JOURNAL OF COMBINATORIAL THEORY, Series B 64, 108-118 (1995)

Linear Sets with Five Distinct Differences
among Any Four Elements*

ANDRAS GYARFAS

Computer and Automation Research Institute, Hungarian Acadenmy of Sciences,
H-1111 Budapest XI, Kende u. 13-17, Hungary

AND

JENG LEHEL?

University of Louisville, Department of Mathematics,
Louisville, Kentucky 40292

Received December 3, 1993

As a generalization of the concept of Sidon sets, a set of real numbers is called
a {4, 5)-set if every four-element subset determines at least five distinct differences.
Let g(n) be the largest number such that any n-element (4, 5)-set contains a
g(n)-element Sidon set (i.e., a subset of g{») elements with distinct differences). It
is shown that (1/2 + &) n < g(n) < 3n/5 + 1, where ¢ is a positive constant. The main
result is the lower bound whose proof is based on a Turan-type theorem obtained
for sparse 3-uniform hypergraphs associated with (4, 5)-sets. i 1995 Academic Press, Inc.

I. INTRODUCTION

A set {r,, ry, .. r,} of real numbers (or positive integers) is called here
a Sidon set (usually called a B,-sequence) if the sums r,+r;, 1 <i<j<n,
are all distinct (cf. [HR, ET, and SO]). Equivalently, in a Sidon set there
are no equal differences between its elements. Erdés and Sés introduced
the following generalization of Sidon sets. A set of real numbers is called
{ p, g)-set if every p-element subset determines at least ¢ distinct differences.
(Note that Sidon sets are equivalent to (4, 6)-sets.) They observed that any
(4, 5)-set of n elements contains a cn-element Sidon set and asked about the
maximum of c.
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Let g(n) be the largest number such that any (4, 5)-set with » elements
contains a Sidon set of g(n) elements. In Section2 we show that
(n+1)/2 < g(n)<3n/5+ 1 (Corollaries 2.2 and 2.5). Our main result is that
g(n)=(1/2+¢€)n, where ¢ is a constant (Corollary 3.3). The proof, in
Section 3, is based on a Turdn-type result pertaining to sparse 3-uniform
hypergraphs associated with (4, 5)-sets as follows. Erdés and Sos observed
that any (4, 5)-set {r,,r,,..,r,} satisfies the following conditions. If
r,—rij=r;—r,>0, then r,=v;, ie, the elements involved in repeated
differences from 3-term arithmetic progressions, the midpoints of these
3-term arithmetic progressions are different, and two 3-term arithmetic
progressions have at most one common element. Based on these properties
one may associate a 3-uniform hypergraph H=(R, E) with a (4, 5)-set
R={r . ry,..,r,} as follows: R is the vertex set of H, and for 1<i<
j<k<n, {r,r;,r.} belongs to the edge set E of H iff r,<r;<r, form an
arithmetic progression. This hypergraph H is called the A.P.-hypergraph of R.

The (4, 5)-property of a set R of n elements transforms into the following
hypergraphic properties on its A.P.-hypergraph: it is 3-uniform, it has at
most n— 2 hyperedges, and its distinct hyperedges have at most one com-
mon vertex. In addition, we show that the A.P.-hypergraph of any (4, 5)-set
has no partial hypergraph H, shown in Fig. 1 {Proposition 2.6).

Obviously, Sidon sets contained in (4, 5)-set R correspond to inde-
pendent sets of its A.P.-hypergraph H = (R, E), thus the independence
number, a( H), becomes the size of the largest Sidon set of R. Since the
complement of any independent set of H is a transversal for its hyperedges,
an upper bound on the transversal number ©(H)=|R|—a(H) yields a
lower bound for a(H). Our bound g(n)=(1/2+¢) n (see Corollary 3.3) is
derived from the second part of the following result.

THEOREM A. Assume H is a 3-uniform hypergraph with n vertices and
with at most n edges. Then, t(H)<n/2. Moreover, if no two edges of H
intersect in two vertices, and H contains no H, shown in Fig. 1, then
(H)<( % — &) n with some positive constant &.
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It is worth noting that the first part of the theorem gives a Turan-
number for “3-graphs” which is already known from Sidorenko’s results
[Si]. The advantage of the proof given here is that it leads to the charac-
terization of all extremal hypergraphs (i.e,, those with t(H)=n/2). We state
this result as Theorem B below (its proof is in a preliminary version of this
paper). For n >4 even, let J(n) be the 3-uniform hypergraph defined on the
set {0,1,..,n—1} with the n triplets {i,i+1,i+n/2}, i=0,1,.,n—1,
and for n>=3, let L(n) be the 3-uniform hypergraph defined on
{0,1,..,n—1} with all triplets {i,i+1,i+3}, i=0,1,..,n—1 (modn
arithmetic in both cases).

THEOREM B. Let H be a connected 3-uniform hypergraph with n vertices
and at most n edges. Then t(H)Y< n/2, and 1(H)=n/2 if and only if either
H=J(n) or H=L(8).

Note that L(8) (more generally, disjoint copies of it) is extremal and has
no edges intersecting in two vertices. Therefore the exclusion of H, is
crucial in improving the bound from }» to (1 —¢)n in Theorem A. Our
proof yields €= (76 x 141) ~!; on the other hand, £< 1/26 is shown by the
disjoint union of copies of the hypergraph L(13). Theorem A will be proved
in Section 3 (as Theorem 3.2).

2. PROPERTIES OF (4, 5)-SETS

First a combinatorial property of (4, 5)-sets is formulated in terms of
hypergraph colorings. A hypergraph is said to be k-colorable if its vertex
set has a partition into k independent classes, i.e., subsets containing no
hyperedges.

PrOPOSITION 2.1. The A.P.-hypergraph of any (4, 5)-set is 2-colorable.

Proof. Let R be a (4, 5)-set with A P.-hypergraph H. Let us define a
graph G =(R, U) representing the hyperedges of H as follows. Any pair
x < y of R forms an edge in U if and only if there exists a 3-term arithmetic
progression x < y < z in R. By definition, and since the midpoints of 3-term
arithmetic progressions are distinct, G is acyclic. Hence G is a forest, and
in particular, bipartite. Since every hyperedge of H is represented by the
edges in U, H is 2-colorable. |

The larger color class of the 2-coloring of an A.P.-hypergraph H in
Proposition 2.1 results in an independent set containing more than half of
the vertices. This leads to the first lower bound on the maximum size of a
Sidon set contained in (4, 5)-sets.
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COROLLARY 2.2. g(n)=(n+1)/2.

To get an upper bound on g(n) we consider a particular set constructed
on Fibonacci numbers. Let f{i) denote the ith Fibonacci number defined
by the recursion: f(0)=1, f(1)=1, and f(i)=f(i— D)+ f(i—2), for i= 2.

ProrosiTioN 2.3.  The n Fibonacci numbers f(2), f(3), .., f(n+ 1) form a
(4, 5)-set.

Proof. Let i, j, k,] be integers with 2<i<j<k</<n+1. First we
show that the equality

JUY=Sl) = f1) - flk) (1)

holds only if i=j—2, k=j, and I=j+ 1.
Since

S =flky=fU=2)+ fU—-1) = flk) = fI-2),
SO —fk)y =)~ (flk+ 1) = flk—1)) = flk—1),

and f(j)—f(i)<f(j), Eq.(1) is possible only if j>max{k—1, /—2}.
Hence k=, and /=j+1 follows. Then, (1) becomes f(;j)— f(i)=
JU+1)—f1j)=f(j—1) which implies i = j— 2.

Observe that among any four elements of the Fibonacci sequence there
exists at most one triple in the form {f(j—2), f(j), f( +1)}. Thus, using
our first argument, there is at most one equal pair among the six possible
pairwise differences. This concludes the proof of the proposition. ||

ProposITiION 2.4, For each n =4, let F(n) be the A.P.-hypergraph of the
Fibonacci set {r,=f(i+1):i=1,.., n}. Then t(F(n))=2(n—1)/5].

Proof. Let T be a minimum transversal of F(n). Since r, and r, are
vertices of degree one, one may assume that r,,r,¢ 7. Consequently, at
least one of r; and r, belongs to 7. Observe that, for any i>3,
FivasTiva:Tia® T implies r,, r, ., € T. Assume that there are p (obviously,
pairwise disjoint) 5-tuples with this property covering a subset P of 5p
vertices. Then, for any j>3, r;,,,7;,:¢ TUP implies r;,r;,,€T. This
shows that at least half of the vertices of {r,,rs,..,r,}\P belong to T.
Therefore,

—3-5
IT| = TP +|TA({ra s rn}\P)|>2p+3——-2——~’3
1 Hn—1-5
PN ok bk JEP P Uhecd Sk’ B
2 5
_2(n—1)
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Observe that the bound is sharp only if there is equality at both places
of inequality, that is, if r;¢ T P and n— 1 — 5p =0. The first condition, if
true, implies n—2-—5p>0, thus excluding the second one. Hence,
1Ty = 2(n —1)/5 | follows.

The reverse inequality easily follows by constructing the minimum
transversal for every 4 <n,<8, then, for any n=>5p +n,, by completing
the minimum transversal on the lower n, vertices with the pairs
{r5,-+,m+l,r5,-+,,0+2},fori=0,l,...,p—l. '

Proposition 2.4 implies that the A.P.-hypergraph of an n-element
Fibonacci-set has no independent set larger than 3n/5 + 1. This results in
the following upper bound on the maximum size of a Sidon-set in a
(4, 5)-set.

CoROLLARY 2.5. g(n)<3n/S+1. |}

Let Hy=(R, E) be the hypergraph defined by R={r,,..,r,} and
E={e,,..,es}, where e, ={r|,ry,rs}, ex={ry,rs5.76}, €3=1{r, rq, rs},
ey=1{ry,rs,rs}, and es={ry, re, r;} (see Fig. 1).

PROPOSITION 2.6. The A.P.-hypergraph of any (4, 5)-set contains no H,
as a partial hypergraph.

Proof. Assume indirectly that the vertices of H, are real numbers which
form a (4, 5)-set R={r,, .., r;} such that each edge of H, is an edge in the
A.P-hypergraph of R. By definition, R contains no four distinct numbers
satisfying r,—r,=r,—r,. We say that r; is the midpoint of the hyperedge
en="{r,r,r}, f2r,=r,4+r,.

Case a: r, is the midpoint of some hyperedge. Assume that r, and r,
are the two elements of R which are not midpoints (1 <x < y<6). For
every hyperedge e,={r,,r,.r.}, 1 <h<5, let us introduce the form
w(e,)=2r.—r,—r,, where r_is the midpoint of ¢,, and let us consider the
sum W=w(e,)+w(e,) —w(e;) —w(e,) — w(es). Observe that the coefficient
of each term r, in the expansion of W comes from the forms belonging to
the hyperedges incident with r,. Using this, it is easy to check that the
coefficients of r., r,, and r; all become zero in W. Actually, we get
W =3r,+3r,— 3r, — 3r,, where r,, r; are the midpoints of the hyperedges
not containing r,, and r,, r, are the two further midpoints different from
r,. Since w(e,) =0, for every 1 <h <S5, we obtain W/3=r,+r;—r,—r;=0.
Hence r,—r, =r,—r; follows which violates the (4, 5)-property of R.

Case b: r, is not a midpoint. By symmetry, one may assume that r, is
the second vertex which is not a midpoint, and the midpoint of e, is r,.
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Then, the midpoints of all hyperedges become uniquely determined. This
yields the following system of midpoint equations:

(e)) 2ry=ri+r;, (e)) 2rg=ry+rs, (e3) 2ra=ry4r,,
(es) 2rs=ry+r,, (es) 2ry=rg+r,.

By choosing r;=0 and by introducing the parameter f=r,—r, we
easily get the following solution: ry =58, r, =108, rs =38, r; =28, re=4p,
and r,=68 Thus r,—r,=f=r;—r; follows which violates the
(4, 5)-property of R.

Both cases led to contradiction. ]

3. MmNIMUM TRANSVERSALS IN 3-UNIFORM HYPERGRAPHS WITH 1
VERTICES AND WITH AT MosT n EDGES

In this section we give bounds on the transversal number of sparse
3-uniform hypergraphs. Let H=(V, E)} be a 3-uniform hypergraph,
[VI=n, |E|<n. A transversal T=Su M will be constructed in two steps
as follows.

Greedy Step. Start with S=F and if S={x,, x,, .., x;} is already
defined then let x,,, be a vertex which covers the maximum number of
edges uncovered by S. If this maximum is at least three, x,, is added to
S; otherwise the greedy step stops. When leaving the greedy step, let H, be
the partial hypergraph formed by the hyperedges of A not covered by S.

Pairing Step. Select as many pairs of (distinct) intersecting edges of #,
as possible. Then M is defined by choosing a vertex from the intersection
of each pair of selected edges and by adding one vertex from each of the
remaining (not selected) edges. Note that since H, has maximum degree at
most two, M is a minimum transversal of H,.

In order to estimate the size of the transversal S U M given by this proce-
dure we need the following matching lemma. (As usual, v(G) denotes the
size of the maximum matching of graph G.)

Lemma 3.1. Let G be a multigraph with maximum degree three. Then
|E(G)| <4v(G), with equality if and only if each component of G is a single
vertex or a triangle with a double edge. Moreover, if G has no multiple edges
then |E(G)| <3.5¢(G).

Proof. Set v=v(G) and select a maximum matching Z = {x; y,, .., X, »,}
such that |{i: x, y, has a parallel edge in G, 1 <i<v}| is as large as possible.
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Let G|Z be the subgraph of G induced by the vertices of Z. For each i,
I <i<v, define

_dgz(x;) +dg z(y;)
$;= 5

+dg(x;) —dg z(x;) +dg(y) —dg 2 y)

The choice of Z ensures d(x,) —dg z(x)) +da{y)—dg z(y;)<2,and in
case of equality we say that x, y, is full. Now it is immediate that s, <4 and
s;=4 implies that x,y; is full. From the maximality of the matching, G has
no edges with both endpoints in V{(G)— V(G| Z), thus

|E(G)| = )i 5; <4y

i=1

which proves the required inequality.

In case of equality, s,=4; consequently, x;y; is full, for every
i=1,2,.., v. Assume that, for some /, x, y; has no parallel edge in G. Then
there exists an edge e € E(G) and j# i such that e intersects both x;y; and
x;y,. It is easy to check that there is an alternating chain e,, x;y,, €, x;y;,
e, with endpoints in V(G)\V{G|Z). This contradicts the maximality of Z.
Therefore, in case of |E(G)| =4v, x,y; has parallel edges for all i, so G is
the union of single vertices and triangles with a double edge.

To prove |E(G)| < 3.5v for simple graphs, in a similar spirit, takes much
more effort. Fortunately, this result is a special case of a theorem of
Chvatal and Hanson [CH] cited in [ LP] as Theorem 34.6. |

THEOREM 3.2.  Assume that H is a 3-uniform hypergraph with n vertices
and with at most n edges. Then

(a) t(H)<n/2
(b) If no two edges of H intersect in two vertices and H does not

contain Hy as a partial hypergraph, then, with some positive constant ¢,
r(H)<(3—¢)n.

Proof. Let H=(V, F) be a 3-uniform hypergraph, |V|=n, |E| <n. Let
T=Su M be the transversal constructed in the greedy and pairing steps
defined at the beginning of this section. Assume that at the end of the
greedy step S={x,, x,,..,x,} and S=85,US,, where S, is the set of
those vertices in .S which cover at least four uncovered edges when added
to S, and S, =S-S5, is the set of those vertices in S which cover exactly
three uncovered edges when added to S. It is possible that S, or S, (or
both) are empty sets.

The edge set of H is partitioned into E= E,u E, u E,, where E, is the
set of all edges covered by S,, E, < E\E, is the set of edges covered by S,
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and E,=E—(E,UE,) is the set of edges not covered by S. The set V'\S
is partitioned as Fyu V,u V,, where V, is the set of vertices covering
exactly i edges of E, (i=0,1,2). Set p,=|V,|, for i=0, 1, and 2. It is clear
from the definitions that

2
ISI+ Y, pi=n (1)

i=0
and

3IS|+IESIE U E |+ Bl <n (2)

Let M be the minimum transversal of the hypergraph H,=(V,u V,, E,)
obtained in the pairing step and denote by &, the dual hypergraph of H,.
Note that G, is a multigraph with p, edges, and each edge has multiplicity
at most two. As a hypergraph, G, has also p, (possibly multiple)
one-element hyperedges. However, by discarding them, G, becomes a
multigraph with maximum degree three. By the definition of M, |M|=
(|E,| —2v(G5)) + WG,) = |E,| — v(G,). From the first part of Lemma 3.1 we
have w(G,) = p, /4 which implies

|M|<|Ez|—’§f. (3)

Combining (1), (2), and (3), then using the identity 3 [E,|= p, + 2p, we
easily get

n
r(H)<|S|+|M|<5—%9. (4)

This proves part (a) of the theorem. The proof of part (b) is in the same
spirit. First (1) and (2) are refined as

2
ISOI+ISI|+ZP1‘=" (1)

i=0
and
3ISiI+Ey| <. (2)

Due to the first condition in (b), there are no multiple edges in G, so the
second part of Lemma 3.1 gives

P2
M| < |E,)| ——. 3
M1 <|E,| - 22 3

582b/64:1-9
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Combining these inequalities as before, we get

iyl (158, 2

4 T28) @)

Since our aim is to show 7(H) < (1 —¢) n, assume (with a suitable chosen
£>0 adjusted later) that

|Sol + Po Pz

5
IR T )

Let 4 be the set of vertices in ¥, for which there exists an edge ec E,
such that en 4 # J and en V, # J. Since each xe V; is in two edges of
E,, it follows that

|4| <4p,. (6)

Set B=V \A and F={ee E,: e < B}. The definition of B and V', implies
that F is a set of pairwise disjoint hyperedges; moreover, |J {f: fe F} =
Let us define the hypergraph H,=(V;, E;), where V;=8,UB and
E,={eeE:ec V,}. We shall prove that

(Hy) <(3—5)n (7

Before proving (7), we show how to finish the proof of the theorem.
Inequality (5) implies |S¢| + po+ p, <28en and thus p,<28en. From
these, together with (6), |Sq| + po+ P2+ |A4| < 140en follows. Since Vs, =
V\(Syu Vyu Vyu A4), and by using (7), we get

H(H) < t(H;) + | V\V3| =t(Hy) + ([Sol + [ Vol + 1 V>] + 14])
< (L —75) n+ 140en.

Then the proof concludes by choosing ¢ to satisfy ¢ = 1/76 — 140¢, which
gives e = (141 x76)~".

Proof of (7). Note that S| and one vertex from each ee F is a trans-
versal of H, which gives the trivial estimate

Hy) <S8+ |F). (8)
Case 1. |S,| <(}—38)n. Using this, together with (8), yields

—ISi_ 218 n
3 3

2/1 n 1
<Z({-— +o=(%—
3(4 5)” 3 (2 6)"

T(H3)<|S1| +|F| |S |+

W
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Case 2. |S,|=(3—9)n. The trivial estimate (8) is improved by the
following procedure. The degree of a vertex x € Vs, dy.(x) is simply referred
to as d{(x) in this part of the proof. Let E{x) denote the set of edges of H,
containing x. An improving block B, V, will be defined for a pair (x,, 4;)
such that x,€ S, and 4, is a set of d(x;) edges of F with the following
property: there exists a set T, < B of d(x;) vertices which covers both the
edges of A, and the edges of E(x,). For such a pair (x;, 4;) let
B;={x;} (U {f: fe A,}). Note that by the definition of S;, |S, ne| <1,
for every edge e of H,. Thus the maximum degree of H, is at most three,
hence the improving blocks may have 1,4, 7, and 10 vertices.

We wish to select pairwise disjoint improving blocks by a greedy
procedure. Assume that B, is already selected, for i=1,2,..,m. Set
U=Bn(B,wB,u --- UB,). Since the maximum degree of H, is at most
three, |U| <9m and there are at most 18m vertices x€S, for which
(U {e:ee E(x)})n U# . Therefore, if |S,|> 18m, there exists x,,,, €S,
for which (U {e:eeE(x,,,,})n U= Then a new improving block
B, ., disjoint from B, .., B,,, is defined as follows.

Assume that d(x,,,,)=d (d<3) and let E(x,,,,)={e,,...e,}. [ d=0
then set B, ,,={x, ..} and T, ,,=¢. If d=1, then set B, , =
{Xms1} USfi, where f,e F and f,ne, #J; furthermore, define T, ,,=
Jine,. If d=2, one may clearly select distinct hyperedges f,, f;€ F such
that fine,# and f,ne,# (J. Then the next improving block is
B, 1={x, 1} u(fiuf) with T,,,,=(fine,)u(f;ne,). The last case,
d =13, is the critical part of the proof. Since H, i1s forbidden in H, in par-
ticular in H,, there exist distinct hyperedges f,, f;, fi € F such that fine,,
fine,, and f.ne; are nonempty. Now the next improving block is
B,o={x,alo(fivfiufi)with T, =(fine)u(fne)u(fines).

The argument above shows that there are at least |§,]/18 pairwise
disjoint improving blocks. Each improving block gains one over the
trivial estimate (8) since in each of them 7, can be selected as part of a
transversal. Therefore,

S
T(H;)<|51|+|F|—'~l?l" 9)

Observe that |S,| + 3 |F| <n (since H has »n vertices) and 3 |S,| + |F| <n
(since H has no more than n edges). These inequalities imply [S,|+
|F| <n/2. Using this, together with (9), and since we are in Case 2, t( H,)
can be estimated follows.

IS _n |8y <1 1<1 )
< T8 ST S\ Te\a T '
©(H;) <|S,] + |F] 18 "2 18 S 2 18 0) "
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Comparing the estimates obtained in Cases | and 2 for ©(H,), § = % is

selected as the solution of § = (4 —4J). This proves (7) and concludes the

proof of the theorem. |

Since the A.P.-hypergraph of any (4, 5)-set satisfies the conditions of
Theorem 3.2, we immediately have the follwing corollary.

COROLLARY 3.3. FEuvery (4, 5)-set of n elements contains a Sidon set with
at least (1/2 + ¢) n elements.
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