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Abstract 

Let (x,y) be an edge of a graph G. Then the rotation of (x, y) about xis the operation of removing 
(x, y) from G and inserting (x, y') as an edge, where y' is a vertex of G. The rotation distance between 
graphs G and H is the minimum number of rotations necessary to transform G into H. Lower and 
upper bounds are given on the rotation distance of two graphs in terms of their greatest common 
subgraphs and their partial rotation link of largest cardinality. We also propose some extremal 
problems for the rotation distance of trees. 

1. Introduction 

In [1, 4] operations were introduced for measuring the distance between graphs of 
the same order and size. Here we investigate some questions confined to rotation 
distances. We continue the research initiated in [2] and propose extremal problems 
on tree distance graphs. 

Let G be a simple undirected graph (no multiple edges and loops) and suppose that 
(x, y)EE(G) and (x, y')~E(G). Then the rotation of (x, y) about x is the operation of 
removing (x, y) from G and inserting (x, y') as an edge. 

If (x, y) = e and (x, y') =f, then we denote the rotation above by (y. x. y') or 
equivalently by (e. x .f), and the graph obtained by G(y. x. y') or G(e. x .f). Formally, 
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if G'=G(e.x.f) then V(G')= V(G) and E(G')=E(G)-e+f We say that H can be 
obtained from G by rotation or G can be rotated into H, if there exists a rotation 
r=(e. x .f) of G such that G(r)~H, where ~ denotes isomorphism. 

A simple graph of order n having m edges is called an (n, m)-graph. The rotation 
graph of (n, m)-graphs is defined with the set of all nonisomorphic (n, m)-graphs as the 
vertex set and (G, H) is an edge if and only if G can be rotated into H. The rotation 
distance Q(G, H) between (n, m)-graphs G and His defined to be the number of edges 
of a minimum length path in the rotation graph joining G to H, i.e., the minimum 
number of rotations necessary to transform G into H. 

If the rotation distance of (n, m)-graphs G and H is d, then there is a sequence of 
(n,m)-graphs G0 =G,G1 , ... ,Ga=H and a sequence of rotations ri=(yi.xi·Yi), 
i = 1, ... , d, satisfying (xi, Yi)EE(Gi- d, (xi, yi)¢E(Gi- d, and Gi~ Gi- dri), 1 ~ i ~d. For 
the sake of simplicity one may assume that all Gi have the same set V vertices, and 
Gi =Gi-l (ri), 1 ~ i ~d. 

In Section 2 we give lower and upper bounds on the rotation distance between 
graphs. We show that if G and H are (n, m)-graphs then Q(G, H);:;:.m-tmaAG, H), 
where tmax(G, H) is the maximum number of edges of a subgraph contained in botlf 
G and H (Proposition 2.1). Note that tmax(G, H) is the size of the greatest common 
subgraph of G and H investigated in [3, 4]. Examples which are 2-regular graphs show 
that this lower bound is sharp (Theorem 2.3). 

In [4] it is proved that r(G, H)~2(m-tmax(G, H)). We improve on this 
bound by introducing the notion of rotation links (Proposition 2.4). Sharp upper 
bounds are derived on the rotation distances of some special classes of graphs 
(Propositions 2.10-2.12). 

In [2] the problem of characterizing distance graphs (i.e., induced subgraphs of 
rotation graphs) is investigated. A large family of distance graphs is presented there, 
and the question of whether every graph is a distance graph is proposed. We show that 
complete biparite graphs K 3 , 3 and K 2 , P' p ;:;:.1, are distance graphs (Propositions 3.1 
and 3.2). 

A rotation of a tree that does not disconnect the tree is called a tree rotation. As far 
as we know, the notion of tree rotations appears first in [5] as a tool in enumerating 
labeled trees. The tree distance of trees G and His defined to be the minimum number 
of tree rotations necessary to transform G into Hand is denoted by -r(G, H). The tree 
rotation graph is defined to be the graph with the set of all nonisomorphic trees of 
order n as the vertex set and (G, H) an edge if and only if G can be rotated into H. 
Clearly, -r(G, H) is the distance between G and H in the tree rotation graph. We will 
see that the distance between trees in the rotation graph and that in the tree rotation 
graph may differ (Proposition 3.3). Then we show that -r(G, H)~2Q(G, H) for every 
tree G and H of the same size (Theorem 3.4). 

In Section 4 some properties of the tree rotation graph are investigated. In 
particular, we consider extremal problems related to finding certain large subgraphs 
in the tree rotation graph. We show that the maximum degree in the tree rotation 
graph is between n(n- 3) and 37n2 /48-0 (n log n) (Propositions 4.1 and 4.2). We 
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prove that the size p of the maximum induced star satisfies 2n-o(n)<p<2n-2 
(Proposition 4.3). It is also shown that the diameter is n-3 and the radius is n-o(n) 
(Propositions 4.7, 4.9 and 4.10). 

2. General bounds 

We establish lower and upper bounds on the rotation distance between two 
(n, m)-graphs. 

Proposition 2.1. If G and Hare (n, m)-graphs, then 

Q(G, H)~m-tmax(G, H). 

Proof. Let (G0 , r1 , G1 , r2 , ... , r d' Gd) be a minimum path from G to H in the rotation 
graph, with G0 = G, Gd =Hand d = Q(G, H). For the sake of simplicity, assume that all 
graphs Gi have a common vertex set V, and ri=(ei.xi·h) is the rotation of Gi-l such 
that Gi=Gi-l(ri), l~i~d. 

Then the number d of rotations necessary to transform G0 into Gd is at least as large 
as the number of edges of G0 - Gd: 

Q(G, H)~ IE(Go)-E(Gd)l = JE(Go)J-JE(Go n Gd)l ~m-tmax(G, H). D 

A rotation link between (n, m)-graphs G and H with the same set of vertices is 
defined to be a bijection rx:E(G):::;.E(H) such that enrx(e):¥=0 for every eEE(G). 
A partial rotation link of cardinality k between G and His the rotation link between 
two subgraphs G' c G and H' c H both having k edges. 

From the proof of Proposition 2.1 we obtain the following immediate corollary. 

Proposition 2.2. Let G and H be (n, m)-graphs. Then 

Q(G, H)=m-tmax(G, H) 

if and only if there are graphs G' and H' with the same vertex set such that G' ~ G and 
H' ~ H and satisfying the following: 

(a) JE(G' nH')J =tmax(G, H); 
(b) there exists a rotation link between G'-H' and H'-G'. 

The result below gives an example where Proposition 2.2 yields the rotation 
distance. 

Theorem 2.3. If G and H are 2-regular graphs of order n, then 

Q(G, H)=n-tmax(G, H). 
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Proof. Assume that G and H have vertex set Vand tmax(G, H)=IE(GnH)I. We will 
find a graph H'~H such that G'=G and H' satisfy (a) and (b) in Proposition 2.2. 

Give a cyclic orientation to G, i.e., such that its cycles become directed cycles. We 
will define a cyclic orientation for H compatible with G such that each eEE(G n H) has 
the same sense in both G and H. 

Let C be a cycle component of Hand D= Gn C. Thus V(D)= V(G)n V(C) and 
E(D)=E(G)nE(C). Note that Dis either a cycle or the disjoint union of paths. If 
D = G n C is a cycle, then orient the edges of H in C according to the orientation in G. 
If D is the disjoint union of paths, then the components of D can be closed by 
additional edges between the endpoints to get a cycle C' in the following way. The 
path components of D oriented as in G are to be arranged in an arbitrary cyclic 
sequence. Then join each endvertex to the first vertex of the next path by a directed 
edge. Since tmax(G, H)= IE(GnH)I, IE(D)I = IE(G)n E(C')I follows in both cases. 

Doing the same steps for every cycle component of H we obtain a pair of graphs 
G' = G and H' ~ H that satisfy (a), i.e., 

IE(G' nH')I = IE(GnH)I =tmax(G, H), 

and such that H' has a cyclic orientation compatible with G'. 
By the compatibility of the orientations, each vertex xis the tail of just one arc of G' 

and just one arc of H'. Let a(e)EE(H'- G') be the unique arc with the same tail as e for 
every eEE(G'-H'). Clearly, a:E(G'-H')=>E(H'-G') is a bijection; thus there is 
a rotation link between G'- H' and H'- G', and so (b) holds. 

Since n=m, and G' = G and H' satisfy (a) and (b), Q(G, H)=n- tmax(G, H) follows by 
Proposition 2.2. D 

Observe that any edge of a graph can be rotated into any nonedge in at most two 
steps. Thus Q(G, H)~ 2m for all (n, m)-graphs G and H. Based on this observation 
Q(G, H)~2(m-tmax(G, H)) was proved in [4], and the sharpness of the bound was 
established. This bound can be refined as follows. 

Proposition 2.4. Let G and H be (n, m)-graphs with the same set of vertices. !fTc;; GnH 
has t edges and there exists a partial rotation link of cardinality k between G- T and 
H-T, then Q(G,H)~2(m-t)-k. 

Proof. Let a be a partial rotation link of cardinality k between G- T and H- T. 
Assume that a is defined on {e1 , ... ,ek} and let xiEeina(ei), l~i~k. Then at most 
k rotations (ei. xi. a(ei)) for ei =I= a(ei), i = 1, ... , k, and at most 2 more rotations for each 
edge of E(G-T)\{e 1 , ... , ek} yields that Q(G, H)~2(m-t-k)+k=2(m-t)-k. D 

In order to obtain an upper bound on the rotation distance between two graphs 
using Proposition 2.4, the maximum cardinality of a partial rotation link between the 
graphs is needed. 

For X, Yr;; V(G), set mG(X, Y)= I {(x, y)EE(G): xEX, yE Y} 1. 
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Theorem 2.5. Let G and H be two graphs with vertex set V and with both graphs having 
m edges. Then the maximum cardinality of a partial rotation link between G and H is 

k=2m-max {mG(A, A)+mn(V\A, V\A)}. 
A£:V 

Proof. The proof is based on the 'defect form' of Hall's theorem (cf. [7, 8]). Let U be 
a bipartite graph with bipartition (X, Y). Then the maximum cardinality of a match­
ing from X into Y equals 

lXI- max {IX'I-IT(X')I}, 
X'£:X 

where T(X') s; Y is the set of all neighbors of the vertices in X'. 
Now we define a bipartite graph U as follows. Let X =E(G), Y=E(H) and (e,f) is 

an edge of U for eEX andjE Yif and only if e nf =I= 0. Clearly, the maximum cardinality 
k of a partial rotation link between G and His equal to the maximum cardinality of 
a matching from X into Y. By the theorem above, this is 

k=IXI-max {IX'I-IT(X')I}=m-max {IE(G')I-1 Y'l}, 
X'£:X G'£:G 

where Y' is the set of all edges jEE(H) such that fn V(G') =1=0. Let A= V(G'). Then 
since I Y'l=m-mn(V\A, V\A), the equality becomes 

k=m-max {mG(A, A)-(m-mn(V\A, V\A))} 
A£:V 

=2m-max {mG(A, A)+mn(V\A, V\A)}. 0 
A£:V 

By Proposition 2.4 and Theorem 2.5, we have that 

Q(G, H)~2(m-t)-k~2m-k~max {mG(A, A)+mn(V\A, V\A)}, 
A£:V 

which results in the following upper bound. 

Corollary 2.6. Let G and H be (n, m)-graphs. Then 

Q(G, H)~ min max {mG'(A, A)+mw(V\A, V\A)}, 
G',H'A£:V 

where the minimum is taken over all G', H' with vertex set V such that G' ~ G and 
H'~H. 

In connection with Theorem 2.5 one may pose the question as to which pairs of 
graphs have rotation links. In passing, we mention some results motivated by this 
question. 

Theorem 2.7. Let G and H be two graphs, each with m edges, and the same vertex 
set V. Then, there is a rotation link between G and H if and only if 
mG(A, A)+mn(V\A, V\A)~mfor all As; V. 
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Proof. If k is the maximum cardinality of a partial rotation link between G and H, 
then k ~ m. By Theorem 2.5, 

2m-max {m0 (A, A)+mH(V\A, V\A)}=k~m; 
As;;V 

consequently, 

max {m 0 (A, A)+mH(V\A, V\A)}~m. 
As;;V 

Furthermore, observe that k = m if and only if the last inequality is an equality which 
holds if and only if m0 (A, A)+mH(V\A, V\A)~m for every As; V. D 

Corollary 2.8. There exists a rotation link between two arbitrary trees with the same 

vertex set. 

Proof. We verify the sufficient condition in Theorem 2.7. Assume that 
m0 (A, A)~mH(V\A, V\A). If mH(V\A, V\A)=O, then m0 (A, A)~m0(V, V)=n-l; 

thus m0 (A, A)+mH(V\A, V\A)~n-l =m. If both terms are positive, then, SiJ?.ce 
the subgraphs of a tree are forests (or trees), m0 (A,A)+mH(V\A, V\A)~IAI-l+ 

I V\ A 1-1 =I VI- 2 = m -1. D 

Corollary 2.9. There exists a rotation link two arbitrary k-regular graphs with the same 

vertex set. 

Proof. The sufficient condition in Theorem 2.7 holds, smce m0 (A, A)+mH(V\A, 

V\A)~IAik/2+1 V\Aik/2=1 Vlk/2=m for every As; V. D 

Let G and H be graphs with m edges having the same vertex set V. A set of distinct 
vertices x 1 , ... , XpE Vis called a common partial representative of cardinality p for 
G and H if there exist pairwise distinct edges eiEE(G) and pairwise distinct edges 
j;EE(H) such that xiEeinj;, 1 ~i~p. 

Note that a common partial representative for G and H defines a partial rotation 
link between G and H if we let a(ei)=};. 

Proposition 2.10. If G and H are trees of order n which have a common subtree of 
t edges, then Q(G, H)~n-l-t. 

Proof. Assume that G and H have a common vertex set Vand GnH contains a tree 
T with t edges. Choose an arbitrary root xE V(T) for G and H. Since the edge set of 
.a rooted tree of order n is represented by the n -l vertices different from the root, the 
edges of T are represented with the same subset V(T)\ {x} both in G and H. 

Consequently, V\ V(T) is a common partial representative for G- T and H- T. By 
Proposition 2.4, with m = n -1 and k =I V\ V(T) I= n -l- t, we obtain that Q( G, H)~ 
2(m-t)-k=n-1-t. D 
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Proposition 2.11. If G and H are connected graphs with n ~ 3 vertices and m edges, then 

Q(G, H)~2m-n. 

Proof. Assume that both G and H are trees. Then m = n- 1 and since any two 
trees have a common subtree of at least two edges (i.e., t ~ 2), we obtain, by 
Proposition 2.10, that Q(G,H)~n-3<2m-n. 

Now assume that G and Hare not trees. Then G' = G-fis still connected for some 
jEE(G). Consider a spanning tree of G' rooted at a vertex incident withf The edges of 
the spanning tree and fare n distinct edges of G represented by the vertices. Do the 
same with H and choose a common vertex set V for G and H. Since Vis a common 
partial representative for G and H, by applying Proposition 2.4 with T= 0 and 
k=IVI=n, we obtain that Q(G,H)~2m-n. D 

Proposition 2.12. IfG and Hare simple graphs with n vertices and m~ p(p-1)/2 edges, 

p~3, then Q(G, H)~2m-p. Moreover, this bound is sharp. 

Proof. First we show that G has p edges which can be represented with p distinct 
vertices. This is true for p = 3. Let p ~ 4 and assume that the claim holds for smaller 
values. If G has a vertex of degree p, then the end vertices represent these edges. Thus 
we may assume that there is a nonisolated vertex x with degree at most p -1. Since 
G-x has at least p(p -1)/2-(p-1) =(p -1)(p-2)/2 edges, the claim follows by 
induction. The same holds for H, i.e., it has p edges represented by p distinct vertices. 
Choose a common vertex set V for G and H such that p vertices represent p edges from 
G and from H. 

Thus we have obtained that G and H have a common partial representative of 
cardinality p. Now by Proposition 2.4, with T=0 and k=p, Q(G, H)~2m-p. D 

The sharpness of the bound is shown by the following example. Let m = p(p -1)/2, 
G = mK2 and H be the union of a clique of order p and p2

- 2p isolated vertices. Then 
G cannot be transformed into H in less than p2

- 2p =2m- p rotations. 

3. Distance graphs, tree rotations 

A graph is called a distance graph if it is an induced subgraph of some rotation 
graph. It is not known whether every graph is a distance graph, This question was 
asked in [2], where a large family of distance graphs is presented. 

Let Kp,q denote the complete bipartite graph with p and q vertices in the partition 
classes. 

Proposition 3.1. K 3 , 3 is a distance graph. 

Proof. We will use the triple (a, b, c) of positive integers a, b and c to denote the tree 
formed by identifying an endvertex from each of three pairwise edge disjoint paths 
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4 9 2 

3 5 7 

8 1 6 

Fig. 1. Chinese magic square. 

with a, b and c edges. Such trees will be called 3-rails. Let 5(n) be the set of all 
nonisomorphic trees of order n. We make the following observations: 

(1) (a, b, c)E5(n) if and only if a+b+c+ 1 =n; 
(2) (a, b, c)E5(n) can be rotated into (i,j, k)E5(n) if and only if 

I {a, b, c} n {i,j, k} I= 1. 
Consider a 3 x 3 magic square, e.g. the first one that was ever published in one of the 

famous books of Chinese mathematics in 1100 B.C. (see Fig. 1). The three numbers in 
every row and column add up to 15. Thus, by (1), the rows and columns encode 3-rails 
of 5 (16). Furthermore, according to (2), these 3-rails induce a K 3 , 3 in the rotation 
graph of 5(16). 

Proposition 3.2. K p, 2 is a distance graph for every p?:;: 1. 

Proof. Let V = {0, 1, ... , 2p + 5}. Define G1 with edge set 

{(i,i+1): 1~i~2p+4}u{(0,2j-1): 1~j~p+1}. 

Then G1 has n = 2p + 6 vertices and m = 3p + 5 edges. 
Let ri = (2j -1.0. 2j), 1 ~ j ~p, be the rotations of G1 and Hi= G1 (ri) for j = 1, ... , p. 

One can easily see that Q(HbHi)=2 for every 1~i<j~p. Thus {G 1 ,H1 , ... ,HP} 
induces a star in the rotation graph of (n, m)-graphs. 

Let Hj= Hir), 1 ~ j ~ p, where r = (2p + 3. 2p + 2. 1). It is easy to verify that H~ ~ Hj 
for every 1 ~ i, j ~p. Moreover, the rotation distance of the graphs G2 = Hj_ and G1 is 
equal to two. Thus {H1 , ... , HP}u{G1 , G2 } induces a Kp, 2 in the rotation graph of 
(n, m)-graphs. D 

The example below shows that the rotation distance of trees may increase when 
rotations disconnecting the graph are not allowed. We recall that a rotation of a tree 
that does not disconnect the tree is called a tree rotation. The tree distance of trees 
G and H, r(G, H), is defined to be the minimum number of tree rotations necessary to 
transform G into H. 

Let G and H be the trees given in Fig. 2, where the label at each vertex denotes the 
number of pendant edges incident to this vertex. 

Proposition 3.3. Q(G, H)=2, r(G, H)=3 for G and H in Fig. 2. 
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Proof. g( G, H)~ 2 is obvious, and the rotations (30. 40. 80) and (70. 60. 20) transform 
G into H. Thus g( G, H)= 2 follows. 

The tree rotations (50. 60. 20), (30. 40. 80) and (70. 60. 50) transform G into H, 
therefore r(G, H)~ 3. To show r(G, H)> 2, observe first that rotations of pendant 
edges need not be considered. Then (30, 40), (60, 70)EE(G) are to be replaced with 
(20, 60), (40, 80)EE(H). This is clearly impossible with two tree rotations. Thus 
r(G, H)= 3 as claimed. 0 

It is easy to see that for d ~ 2 allowing the intermediate rotations r 1 , ... , r d _ 1 to 
remove an edge (x, y) and insert a new edge (x, y') possibly parallel to an existing edge 
(x, y') (i.e., allowing G1 , ... , Gd- 1 to be multigraphs), the distance of G and H does not 
decrease. As a consequence, edges can be rotated freely during intermediate steps. We 
refer to such rotations as free rotations. This technical advantage is used in the proof of 
the next result. 

Theorem 3.4. -r(G, H)~2g(G, H) for trees G and H of the same order. 

Proof. Let d= g(G, H), S=(G0 , r1 , G1 , r2 , ••. , rd, Gd) be a minimum path from G0 = G 
to Gd=H, where all graphs have the same vertex set V and ri=(yi.xi. wi) is a free 
rotation, (xil yJEE(Gi_ 1 ), Gi = Gi- 1 (rJ for 1 ~ i~ d. Let R =(r1 , ... , rd) be the sequence 
of rotations. 

Let k be the smallest integer, 1 ~ k ~ d, such that Gi is a tree for every j, k ~ j ~d. 
Then R has at most k- 1 disconnecting rotations (r 1 , ... , rk _ t). If k = 1, then each G b 

1 ~i~d, is a tree, thus r(G, H)=d. 
If k > 1, then Gk- 1 (yk. xk. wk) = Gk is a tree but Gk- 1 is not. Thus Gk- 1 has just two 

connected components. Denote their vertex sets by X and W, and let xk, YkEX and 
wk E W. Obviously, W induces a tree in Gk-l and the graph induced by X has just one 
cycle C containing the edge (xb yk). 

Now define m to be the smallest integer, 0 < m < k, such that Gi contains C for every 
i, m ~ i < k. (One can say that when performing R to transform the tree G into the tree 
H, the 'very last cycle' C is 'closed' by r m and it is 'broken' by rk.) Observe that no 
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rotation ri, m<i<k, removes any edge of C, in particular, (xm, wm)EE(Gi) for every i, 
m<i<k. 

Take the subsequence of R sending G0 into Gk- 1, then remove r m and insert two 
rotations s1, s2 at the end: 

where s1 =(ym.Xm· wk) and s2=(xm. wk.xk)· (Ifm=k-1 then R'=(r1, ... , rk-2, s1, s2).) 
Since xb XmEX and wkE W, the rotations s1 and s2 do not close Cor any other cycle. 

Consequently, R' transforms G0 into a tree G~. Then we can obtain the tree Gk from 
G~ by two arbitrary tree rotations s3 and s4 sending (xb h) into (xm, wm). Notice that 
this is always possible, since Xm and Wm are in distinct components of G~-(xb yd. 

Now replace the first k rotations of R with the sequence of k + 2 rotations 
(r1, ... , rm-1, rm+ 1 , ... , rk- 1 , s1, s2, s3, s4), and let R" denote the resulting sequence. 
Observe that the number of nontree rotations of R" is at most k-1 (every rotation 
coming after s1 is a tree rotation). By repeating this procedure to R", and the 
sequences that result, at most d/2 times, we obtain a sequence of tree rotations with at 
most 4(d/2)=2d elements that transforms G into H. Thus r(G, H)~2Q(G, H). D 

4. Extremal problems on the tree rotation graph 

Let §"(n) be the set of all nonisomorphic (unlabeled) trees of order n. Denote by l§(n) 
the tree rotation graph of §"(n) in which the vertex set is §"(n) and two trees are joined 
by an edge if and only if they can be transformed into each other by a rotation. In this 
section we discuss certain extremal problems for l§(n). 

Let TE§"(n). The removal from T of an edge e=(u, v)EE(T) leaves two subtrees T' 
and T" containing u and v, respectively. For every eEE(T) the number of tree 
rotations revolving this e is 

l{(u.v.x): xEV(T'-u)}l+l{(v.u.x): xEV(T"-v)}l 

=I V(T')-11 +I V(T")-11 =n-2. 

Thus the total number of tree rotations of Tis at most (n -1 )(n- 2). 
This upper bound is slightly improved in the following proposition. 

Proposition 4.1. The maximum degree oft§(n) is at most n(n-3)for n~4. 

Proof. The bound (n-1)(n-2) can be decreased by exhibiting rotations which give 
no distinct neighbors of Tin l§(n). Let TE§"(n) and x1 , x 2, ... , xP be a maximum path 
of T. If p = 3, then T is a star which has degree one in I§ (n), so the claim is true. 

Assume that p~4. If one of x2 and xP_ 1, say x2, is a vertex of degree two, then 
T(x 2. x3 . x 1 )~ T, i.e., the rotation (x2 . x 3 . x!) gives no new neighbor ofT. If Xp- 1 has 
degree at least three, then let (xp_ 1 , Xp+ t) be an edge, clearly a pendant edge of T. 
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Then T(xp-1·xp+ 1 .y)~T(xp- 1 .xp.y) for every yEV(T)\{xp_ 1,xp,xp+d· Thus at 
least two rotations give the same neighbor of Tin ~(n). 

In each case T has at most (n -1 )(n- 2)- 2 = n(n- 3) distinct neighbors. D 

The next result shows that the maximum degree of ~(n) is approximately n2
• The 

proof is omitted because of the technical difficulty of deciding whether two distinct 
rotations lead to isomorphic trees. This problem is related to reconstruction conjec­
ture and the graph isomorphism problem (cf. [6, 9]). 

Proposition 4.2. Let n=2k+ 1+k and define the tree T=T(k), k~1, to be a path 
(1, 2, ... , 2k+ 1 ) plus k pendant edges, one at each vertex 2i, i = 1, ... , k. Then T has 
37n2 /48- O(n log n) neighbors in ~(n). 

The upper bound for the maximum degree given in Proposition 4.1 yields that the 
order of maximum clique of~(n) is not greater than n(n-3)+1 for n~4. 

As far as the lower bound is concerned we only know of cliques of order O(n) in the 
tree rotation graph ~(n). A clique of order n-2 can be obtained as follows. Let Tbe 
a path (1, 2, ... , n-1) with one more pendant edge (n-2, n). Then the rotations 
(2. 1 . i) for i = 3, ... , n -1 create n- 3 distinct trees. It is easy to verify that each pair of 
these have rotation distance one. 

Note that the size of the maximum clique of ~(n) is probably not linear inn. In the 
proposition below, we show that the maximum size of an induced star of ~(n) is O(n). 

Propsoition 4.3. Let p be the maximum size of an induced star of ~(n). Then 
2n-o(n)<p~2n-2. 

Proof. The rotations of any (n, m)-graph involving a fixed vertex of a fixed edge clearly 
form a clique in the rotation graph. Therefore, an induced star in any rotation graph 
has size at most 2m, so the upper bound follows. 

Let 2k+k~n~2k+ 1 +k and let T(k) be the caterpillar defined in Proposition 4.2. 
Let T= T(k) if n = 2k+ 1 + k, otherwise let T be the left subtree of T(k) containing n + 1 
vertices minus the pendant edge at vertex 2k+ 1

. Let n' be the last vertex of the longest 
path of T starting at 1; n' is approximately n-log n. Then T(i+ 1. i. i+2) and 
T(i. i + 1. i -1), for i = 2, ... , n'- 2, are 2n- o(n) pairwise independent trees in ~(n). 
Thus p>2n-o(n). D 

A pruning order of a tree G of order n is an ordering x 1 , x 2 , ... , Xn of V( G) such that 
the set {xi, xi+ 1 , ... , xn} induces a subtree of Gin which xi has degree one, 1 ~ i < n. In 
that pruning order (xh xj) is called a forward edge if and only if i < j. 

Recall that the tree distance r(G, H) of G, HE!T(n) is the distance between G and 
H in the tree rotation graph ~(n). We will use the following result. 

Proposition 4.4. Let G and H be trees of order n with the same vertex set which have 
a common pruning order. IfiE(GnH)I=t, then r(G, H)~n-1-t. 
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Proof. Let x 1 ,x2 , ... ,xn be the common pruning order of G and H, let ei and};, 
1 ~ i < n, be the forward edges at xi of G and H, respectively. Define ri =(ei. xi.};) for 

e(i=};, 1 ~i<n. 
For every i = 1, ... , n -1, perform rotation ri or do nothing depending upon 

whether ri is defined or not. This sequence of n -1- t rotations transforms G into 
Hand clearly no rotation disconnects the tree. 0 

We formulate an application of Proposition 4.4 that becomes useful when bounding 
the distance between two trees. It is generalization of Proposition 2.10. 

Corollary 4.5. Let G and H be trees of order n. If G and H have a common subtree of 
t edges, then r(G, H)~n-1-t. 

Proof. Assume that E(G)nE(H) contains the common subtree T of t edges. Let 
Xn _ t' ... , Xn be a pruning order of T. Then, one easily obtains a labeling x 1 , ... , xn _ t _ 1 

for the remaining vertices of G and H such that x 1 , ... , xn becomes a common pruning 
order for G and H. Hence r(G, H)~n-1-t follows from Proposition 4.4. 0 

Next we give a lower bound on the tree distance oftwo trees in terms of their degree 
sequences. 

Proposition 4.6. Let G and H be trees of order n with degree sequences g1 ~ g2 ~ • • • ~ gn 
and h1 ~ h2 ~ • • · ~ hn, respectively. Then 

1 n 

r(G, H)~- L lgi-hd~ max {lgi-hil}. 
2i=l 1,;i,;n 

Proof. Observe that a tree rotation decreases by 1 and then increases by 1 the degree 
of two distinct vertices. The other degrees remain unchanged. Therefore, 

1 n 

-r(G, H)~2 m~n ~ lgi-hn(i)l, 

where the minimum is taken over all permutations n of {1, ... , n}. We show that the 
above minimum can be obtained for the identity permutation. Let n be an optimal 
permutation such that i = n(i) for every 1 ~ i < p ~ n, and p =1- n(p). Let p = n(q) for some 
p<q~n. 

Now define n' (i) = n (i) for every i, 1 ~ i ~ n, different from p and q and let n' ( p) = p 
and n'(q) = n(p). 

We claim that n' is still optimal. Indeed it is easy to check from p < q and p < n ( p) 
that the inequality 

lgp-hn(p)l + lgq-hn(q)l = lgp-hn(p)l + lgq-hpl ~ lgp-hpl + lgq-hn(p)l 

= lgp-hn'(p)l + lgq-hn'(q)l 

holds and thus the claim follows. 
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Applying the same procedure for the remaining indices we obtain that the identity is 
an optimal permutation. The second inequality of the proposition is trivial. 0 

Note that Proposition 4.6 is valid for arbitrary graphs as well. 
The diameter of a graph is the maximum length of the shortest path between any 

pair of its vertices. The diameter of the tree rotation graph is maxa, He.r(n) r(G, H). 

Proposition 4.7. The diameter ojl§(n) is n-3for n~3. 

Proof. Since any two trees have a common subtree of at least two edges, 
r(G,H)~n-1-t~n-3, by Corollary 4.5. Moreover, this bound is sharp, as the 
example of a star and a path show. 0 

For 1 ~ i ~ n let Pi be a path of i vertices rooted at an endpoint; then a balanced 

caterpillar C(i) is defined as a rooted caterpillar of order n obtained from Pi plus an 
appropriate number of pendant edges such that each vertex of Pi has degree 
L(n-2+i)/iJ or i(n-2+i)/il 

Proposition 4.8. The length of a maximum induced path of!§(n) is at least n log n- O(n). 

Proof (outline). We show that r(C(i+ 1), C(i))~(n-2)/(i+ 1)-1, for 1 ~i<n. Let 
gi and hi be the jth largest degree of C(i + 1) and C(i), respectively. Since 
gi+l ~L(n-2)/(i+ 1)J+ 1 and hi+l = 1, by Proposition 4.6, 

r(C(i+ 1), C(i))~ lgi+l -hi+ll ~L(n-2)/(i+ 1)j~(n-2)/(i+ 1)-1. 

Observe that C(i+ 1) and C(i) are distinct trees for each i= 1, ... , n-4, since 
(n-2)/(i+ 1)-1 >0. 

Let M(i) be the set of trees inducing a path of mmtmum length in l§(n) 

between C(i+ 1) and C(i), 1 ~i~n-4. Now the tree distance of each tree of 
M(i)\{C(i), C(i+1)} from each tree of MU)\{C(j), C(j+1)} is more than one for 
1 ~ i < j ~ n- 4. Thus the union of M (i) for 1 ~ i ~ n- 4 is an induced path of length at 
least 

n-3 

(n-2) L (1/i-1)=n1ogn-O(n). D 
i=2 

Now we give upper and lower bounds on the radius, defined as the minimum length 
of the longest induced path starting from any vertex of the graph. The radius of the 
tree rotation graph is minre.r(n) maxae.r(n)r(T, G). Propositions 4.9 and 4.10 will show 
that the radius of l§(n) is n- o(n). 

Proposition 4.9. Let n=k2
, k~2, and C(jn) be the balanced caterpillar of order 

n obtained from the path P-Ili with Jn -1 pendant edges added at each vertex. Then 

r:(T, C(Jn))~n-Jnfor every tree T of order n. 
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Proof. Suppose first that T has a vertex of degree at least Jn-1. Then Tn C(jn) 
contains a common star of Jn-1 edges, hence by Corollary 4.5, r(T, C(jn))~n-

1-(jn-1)=n-Jn. Assume now that each vertex of Thas degree less than Jn-1. 
For the sake of simplicity, we will label the vertices ofT and C(Jn) with integers from 
1 ton. 

A pruning order of C(Jn) is obtained by the following labeling. Label the vertices of 
the Jn-path of C(jn) with iJn, i= 1, ... , Jn, and for fixed i label the endvertices 
adjacent to iJn with (i-1)Jn+j,j=1, ... ,Jn-1. We claim that Thas a pruning 
order 1, ... , n such that (pi, qi) is an edge for every Pi=(i-1)Jn+ 1 and qi=iJn, 

i= 1, ... 'Jn. 

The labeling of T goes in Jn stages. In the ith stage, 1 ~ i ~ Jn, label an end vertex 
with Pi=(i-1)Jn+ 1 and label its neighbor with qi=iJn. Now we prune vertex Pi, 
then Jn-2 more endvertices first taking all neighbors of qi, and we label them from 
the labels (i-1)Jn+j,j=2, ... , Jn-3. Observe that qi becomes an endvertex during 
this stage since the maximum degree of Tis less than Jn -1. Finally, we prune qi. This 
pruning order of T has the required property. 

We have shown that 1, ... , n is a common pruning order of T and C(jn) with 
Jn common edges (pi, qi)EE(Tn C(jn)), i = 1, ... , Jn. Then, by Corollary 4.5, 
r(T, C(jn))~n-1-Jn<n-Jn follows. D 

Proposition 4.10. The radius of ~(n) is at least (1- a)n for any a> 0 and sufficiently 
large n. 

Proof (outline). Assume Tis an arbitrary tree with degree sequence d1 ??- d2 ??- · · · dn. 
Select 1>a1 >a2 > ··· >am>O such that (m-1)a??-4. Let 7i=C(n1

-cxi+
1

) be the bal­
anced caterpillar defined above. (In this outline n powers are treated as integers.) 

We claim that for some i, r(T, 7i) ??- (1- a)n. Using Proposition 4.6, it is enough to 
show that for some i 

L (ncxi+ 1
- di) ??- (1- a)n, (1) 

jEA; 

where Ai, 1 ~i~m-1, denotes the set of all indices pE{1, ... , n} for which dP~ne%i+ 1 , 

and 

n n 
n1 -a;=-< p ~ --= n1 -ex;+ 1. 

nCXi nai+1 

Assuming that (1) is false, fori= 1, ... , m we obtain 

L di> L ncxi+ 1 -(1-a)n. 
jEA; jEA; 

B d fi . t" f A d CXi + 1 .r . B \A h B - { 1 - CXi 1 1 - CXi + 1 } y e m wn o i, i > n 10r JE i i, w ere i- n + , ... , n . 
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Therefore, 

I di> I -(1-e)n. 
jEB; jEB; 

I di> n- nl-a;+a;+ 1 -n+en =en- nl-a;+a;+ 1 ;:::en/2 
jEBi 

if n is sufficiently large. 
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(2) 

Adding (2) for i = 1, ... , m -1, the left-hand side is smaller than 2n but it is at least 
(m-1)en/2. Thus 4>(m-l)e, contradicting the choice ofm. 
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