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ON A RAMSEY TYPE PROBLEM OF SHELAH 

A. GYARFAS* 

Shelah used a Ramsey type statement in his new proof of Vander Waer
den's theorem ([5]). It was formulated in [3] as a coloring problem on mesh 
clique graphs: find the smallest n = F(r) such that in any r-coloring of the 
edges of Kn x Kn there exists a K 2 x K2 whose opposite edges have the same 
color. Here the trivial upper bound on F(r) is improved using the Fisher in
equality on hypergraphs with restricted intersections. 

A fragment of Shelah's proof of the Van der Waerden theorem [5] is con
nected to a Ramsey type problem. This problem have been formulated in 
[3] as follows. Assume that n is a positive integer and define the mesh clique 
graph Gn with vertex set 

{ ( i, j) : 1 ~ i ~ n, 1 ~ j ~ n, i, j are integers } (1) 

and two distinct vertices of Gn are adjacent if and only if they agree in 
their first or in their second coordinate. Vertices of Gn with fixed first 
(second) coordinates are called the columns (rows) of Gn, and these terms 
are also used for subgraphs induced by rows or columns. The graph Gn is 
clearly isomorphic to Kn x Kn . Assume that i, j, k, l are integers satisfying 
1 ~ i < j ~ n, 1 ~ k < l ~ n. The four-cycle in Gn induced by the vertices 
(i,k), (i,l), (j,k), (j,l) is called here a rectangle (referring to the position 
of its points in the planar grid). An r-coloring of Gn means edge coloring 
with numbers 1, 2, ... , r. A rectangle of Gn is called here alternatig with 
respect to a given r-coloring if its opposite edges have the same color (a 
monochromatic rectangle is a special case). Define F(r) as the smallest n 
for which under any r-coloring of Gn there exists an alternating rectangle 
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( a.r.). Colorings of Gn without a.r .-s are called good colorings. Clearly, 
F(r) -1 is the largest integer n for which there exists a good coloring of Gn 
In [3] (p.68) one can read: "a polynomial upper bound on F(r) might well 
lead to a towerian upper bound to H J(2, t) [the Hales Jewett number for 
two colors and t symbols]. Even if not, it is a certainly interesting problem 
for its own sake." 

Notice that the problem has its natural off-diagonal extension. A pair 
[m, n] might be called r-minimal if under any r-coloring of Gm,n there is an 
a.r. but this is not true if m or n is decreased. ( Gm,n is defined by changing 
the range of j to 1 ~ j ~ m in ( 1)). The problem is to find or bound the 
r-minimal pairs. These pairs are clearly symmetric, [m, n] is r-minimal iff 
[n, m] is r-minimal, so m ~ n can be stipulated in the definition. Under 
this assumption F(r) is the smallest n for which [n, n] is r-minimal. 

The trivial bounds on F(r) are 

(r+l) 
r+1 ~F(r) ~r 2 +1 (2) 

The lower bound in (2) follows simply by coloring all columns of Gr 
with a different color (in fact, this shows that if [m,n] is r-minimal then 
r+1 ~ m). Heinrich proved that F(r) 2:: c·r3 with positive c and mentioned 
that F(r) > r3 can be proved for primer with her method ([4]). Faudree, 
Szonyi and the author used projective spaces to obtain good colorings and 
have shown that F(r) > r3 for prime power r ([2]). These lower bounds 
together with the upper bound in (2) imply F(2) = 9. The method in [2] 
would provide rt+l < F(r) if the t-dimensional projective space of order r 
is "complementary", which means that there exists a permutation on the 
points which maps each hyperplane to the complement of some hyperplane. 
Blokhuis observed that for a complementary projective space t ~ r so the 
the best one can hope from the method is rr+l < F(r). Notice that the 
existence of complementary t-dimensional projective spaces of order r such 
that t tends to infinity with r would kill the possibility of a polynomial F(r) 
and the attempt to squeeze out a towerian upper bound from Shelah's proof 
this way. However, no complementary spaces are known to the author for 
t 2:: 3. Any example would improve the lower bound on F(r). 

The upper bound in (2) had been used in Shelah's proof. It follows from 
the pigeonhole principle. Set n = C!1

) + 1 and consider any r-coloring of 
the edges of Gr+l,n· Two columns of this graph must be colored exactly the 
same way and one can select two horizontal edges of the same color between 
these columns to find the a.r. In fact, the argument shows (together with 

(r+l) 
the lower bound ) that [r + 1,r 2 + 1] is an r-minimal pair. 
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In this paper this simple pigeonhole argument is extended to improve 

the upper bound in (2). The improvement is rC;
1

)+1 which sounds great in 
other problems but here of course is not enough to decrease the exponent 
of the trivial bound. The proof uses the uniform Fisher inequality on 
intersecting set systems and probably further improvements are possible 
using the results and techniques on set systems with restricted intersections. 
A survey is in the preliminary version of the book of Babai and Frankl [1 J. 
However, to lower the exponent (r!1

) in (2) probably further ideas are 
needed. 

(r+1) (r-1) 1 Theorem. If r 2:: 3 then F(r) < r 2 - r 2 + + 1. 

(r+1) (r-1)+1 Proof. Set n=r 2 - r 2 + 1. Assume that an r-coloring is given 
on Gm,n· We show that either there exists an a.r. or m :::; r 2

·r-
1 + r - 1 

(note that m is smaller than n for r 2:: 3). Thus the proof gives a stronger 
off-diagonal result. 

Represent the coloring of the columns of Gm,n by an (~) x n matrix 
M whose rows are indexed by unordered pairs of R, I R I= m and whose 
columns are indexed by elements of C = {1, 2, ... , n }. The element M[ij, k] 
(1 :::; i < j :::; m, 1 :::; k:::; n) is the color of the edge ij in the k-th column of 

Gm,n· 

Each row ij of M gives a partition Pij = [ Atj, Arj ... Aij] on C by 
defining 

At= {p E C: M[ij,p] = k} fork= 1,2, ... r. 

The proof is based on intersection properties of the ~j-S, the sets Afj are 
referred as blocks. A j-section is the intersection of j non-parallel blocks. A 
set of non-parallel blocks (or partitions) is well-covered if the union of their 
row indices have at most r + 1 points in R. Define for convenience 

(r+1) · 
nj = r 2 -J 

Now the pigeonhole argument is generalized in the following claim. 

Claim 1. Assume that I ~ C is a j -section of well-covered blocks. Then 
III:::; nj. 

Proof. Assume that the graph R1 c ( ~) defines the row indices of the j 
blocks in question, jR1 1 = j. Since the blocks are well-covered there exists 
R2 C (~) such that R1 n R2 = 0 and R1 U R2 = Kr+1 C (~). Consider the 
submatrix M' C M whose rows are indexed by Kr+1 and whose columns 



286 A. Gyarfas 

are indexed by I. The rows of M' indexed by R1 are constant thus M' has 
at most r1R2 1 = nj different columns. If III > nj then two columns of M' are 
the same and the a.r. is present by the same argument used in the trivial 
upper bound. • 

Claim 2. Any (r;1) partitions have an C21)-section I with III ~ n(r;-1)
r + 1. 

Proof. The r(r;-
1

) (r21)-sections of the (r;1) partitions cover C. If all of 
them have cardinality less than required then 

c-1) (r+1) (r-1)+1 n=ICI:::;r 2 ·(n(r;-1)-r)=r 2 _-r 2 

contradicting to the definition of n. • 

Apply Claim 2 with P = { Pij : 1 ::::; i < j ::::; r - 1} and let I be the 
(r-1) · d 

2 -sectiOn guarantee . 

Claim 3. Assume that j satisE.es r::::; j ::::; m. Then P1j has a block B such 

that II n Bl = n(r;-1)+1' 

Proof. Since I is covered by the blocks of P1j, 

r 

III ::::; L IA~1 n II 
k=1 

and all terms are at most n(r;-1)+1 by Claim 1 since the set P U {P1j} is 

well-covered. Thus denying the claim means that all terms are at most 
n(r;-1 )+1 - 1. This implies III ::::; n(r;-1) - r, contradicting the definition of 

I. • 

Choose a block of P1j for each j, j = r,r + 1, ... , m according to Claim 
3. W.l.o.g. these blocks areAL. Set Bj = InAL. From Claim 3. we know 

that IBj I = n(r;-1)+1. 

Claim 4. IBu n Bvl = n(r;-1)+2 for all u,v satisfying r::::; u < v::::; m. 

Proof. The key observation is that PU{P1u, P1v} is still well-covered, since 
its row indices form a Kr-1 plus two edges incident to the same vertex of 
this complete graph. Thus each term in 

r 

IInBul = LIInBunA~vl 
k=1 
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is at most n(r;1)+2 . But from Claim 3 II n Bul = n(r;l)+l and this forces 

each term to be equal to n(r;1)+2 . In particular, InBunAiv = InBunBv 

has cardinality n(r;l )+2 as claimed. • 

The conclusion is that the sets Bi, i = r,r + 1, ... , m, form an n(r;l)+l
uniform set system. Any two of these sets intersect in n(r;l )+2 elements. 

The (uniform) Fisher inequality (see for example in [1]) implies that there 
are no more sets than the cardinality of the ground set. In our case this 
says 

This inequality shows that 

(r+l) (r-1) 2 r 1 m ::::; n(r;l) + r - 1 = r 2 - 2 + r - 1 = r · - + r - 1 

and the proof of the theorem is finished. • 
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