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Let G be a multigraph of maximum degree Ll and with a set oft vertices of degree one, 
called terminals. We call G a (Ll, t)-network if for any pairing of its terminals there exist 
edge-disjoint paths in G between those pairs (tis even). The concept of (Ll, t)-networks 
is introduced to model the situation when switching processors having Ll ports are to be 
connected in such a way that simultaneous communication is possible for any pairing of 
the free ports. We establish some properties of (Ll, f)-networks. In particular, we investi
gate optimal (or near-optimal) networks and obtain lower and upper bounds on the 
function n(Ll, t), the minimum number of interior nodes a (Ll, f)-network can have. 
© 1992 John Wiley & Sons, Inc. 

1. INTRODUCTION 

A processor is a node with Ll distinct I I 0 lines. Each of the Ll lines can be 
used to connect the processor to another processor or to a terminal. We wish to 
build a network from these processors so that it is possible to communicate 
simultaneously for any pairing of its terminal nodes. What is the minimum 
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number of processors n(~, f) needed in such a network with f terminal nodes (t 
is an even positive integer)? Equivalently, for n processors, what is the maxi
mum f = f(~, n) for which there exists such a network with t terminal nodes? 
The problem is to determine or estimate n = n(~, t) and to design optimal (or 
near-optimal) networks. 

To describe the problem more precisely, we introduce the notion of a (~, f)
network. Let G be a multigraph with maximum degree ~. with vertex set 
V(G) = T(G) U I( G), where IT( G) I = f(t even) and the vertices of T(G) are all of 
degree 1. Call G a (Ll, f)-network if for any pairing of the vertices of T(G) there 
exist edge-disjoint paths in G between the paired vertices. To exclude trivial 
cases, it is always assumed that~ 2:: 3, t 2:: 4, and t > Ll. If no confusion occurs, 
we use T = T(G) and I= I( G). Tis referred to as the set of terminal nodes or 
terminals and I is called the set of interior nodes of the network. 

We would like to point out that the notion of a (Ll, f)-network emerged from a 
practical problem which the first author met in the course of building a packet 
switching data network node from a given miniswitch having a limited number 
of ports. The miniswitch can establish virtual circuits between any pairs of its 
ports. The problem was how to connect a number of those switches together to 
have a larger capacity switch having more ports than the building element but 
keeping the basic feature of the miniswitch. The basic feature is that there is a 
given throughput in terms of packet per second for all of its ports and the total 
throughput is equal to the sum of the throughputs of all of its ports. Within 
these limitations, a packet entering the switch can leave at any other port. The 
ports are symmetric as far as the inbound and outbound packet traffic is con
cerned. By the heuristic approach, we found some practical solutions, for 
instance, from a miniswitch having 10 ports, we could put together seven 
pieces to form a switch having 24 ports. [The solution was the (10, 24)-network 
in which the inner vertices form a K 7 and four terminals are adjacent to all but 
one vertex of K 7 .] 

In a (~, f)-network, pairs of vertices of a graph are to be connected with 
edge-disjoint paths, thus the notion is clearly related to multicommodity flow 
problems. (A survey article on this is [11] .) The concept is also related to linked 
and weakly linked (in our case f/2-linked) graphs (see [5-7]). These connec
tions become clear by introducing the notion of a demand graph. 

Given a (Ll, f)-network, let C ~ I be the set of all vertices of the network 
adjacent to at least one terminal node. Assume that C = {c 1, ... , ck} and ci is 
adjacent to ti(2:: 1) terminal nodes (:L7; 1 ti = f). To a pairing of T, a demand 
graph Dis associated, having vertices d 1 , ••• , dk and didJ being an edge of D 
with multiplicity m if there are m pairs ofT between terminals adjacent to c i and 
c1 . The demand graph may have (multiple) loops. 

Clearly, the vertex di in D has degree fi. Loosely speaking, it is straightfor
ward that a network G with maximum degree~ and with t = :L~; 1 ti terminals is 
a (Ll, f)-network if and only if all demand graphs with degree sequence t 1 , ••• , 

tk is realizable by edge-disjoint paths in G[Il. For each demand graph, we have 
an instance of the edge-disjoint paths problem (see [4]). Figure 1 pictures an (8, 
18)-network G built on the complete graph K 6 , together with a demand graph. 
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FIG. 1. An (8, 18)-network with a demand graph. 

Define n(~, f) as the minimum number of interior nodes in a(~, f)-network. 
The (.:1, f)-networks attaining this minimum are called optimal networks. In 
fact, very few optimal networks are known, even for small values of L1 and f. 

Some of these networks are displayed in Figure 2. Perhaps, at first sight, it is 
not obvious that (3, f)-networks exist for arbitrary f, but it is easy to see that 
n(3, f) :::; f 2 (Proposition 1). 

(3,4) (4 ,6) (4,8) 

(5,8) 

FIG. 2. Some optimal networks. 
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It will be shown that n(~, t) 2: (tl IJ.) [log L1-J t] (Theorem 2), but we were not 
able to construct networks with so few vertices. Using k-dimensional grids and 
a simple substitution principle, it is possible to construct (IJ., f)-networks with 
2t 1 + llk vertices for any positive integer k and for sufficiently large t (Section 5). 

It seems interesting to investigate the network KZ where the set of interior 
nodes induces a clique Kp and there are q terminals attached to each node of 
K P • We prove in Section 6 that the largest q such that KZ is a ( p + q - 1, pq )
network satisfies p/7.5 ::; q ::; p/2 (Theorem 4 and Proposition 3), and our 
conjecture is that the upper bound is close to the truth (Conjecture 2). 

The main problem left open is the order of magnitude of n(3, t). The truth is 
probably close to the lower bound at log t (see Theorem 2). In fact, a good 
upper bound would follow from the following conjecture. Assume that x 1, 

x 2 , ••• , x 2" are the vertices of the d-dimensional cube and d is odd. Then, 
there exist edge disjoint paths from xi to xi+ 1 , for i = 1, 3, . . . , 2 d - 1. This is 
true fori= 1, 3, ... , 2d- 1 (i.e., ford pairs) as proved in [9]. As was reported 
by A. Frank recently, a very similar ''path pairable'' property was proposed for 
the symmetrically directed cubes. 

From a practical point of view, it is useful to see how to make the routing 
algorithmic if the pairing of terminals is given. Routings on grid networks 
depend on good edge-coloring algorithms, but in the case of networks built on 
complete graphs, a greedy-type algorithm is used. 

2. CUT BOUNDS 

Assume that G is a (.1, f)-network with V(G) =I U T, and I is partitioned into 
two sets A and B. Then, Tis also partitioned into TA and Ts according to the 
adjacencies of these vertices in I. Denote by e(A, B) the set of all edges 
between A and B. It is immediate to check the 

Cut Condition. For any (IJ., f)-network, 

However, the Cut Condition is not sufficient. Two simple examples are shown 
in Figure 3 (the first one is a fairly standard example). A more general example 
is the network built on the d-dimensional cube Qd, for d even. To see this, 
consider the demand graph on the cube formed by the 2d-I pairs of opposite 
corners. Since the shortest path between opposite corners has length d, the 
union of the edge-disjoint paths realizing the demand graph must cover all of 
the d2d-! cube edges exactly once. This is possible only ford odd, since for any 
vertex v just one path starts at v. However, Qd satisfies the Cut Condition for 
every d, which follows by a result due to L. H. Harper, A. J. Bernstein, and S. 
Hart (see in [1]). 

It follows easily from the Cut Condition that n(.1, t) 2: 2tl ~. More careful 
analysis of the Cut Condition gives the following improvement: 

Theorem 1. n(~, t) 2: (5/2)(t/ ~) - 1. 
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FIG. 3. Networks whose even multiples work. 

Proof. It is known (see, e.g., in [8]) that in a graph of n vertices and m edges 
the average of an even cut (with sets of order Ln/2J and r n/21) is mU n2/4l)/G). 
Thus, the graph has an even cut containing at most (nm)/[2(n - 1)] edges. 
Applying this observation for the graph Gu1 induced by I in a (Ll, t)-network G, 
there exists an even cut (A, B) in G[Il such that (nm)/[2(n - 1)] 2: e(A, B). Let 
t* = min(ITAI, ITBI). Since m ::s (nLl- t)/2, we obtain by the Cut Condition that 

. nm n nLl - t 
t"" ::s e(A, B) ::s 2(n - 1) ::s 2(n - 1) 2 (1) 

On the other hand, each vertex of I is adjacent to at most Ll/2 vertices of T; 
therefore, 

(2) 

The theorem follows by eliminating t* from (1) and (2). • 
3. THE DISTANCE BOUND 

Let G be a (Ll, t)-network, x E T and p be an integer (p 2: 2). Obviously, 
there are at most (Ll - op-l vertices ofT at a distance at most p from X. (The 
distance is understood to be in G.) Assuming that t::::: 2(Ll - l)P- 1, T contains at 
least t/2 terminals, each at distance p + 1 or more from x. Repeating this 
argument for all x E T, one can see easily that there is a pairing of vertices of T 
such that the distance between each. pair is at least p + · 1 in G. The edge
disjoint paths for this pairing have at least t(p + 1)/2 edges. On the other hand, 
these paths use at most IE(G)I ::s (IIILl + t)/2 edges, since each vertex of I has 
degree at most Ll in G. Thus, t(p + 1) ::s 2IEI ::s IIILl + t, i.e., III:::: tp/ Ll. Now t 2: 

2(Ll - l)P-1 can be assured by setting p = LlogA-1 t/2J + 1 ::::: LlogA-I tj, and we 
get 

Theorem 2. n(Ll, t) 2: (tl Ll) LlogA-1 tJ. 
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Note that for small values oft (t s (L1- 1)2·5) the cut bound is better than that in 
Theorem 2. 

4. PRINCIPLES OF BUILDING NETWORKS 

4.1. Substitution 

Assume that G is a (L1, f)-network and x E I has degree dc(x) = p. Then, one 
can substitute for x any (L1', p)-network with L1' < L1 and the new network is still 
a (L1, f)-network. Applying repeated substitutions for the vertices of a (L1, f)
network G, one can define a (L1', t)-network Hfor any L1' < L1 (3 s L1') such that 
T(G) = T(H). If this principle is applied to a (L1, t)-network G in which all 
vertices of /(G) have degree L1 so that a (L1', .:1)-network G' is substituted for 
each vertex of /(G), then the result is a (L1', f)-network H with II(H)I = 

II(G)III(G')I. 

4.2. Multiplication 

A natural network operation on a (L1, t)-network G is to define mG by replac
ing each edge in I by m parallel edges and replacing each terminal node x with 
m terminals attached to the same interior node as x. It seems plausible that mG 
is an (mL1, mt)-network-at least we do not know any counterexample. 

Problem 1. If G is a (L1, f)-network, is it true that mG is an (mL1, mt)-network? 

The reverse implication is certainly false. Figure 3 shows two examples of a 
graph G for which mG is an (mL1, mt)-network iff m is even. 

It is worth noting that Problem 1 has an affirmative answer when there are 
just two terminals at each interior node of G. Indeed, in this case, a demand 
graph D associated to a pairing of the terminals of mG is a 2m-regular graph. 
Now by Petersen's theorem [10], the edge set of D has a partition into m sets 
defining 2-regular subgraphs D 1 , ••• , Dm of D. Since G is a (L1, t)-network, 
every D; considered as a demand graph has a realization by edge-disjoint paths 
in a copy G1 of G, fori= 1, ... , m. Then, by identifying the corresponding 
vertices of G 1 , G2 , ••• and Gm, we obtain a realization of Din mG. 

4.3. Path Pairable Graphs 

A graph of order 2n is called path pairable if for any ordering V]' ... ' Vzn of 
its vertices there exist n edge disjoint paths from Vzi- 1 to v2i, i = 1, ... , n. This 
notion is motivated by the obvious fact that a path pairable graph G of order 2n 
and maximum degree L1 defines a (L1 + 1, 2n)-network by hanging a terminal 
node on each vertex of G. Path pairable graphs are studied in [2, 3]. (A nontri
vial example of a path pairable graph is the Petersen-graph.) Path pairable 
graphs with a small maximum degree would provide a good upper bound on 
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n(D., t), the minimum number of interior nodes a (D., f)-network can have. A 
natural candidate is the d-cube Qd for d odd ( cf. Section 2). 

Conjecture 1. The d-dimensional cube Qd is path pairable for every odd d. 

This is proved for d = 3 and supported by our result that for odd d the edge 
set of Qd has a partition into paths of length d so that the endpoints of each path 
are opposite corners. For our purpose, it would be useful to answer the follow
ing weaker question: 

Problem 2. Is the multi cube cQd (each edge of Qd is replaced with c parallel 
edges) path pairable for all d with some fixed integer c? 

The significance of this problem (or, in fact, the existence of any path pair
able graph with small degrees) is that it helps to construct nearly optimal 
networks. To illustrate this, assume that cQd is path pairable. Let G be the 
network with one terminal attached to each vertex of cQd [G has 2d terminals 
and 2d interior nodes, and it is (cd + I)-regular]. Clearly, G is a (cd + 1, 2d)
network. Substitute each interior node by an optimal (3, cd + I)-network with 
n(3, cd + 1) interior nodes. The resulting (3, 2d)-network has 2dn(3, cd + 1) 
interior nodes, which is certainly smaller than 2d(cd + 1)2, using a simple 
observation (see Proposition 1). Thus, one would get n(3, t) :sat log2 t, which 
is close to the lower bound O(t log t) in Theorem 2. 

4.4. Asymptotic Structure 

The cut condition shows that in a (D., f)-network each interior node is adja
cent to at most lD./2j terminal nodes. This implies that in a (3, f)-network the t 
terminals are adjacent tot distinct interior nodes. We could not decide which (if 
any) of the following two possibilities describe the asymptotic terminal connec
tions of optimal' (D., f)-networks: If D. is fixed and tis large, then for an optimal 
(D., f)-network G 

(a) the t terminal nodes of G are adjacent to t distinct interior nodes of G; 
(b) the t terminals of G are partitioned into groups of lD./2J nodes and each 

group is attached to a common interior node of G. 

5. GRID NETWORKS 

In this section, we prove that n(3, t) :s 2t 1+e, for any c: > 0 and for sufficiently 
large t. Clearly, the same bound is valid for any D. 2:: 3. The idea is to construct 
an (m, mk)-network H with ckmk vertices and then use the substitution principle 
by replacing each vertex of H by a (3, m)-network with "few" vertices, e.g., 
with m 2 vertices shown by the next proposition (cf. Sections 4.1 and 4.3). 

Proposition 1. n(3, m) :s m 2• 
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Proof. Consider m vertical lines starting at terminal nodes 1, 2, ... , m and 
join line i and j with a horizontal segment so that each of these ('2) segments are 
at different heights. Define a network N with the m 2 - m distinct endpoints of 
the segments as interior nodes and with the set of all vertical and horizontal 
segments between nodes as edges. It is easy to see that N is a (3, m)-network . 

• 
Let Bk(m) denote the set of points of the k-dimensional grid of size m, i.e., 

Bk(m) = {(x 1 , x 2 , ••• , xk): every xi is an integer, 1 :S xi:::; m}. 

A line in B k(m) is a set of m points given by fixing k - 1 of the coordinates. Our 
purpose is to create a bipartite graph Gk(m) by adding an independent set of 
ckmk-I vertices to Bk(m), each vertex adjacent tom points of a line of Bk(m). To 
get a network, we will attach one terminal at each vertex of Bk(m), so the 
property we need is that for any pairing of the vertices in B k(m) there exist 
edge-disjoint paths of Gk(m) joining these pairs. 

The definition of Gk(m) is recursive. G 1(m) is defined by adding a new vertex 
to B 1(m) and join it to all of the m vertices of B 1(m). Assume that Gi(m) is 
defined for i < k. Then, we define Gk(m) as follows: 

(1) Add mk-I distinct vertices to Bk(m), one for each "horizontal" line, 
which is a set of points with the last k - 1 coordinates fixed. At each 
vertex include m edges going to every point of the corresponding line. 
The set of all vertices added is denoted by C. 

(2) Let B I' ... 'B m be the "vertical" planes of B k(m), i.e.' planes with the 
first coordinate fixed, each considered as a copy of Bk- 1(m). For each 
Bi, i = 1, ... , m, take six copies of Gk- 1(m) and identify with Bi their 
corresponding vertices belonging to Bk- 1(m). 

Proposition 2. The graph Gk(m) has 

vertices, and a vertex x of Gk(m) has the following degrees: 

{

6k- 1 

d(x) = m 5 

Proof. Simple counting shows that there are (6k - l)mk-If5 vertices of 
degree m added to Bk(m) in steps (1) and (2). Since Gk(m) is a bipartite graph 
and iBk(m)i = mk, the proposition follows. • 
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Theorem 3. n(3, t)::::::; 2tl+e holds for any s > 0 and for sufficiently large t. 

Proof. Let k and m 0 be fixed integers such that k 2: 2/e and m 0 2: (6k- 1)/5. 
We show that n(3, t)::::::; 2t 1+8

, for every t 2: m~. 

Assume for simplicity reasons that t = mk, for some integer m 2: m 0 divisible 
by five. Let H be the network built on Gk(m), by attaching mk terminal nodes, 
one to each point of Bk(m). We verify that for any pairing of the terminal nodes 
of H, i.e., that of the vertices of B k(m) in Gk(m), there exist edge-disjoint paths 
of Gk(m) joining the given pairs of vertices. 

Partition the m vertical planes and thus the points of B k(m) into five equal 
classes Ai, l ::::::; i ::::::; 5. Then, the pairs of the pairing of the points in B k(m) can be 
partitioned into 10 classes Au, 1::::::; i < j::::::; 5, such that if the pair xx 1 belongs to 
Au, then {x, X

1
} c Ai U Aj. For each class Au, we define a graph Hu with mk-t 

vertices, each corresponding to a horizontal line. The edges of Hu are defined 
as follows: If a pair XX

1 of Au is such that xis on the horizontal line p and x' 
is on the horizontal line q, then the pair of vertices of Hu corresponding to p 
and q define an edge of H u. Observe that H u may contain loops and multiple 
edges, and since IAi U Ajl = 2m/5, its maximum degree is at most 2m/5. 
Thus, by Shannon's theorem (see [12]), the chromatic index of Hu is at most 
(3/2)(2m)/5 = 3m/5. Color the edges of Hu with 3m/5 colors in such a way that 
edges at the same vertex get distinct colors. For each color class, we may 
associate one of the 3m/5 copies of Bi not in Ai U Aj. All the pairs defining 
loops and colored edges in Hu can be realized by edge disjoint paths as follows: 
If x x' defines a loop, i.e., x and x 1 belong to the same horizontal line, then they 
can be joined by a path of length two including the point of C associated to that 
line. If x and x 1 are on different horizontal lines, then let B 1 be the vertical plane 
associated to the color of x x 1

• Now starting from x and from x 1 one can reach 
the points x 1 and x; of B 1 by paths of length two using distinct vertices of C (see 
[1]). The set of all pairs x 1 , x; E B 1 obtained from edges of Hu and having the 
same color obviously forms a (partial) pairing of B 1• Thus, by induction, one 
can obtain edge disjoint paths realizing this pairing of B 1 in one of the graphs 
Gk- 1(m) associated to B 1 (see [2]). Since there are six copies of Gk_ 1(m) on the 
same plane B 1, and a plane is used by at most six different Au's, the 10 classes 
of pairs (1 ::::::; i < j ::::::; 5) can be handled simultaneously in distinct copies. 

Since m 2: m 0 2: (6k - 1)/5, H has maximum degree m (see Proposition 2), 
and the argument above shows that His an (m, mk)-network. Using the substi
tution principle, each vertex can be replaced by a (3, m)-network containing at 
most m 2 interior nodes of degree three, as shown in Proposition 1. Thus, by the 
choice of k and m, we obtain 

When tis not of the form mk (or m is not divisible by five), the upper bound 
works out similarily. • 
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6. COMPLETE NETWORKS 

For certain Ll and t, (Ll, t)-networks built on complete (multi-)graphs tend to 
be optimal. The simplest case is when q terminal nodes are attached to each 
vertex of a Kp. Denote this network by K$. 

Proposition 3. Assume that pis even. If K$ is a (p + q - 1, pq)-network, then 
q :::; p/2. 

Proof. Consider a pairing of K$ where the terminals hanging on a vertex of 
Kp are paired to terminals hanging on another vertex of Kp. Then, at most p/2 
paths can be of length one among the edge disjoint paths realizing the pairing. 
Thus, p/2 + 2((pq)/2 - p/2) :::; (i), giving q :::; p/2. • 

The last proposition raises the question whether K% is a (p + q - 1, pq)
network if q = p/2. A counting argument shows that this is not the case if p == 0 
(mod 4), but it is probably true for p == 2 (mod 4). 

Conjecture 2. KZ is a (p + q - 1, pq)-network if p == 2 (mod 4) and q = p/2. 

The validity of the conjecture is checked in case of "clump-to-clump" pair
ing when the demand graph is a factor repeated p/2 times. Also, it is true if p = 

6, and even this small example has some interesting features. The reader is 
challenged to find a realization for the demand graph in Figure 1. The best we 
can prove concerning Conjecture 2 is the following result: 

Theorem 4. K$ is a (p + q - 1, pq)-network if q:::; p/(4 + 2\13). 

Proof. Consider any pairing xixf, i = 1, ... , pq/2, of the terminals of K$. 
Let D be the demand graph on the vertex set V(Kp) associated to that pairing. 
Let m(u, v) denote the multiplicity of an unordered pair (u, v) with u, v E V(D), 
u -!- v. Then, M(D) = 2:(u,u) (m(u, v) - 1) will be called the total multiplicity 
of D. 

We describe an algorithm that transforms D into a graph G with no multiple 
edges [i.e., one with M(G) = 0] in several steps, by replacing the multiplied 
edges with paths of length two. Since G C K$, we will obtain edge disjoint 
paths of K$ from the two-paths, the edges and the loops of G, by including the 
terminal edges. These edge-disjoint paths (of length four, three, and two) will 
represent the pairing indicated by the demand graph. 

Our algorithm builds up a sequence of graphs D 0 = .D, D1, ... , Dk = G 
ink stages, such that M(Dk) = 0, Di has maximum degree q + 2i or less, and 
M(Dj) < M(DJ, for every 0:::; i:::; k and i < j:::; k. 

The ith stage of the algorithm transforms D i-I into D i in p - 2q - 4i elemen
tary steps, each step reducing the total multiplicity of Gi-I by one. When Di-I 

progresses to Di, the degree of a vertex is at most q = 2i. Hence, for every pair 
of distinct vertices, u, v E V(D), the set Si(u, v) of all vertices nonadjacent to 
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both u and v has cardinality more than p - 2(q + 2i). Assuming that there are 
multiple edges between u and v, an elementary step consists of picking a vertex 
z from Si(u, v) then including the edges of the two-path (u, z, v) into the graph 
and removing one edge between u and v. 

As long as there exist multiple edges in Di-I , we repeat the elementary steps 
on arbitrary pairs u, v, picking distinct midpoints for the two paths. With the 
choice of distinct vertices in the same stage, we avoid the multiplication of the 
edges introduced earlier; moreover, we ensure that the degree of each vertex 
increases by at most two. Clearly, an elementary step can be done at least (p -
2q - 4i)-times; hence, at the end of the ith stage, M(DJ :::; M(Di- 1) - (p -
2q - 4i). Notice that i :::; (p - 2q)/4 is sufficient to reduce M(Di-I) by at least 
one. 

Observing that M(D) :::; p(q - 1)/2, easy arithmetic shows that the total 
multiplicity of the demand graph reduces to zero in at most k = (p - 2q)/4 
stages, i.e., 

k p 2: (p - 2q - 4i) :::; - (q - 1) 
i=O 2 

holds, whenever q :::; p/(4 + 2\13). • 
The first author would like to thank the Computer and Automation Institute of the 
Hungarian Academy of Sciences for their hospitality during the preparation of this 
manuscript. 
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