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We prove that for d ~ 4, d * 5, the edges of the d-dimensional 
cube can be colored by d colors so that all quadrangles have four 
distinct colors. © 1993 John Wiley & Sons, Inc. 

At the recent 23rd Southeastern Conference on Graph Theory, Combina
torics, and Computing, Puhua Guan asked the following question: Is it 
possible to color the edges of the d-dimensional cube Qd with d colors 
so that all quadrangles of Qd are colored with four distinct colors? This 
makes sense only for d ~ 4 and Guan mentioned that he has constructed 
such a coloring for d = 4. In this article we give an affirmative answer to 
this question, except for d = 5, where the required coloring does not exist. 

We call an edge-coloring of a graph G a rainbow coloring if the edges of 
every quadrangle ( C4 in what follows) of G are colored with distinct colors. 
Let rb (G) denote the minimum number of colors in a rainbow coloring of 
G. Notice that rb(G) = 1 if G has no quadrangles, otherwise rb(G) ~ 4. 

Rainbow colorings seem particularly interesting for graphs having the 
following property: any two incident edges are in a quadrangle of the graph. 
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In this case, rainbow colorings are automatically proper edge colorings in 
the usual sense, i.e., each color class is the union of disjoint edges. Since this 
property is preserved under taking Cartesian products of graphs, it seems 
natural to study rb(G X H) in general. Although we focus our attention on 
Qd, some lemmas are used that point to the more general setting. 

Rainbow colorings are also related to total colorings. A coloring of edges 
and vertices (elements) of a graph is total if both edge and vertex colorings 
are proper and two elements of the same color are not incident. In what 
follows, c (x) and c (x, y) will be used to denote the color of a vertex x and 
edge xy, respectively. 

Theorem 1. If d :2: 4, d =I= 5 then rb(Qd) = d. 

Corollary. If d :2: 3, d =I= 4, there exists a total (d + I)-coloring of Qd, 
which is also a rainbow coloring. 

Proof. Let x be a rainbow (d + I)-coloring of Qd+I from Theorem 1. 
Consider Qd+ 1 as two disjoint copies of Qd with a factor between them. On 
one of these copies x induces a rainbow (d + I)-coloring and the colors 
of the factor edges give a proper vertex coloring on their end points in the 
copy of Qd in question. It is immediate that this coloring is total on Qd. 1 

Perhaps at this point it is useful to remark that it is easy to construct 
directly a total (d + I)-coloring of Qd for d :2: 3 (without the additional 
rainbow property). This can be done by induction on d as follows. To anchor 
the induction, take a total 4-coloring of Q3 (see Figure 1). For the inductive 
step, take two disjoint copies of Qd, say A and B. Join the corresponding 
vertices of A and B by a factor XiYi, i = I, 2, ... , 2d. 

Set c(xi, Yi) = d + 2. Select any permutation II on the set {I, 2, ... , d + 
I} of colors that has no fixed point. Take a total (d + I)-coloring on A using 
colors I, 2, ... , d + I (induction) and permute colors on B as follows: 

c(yi) = II (c(xJ), 

This argument gives the following proposition. 

Proposition 1. The total chromatic number of Qd is d + I for d :2: 3. 

B= 

FIGURE 1 
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The proof of Theorem 1 is based on three simple lemmas. Lemma 1 
produces a rainbow coloring of the products of graphs from the rainbow 
coloring of its factors. It shows that rb(G1 X G2) ~ rb(G1) + rb(G2) when 
G1 and G2 satisfy an additional condition. The other two lemmas are 
refinements of Lemma 1 for the special case when G2 = Q3 or G2 = Q2 . 

Before stating the main lemma, its key ingredient, the rainbow variant, 
is defined. Assume that G and H are isomorphic, H = f(G) under an 
isomorphism f. Suppose also that both G and H have rainbow colorings. 
Then H and G are called rainbow variants (or simply variants) if 

c(x, y) -::f- c(f(x), f(y )) for all xy E E(G). 

A simple example of a rainbow variant is defined by a color-shift: if G 
is rainbow colored with colors 1, 2, ... , k then an i -shift is the variant 
H = f(G) equipped with the rainbow coloring c(f(x), f(y )) = c(x, y) + 
i (mod k). A more complex example is shown in Figure 1, where the two 
variants are obtained by the automorphism of the cube that exchanges 
opposite corners. Unlike the shift, this variant does not preserve color classes 
under the isomorphism of the variants. 

Lemma 1. Assume that G1 has a rainbow p 1-coloring, and G2 has a 
rainbow p 2-coloring. Furthermore, assume G1 has a proper vertex q1-

coloring, and G2 has a proper vertex q2-coloring satisfying the "cross 
inequalities" 

(1) 

Proof. Let S1 and S2 be disjoint color sets, ISd = Pi and fix a rainbow 
Pi-coloring on Gi with color set Si (i = 1, 2). Also fix proper vertex col
orings of G1 and G2, using colors 1, 2, · · ·, q1 and 1, 2, · · ·, q2 , respectively. 
Write G1 X G2 as 

where G2 (x) is the copy of G2 in G1 X G2, which corresponds to x; 
similarly, G1 (y) is the copy of G1 in G1 X G2 , which corresponds to y. 

A rainbow coloring of G1 X G2 is defined as follows. For each vertex 
x E V(G1), let G2(x) be the c(x)-shift of G2 . Similarly, for each vertex 
y E V(G2), let G1 (y) be the c(y )-shift of G1• 

Observe that the shift-property and "cross-condition" (1) ensure that G2(x) 
and G2 (x') are variants if c(x) -::f- c(x'). By the same reason, G1(y) and 
G2(y') are also variants if c(y) -::f- c(y'). 
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Since the vertex colorings are proper and S I n S2 = ¢, the coloring is 
a rainbow-coloring with PI + p2 colors. I 

Lemma 2. If GI is bipartite with at least one edge then, 

Proof. We proceed in the spirit of the proof of Lemma 1 with Q3 re
placing G2. Define PI = rb(GI), SI = {5, 6, ... , PI + 4}, S2 = {1, 2, 3, 4} 
and fix a rainbow PI -coloring and a proper vertex 2-coloring on GI. Let A 
and B denote Q3 with the edge and vertex colorings given in Figure 1. 

For each vertex x E V(GI), let G2(x) be either A or B depending on 
the color of x. For each vertex y E V(Q3), let GI (y) be the c(y )-shift of 
GI. The coloring is a rainbow-coloring of GI X Q3 if PI 2: 4. However, 
PI + 4 colors are used instead of PI + 3. 

To eliminate one color, say color 5, the special feature of the variants A 
and B is used that may be checked in Figure 1: the corresponding vertices 
of A and B miss the same color. This means that each edge of color 5 in 
GI X Q3 can be recolored to one of the colors in {1, 2, 3, 4} without violating 
the rainbow property. If PI ~ 3 then GI is has no C4 , implying p 1 = 1. In 
this case the same proof works if we start with the bipartite vertex coloring 
of Q3. I 

Corollary 2. If G1 is bipartite and has no C4 , then rb ( G1 X Q3) = 4. 

Proof. Since rb(GI) = 1, Lemma 2 can be applied. 1 

The next lemma is similar to that of Lemma 2, but eliminates two colors 
(instead of just one) from a rainbow coloring of the product by rb(G1) + 4 
colors. 

Lemma 3. Let G1 be a graph with a rainbow coloring using p 1 2: 2 colors 
and with its vertex set properly colored using four other colors, say 1, 2, 3, 4. 
Assume two of the PI colors, say 5 and 6, span a subgraph that consists 
of alternating cycles, each alternating cycle formed by passing (repeatedly) 
through the vertex classes 1, 2, 3, 4, 1 in this order. Then rb(G1 X Q2) ~ 
rb(GI) + 2. 

Proof. The proof follows the same idea as the proof of Lemma 2. First, 
a rainbow coloring of GI X Q2 is given with PI + 4 colors as follows. 
Consider GI as defined in Lemma 2 with its rainbow PI-coloring, and 
assume that the color set SI in this rainbow coloring is SI = {5, 6, ... , PI + 
4}. 

Let Hi (for i = 1, 2, 3, 4) be the variants of Q2 colored by the set of 
colors S2 = {1, 2, 3, 4} as shown in Figure 2. A partial rainbow coloring 
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FIGURE 2 

demonstrating the alternating cycle in colors 5 and 6 is also shown in 
Figure 2 in the case when G1 = Q4. 

For each vertex x E V(G1), let Q2(x) = G2(x) = Hc(x)' where c(x) is 
the color assigned to vertex x. For each vertex y E V(Q2), let G1 (y) be 
the c(y )-shift of G. 

In a fashion similar to that in the proof of Lemma 2, we reassign each 
edge colored by 5 and 6 with an appropriate color selected from {1, 2, 3, 4}. 
For example, if an edge of G1 (y) has color 5 and joins vertices labeled 
with color 1 in H2 and H 3 , then neither of these vertices is incident in their 
respective Hi to color 4. This allows the edge with color 5 to be recolored 
with color 4. Continue in this fashion around the alternating cycles (colored 
with 5 and 6) in each G1 (y ), and reassign each edge a color from {1, 2, 3, 4} 
so that the coloring remains rainbow. This eliminates colors 5 and 6 entirely 
and completes the proof. 

An example when G1 = C8 demonstrates the procedure and is shown in 
Figure 3. I 

The proof of Theorem 1 now uses the three lemmas in the following way. 
Lemma 2 colors Q4 (with G1 = Q1) and Q7 (with G1 = Q4). Lemma 3 

Gt{l) Gt(4) 

0 
Cs 

FIGURE 3 
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colors Q6 (with G1 = Q4) and Lemma 2 colors Q9 (with G1 = Q6). Then 
repeated applications of Lemma 1 colors all Qd for d 2:: 8 and d -=1- 9. We 
can show that the cube Q5 has no rainbow coloring with five colors by a 
special case analysis. Since the argument is special and lengthy, it will not 
be given here. 
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