its neighbor. Let e = {x,y} E E ( B )  ( e  is a 

vertex of G). Since B has at least two edges and is connected, we may assume that y has 
other neighbors than x. 

B has a vertex of degree 1. 

Subcase 2.1. 
Let z be the neighbor of y in B - x, and let f = { y ,  z }  E E(B) .  If B has no further vertex the 

proof is trivial. So let X I ,  ,xk(k 2 1) be the neighbors of z in B - y .  Consider the bipartite 
graph B' obtained from B by removing x, y ,  z and adding new vertices ZI, . . . , Z k  and k new 
edges ~1x1,. . . , zkxk. Notice that B' has two less edges than B. By the induction hypothesis the 
line-graph L(B' )  is neighborhood-perfect and it possesses a set M of neighborhood-independent 
edges and a neighborhood cover S with IMI = IS(. Now it is a routine matter to check that 
M U {e,f} is a set of neighborhood-independent edges and that S U {f} is a neighborhood 
cover of G.  Hence e N ( G )  = e N ( L ( B ' ) )  + 1 = a N ( L ( B ' ) )  + 1 = aN(G). 

y has exactly one neighbor in B - x. 

Subcase 2.2. 
Consider the graph G - e .  By the induction hypothesis this graph possesses a set M 

of neighborhood-independent edges and a neighborhood cover S with IMI = ISI. By the 
assumption of this subcase, the clique C,. - { e }  in G - e has cardinality at least two, and 
so it induces at least one edge. By a remark above this entails that S f l  (C, - { e } )  # 0. 
Notice that any vertex in S fl (C, - { e } )  will also cover the edges incident to e in G, 
because e E C,.. Consequently S 1s a neighborhood cover of G .  Moreover M is a set of 
neighborhood-independent edges of G. Hence e N ( G )  5 IS1 = ]MI I ~ N ( G )  and equality 
follows. I 
Corollary 4.2. 

y has several neighbors in B - x. 

The line-graph of any bipartite multigraph is neighborhood-perfect. 

Proof Let B be a connected bipartite multigraph, G its line-graph and B* the simple 
bipartite graph underlying B. If F is a set of parallel edges of B (i.e., edges having the same 
two extremities) then F induces a clique and a homogeneous set in G.  On the basis of this 
observation is it is a routine task to check that e N ( G )  = e N ( L ( B * ) )  and a N ( G )  = aN(L(B*)) ,  
except if B* consists of one single edge (in which case G is a clique, hence trivially 
neighborhood-perfect). Now the desired conclusion follows from the preceeding theorem. I 

The preceding result cannot be extended to the class of all line-graphs-consider 
L(Cs)-even if perfection is added as a condition: the line-graph of K4 is perfect but 
not neighborhood-perfect (being isomorphic to the octahedron graph). Hence not all K 1 ,  3 -free 
perfect graphs are neighborhood-perfect. Similarly, line-graphs of simple bipartite graphs are 
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diamond-free, but the preceding theorem cannot be extended to the class of all diamond- 
free perfect graphs. For example, consider the graph consisting of a cycle on nine vertices 
ug, . . . , ug with chords uou3, u3u6, u6ug (since it is contractible to the 3-sun, this graph is 
not neighborhood-perfect). 

5. NEIGHBORHOOD-PERFECT COGRAPHS 

Here we characterize neighborhood-perfect graphs in the class of P4-free graphs, also called 
cogmphs [2]. In the proof of the next theorem, we will use the following fact due to 
Seinsche([8]): For any P4-free graph G having at least two vertices, either G or c is 
disconnected. 

Theorem 5.1. 
an induced subgraph. 

A cograph is neighborhood-perfect if and only if it does not contain as 

Proof. Obviously, if G is neighborhood-perfect it cannot contain the octahedron graph, 
3 K2, because it is a (minimal) non-neighborhood-perfect graph. We prove the converse part of 
the theorem by induction on the order n of the cograph G .  The proof is trivial for n 5 4. Now 
suppose that n 3 5 and that the result holds for every cograph with at most four vertices. If G is 
disconnected then it suffices to use induction, and the fact that phi and LYN are additive functions 
over the collection of all components of a graph, to obtain e N ( G )  = CYN(G) .  So we may now 
assume that G is connected. It follows from Seinsche's result that c is disconnected, with 

, G,,( p 2 2) ,  such that each Gi either has just one vertex or is disconnected. 
It must be that at least one of the G;'s has just one vertex, for otherwise 

we could take a pair of non-adjacent vertices in each of G I ,  Gl,  G3 and find that these six 
vertices induce an octahedron in G .  So assume G3 has just one vertex x. Since x is a star 
vertex of G ,  e N ( G )  = CYN(G)  = 1 follows. 

Suppose p = 2. Let A ,  B be the vcrtex sets of G I ,  Gl respectively. If either A or B is of 
cardinality one then G has a star vertex and we can conclude as above. So we may assume 
that both A and B have several vertices, and hence G I  and G2 are both disconnected. Let 
A l , .  . . ,Ah be the vertex sets of the connected components of G I ,  and B I , .  . . , Bk those of 
G 2 ,  with k 2 h 2 2. Observe that every GA must be C4-free, for otherwise the vertices 
of a C4 in Ai together with one vertex from B I  and one vertex from B2 would induce an 
octahedron. It is not difficult to prove that any connected C4-free and P4-free graph has a star 
vertex; so each GA, has a star vertex a; .  Pick one vertex b; arbitrarily in Bi for i = 1 
Now letting S = {al ,  , a h }  and M = { a l ,  b l , .  . . , a h b h } ,  it is a routine matter to che 
S is a neighborhood cover and M is a set of neighborhood-independent edges of G .  So 
e N ( G )  = a N ( G )  = h follows. I 

Implicit in the proof of the preceding theorem is an algorithm that finds a neighborhood 
cover and a set of neighborhood-independent edges of the same size in any octohedron-free 
cograph. Using the cotree decomposition of cographs, which, as proved in [2], can be found 
in O((E(G)I )  time, it is not difficult to verify that the algorithm can be implemented to run 
with the same linear-time complexity. 

~ 

- 
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