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Abstract. A hypcrgraph is irregular if no two of its vertices have t11e same degree. It 
is shown for all r 2 3 and n 2 r + 3, that there exist irregular r-uniform hypergraphs 
of order n. For r 2 6 it is proved that almost allr-uniform hypergraphs are irregular. A 
linear upper bound is given for the irregularity strength of hypergraphs of order nand 
fixed rank. Furthemwre the irregularity strength of complete and complete equipartite 
hypcrgraphs is determined. 

Introduction 

In this paper the concept of irregularity, introduced in [I] for graphs, is generalised 
to the study of hypcrgraphs. A hypergraph His a set of vertices, denoted V( ll), 
and a collection of the elements from the power set of V (H). This collection will 
be called the edge set and will be denoted E( H). The rank of a hypergraph is the 
maximum number of vertices in any ¢ge. A hypergraph is r-uniform if each edge 
has exactly r elements while it is r-regular if each vertex is contained in exactly 
r edges. Throughout the paper only hypergraphs without multiple edges will be 
considered. A hypergraph H' is a partial hypergraph of H if V( H') ~ V( H), 
E( !!') ~ E( II). A hypcrgraph If is vertex-distinguishable if for each pair of 
vertices there is an edge JI which contains precisely one of them. Finally, the 
degree of a vertex xc:V( H) is the number of edges in which xis contained. 

The study of irregularity was started in [1] for integer weighted graphs. The 
same concepts arc extended here to hypcrgraphs. A hypcrgraph is irregular if all 
the degrees are distinct. The only irregular graph is the graph with a single ver­
tex; this is not the case for hypergraphs. In section 3 irregular hypcrgraphs are 
studied. It is shown by a direct construction that there exist irregular r-uniform 
hypcrgraphs with n vertices if and only if r ~ 3 and n ~ r + 3 (Theorem 3.3). 
Moreover, using probabilistic techniques, it is shown that almost all r-uniform 
hypcrgraphs are irregular if r ~ 6 (Theorem 3.4). In nJ. the concept of irregular­
ity strength of a graph was presented. This is given in the context of hypcrgraphs. 
Consider a hypergraph II with positive integer weights assigned to its edges. This 
is an irregular weighting if for all xc: V( H) the degrees (the sum of the weights 
of the hyperedges containing x) are distinct. The minimum of the largest weights 
assigned over all such irregular weightings of II will be called the irregularity 
strength of H and will be denoted s( II). If If has no irregular weighting (i.e. 
H is not vertex distinguishable) then s( II) = oo. Note that if H is an irregular 
hypcrgraph then s( H) = 1. 
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Section 2 of this paper gives some general results on s( H), in particular it 
includes upper and lower bounds for .'.1( II). In case of connected graphs of order 
n 2 4, the upper bounds( G) ~ n-1 has been proved in [4] (this bound is sharp 
as the star K1 ,n-1 shows). In the case of r-uniform hypergraphs ( r 2 3) it seems 
to be difficult to get sharp upper bounds. It is shown that s( H) ~ r I V (H) I 
-r + 1 (Theorem 2.4). On the other hand, it is unknown whether there exists a 
hypergraph H of order n with s( H) 2 2 n. The best known example is based 
on properties of B 2 -sequences investigated in additive number theory, giving a 
hypcrgraph If with s( If) 2 2 n- o( n) (Corollary 2.3). The lower bound given 
in terms of the degree sequence in [4] for graphs remains true for hypergraphs 
(Proposition 2.1). 

In section 4 the irregularity strength of complete and complete equipartite hy­
pergraphs are determined. (Theorem 4.I and Theorem 4.7) 

General results on the irregularity strength. 
The first objective of this section is to present upper and lower bounds for the 

irregularity strength of a hypergraph. The lower bound given in [4] generalizes to 
hypergraphs and is the content of the first proposition. 

Proposition 2.1. If H has 71; vertices of degree i, then 

s(H) <max C:L{=i n;;~ + i- I 
- i5',j J 

Proof: For fixed i and j, i ~ j, define S( i, j) as the set of vertices with degrees 
between i and j (inclusive). If there is an irregular weighting with maximum 
weight t, then the weighted degrees of S( i, j) are in the interval [ i, jt]. But these 
weighted degrees are all different. Therefore 

j 

jt - i + I 2 IS( i, j) I = L 71;; 

k=1 

and 

t > :Lt1 n;; + i - I follows. 
- j 

I 
Note that the lower bound of Proposition 2.I does not depend on the rank of 

the hypergraph, so it is not surprising that the lower bound can not be attained if 
the rank is high. For example, it H is a 2-regular hypergraph, the lower bound of 
Proposition 2.I is n; 1 but Corollary 2.3 gives a lower bound of 2 n- o( n). 

To see how the irregularity strength of hypcrgraphs relates to some problems 
of additive number theory, it is fruitful to translate its definition to the dual hyper­
graph. 

162 



Assume that X= {xt 'X2' ... Xm} is a set of variables and s = {St' s2' ... 'Sn} 
is a set of distinct sums involving these variables: 

m 

S, = l:.sij·Xj 

j=l 

where .Sij = 0 or 1, for 1 ~ j ~ m and 1 ~ i ~ n. An assignment of positive 
integers Xj = aj, 1 ~ j ~ m is called irregular if S 1 , ••• , Sn become distinct 
integers. Consider Ute problem of determining 

. r*(X, S) =min max aj, 
l~j~m 

the minimum taken over all irregular assignments. Let (X, S) be the hypcrgraph 
H with V(H) =X and edges {xi : .s1i = 1}, 1 ~ i ~ n. Further let H* be 
the dual hypcrgraph of H : V ( H*) = S and edges { Sj : .Sij = 1}, 1 ~ j ~ m. 
Obviously s*( H) = s( H*). 

In the case when H = Km, the .~omplete graph of order m, an irregular assign­
ment for Xt, x2, ... , Xm is called a Bi -sequence. In other words, a Bi -sequence 
is a 1 < 02 < · · · < om where the sums ai + aj are distinct for al11 ~ i < j ~ m. 
The name B2 was chosen because of the resemblance to B2 -sequences introduced 
in [3]: a sequence of positive integers a 1 , < a2 < · · · < am with distinct sums 
a,+ ai, for 1 ~ i ~ j ~ m. 

It is well known that B2 -sequences satisfy 

~(1-.s) < m~ ~+o(~. (1) 

The lower bound is due to Chowla and Erdos using a construction of Singer[6] 
and the upper bound to Erdos and Turan [2], also sec lSJ. A detailed discussion 
appears in [3]. The lower bound in[l] is obviously valid for Bi sequences (since a 
B 2 sequence is automatically a B2 -sequence). Erdos pointed out (personal com­
munication) that the upper bound in [1] also holds forB]_ sequences. Therefore 
[l] holds for any B]_ -sequence which give the following result. 

Theorem 2.2. s*( K m) / (~) - 2 as m approaches infinity. I 
The consequence of Theorem 2.2 is that the dual hypergraph II of K m (having 

m edges of cardinality m - 1 and n = (~) vertices each of degree two) satisfies 
s( H) 2 2 n - o( n) . 

Corollary 2.3. There exist 2-regular hypergraphs of order n with irregularity 
strength 2 n- o( n). I 

It is not known how large s( If) can be for 2-regular hypcrgraphs of ordern, or 
dually how large s*( G) can be for graph with n edges. 
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In [4], it is proved that s( G) ~ IV( G) I - 1 for connected graphs of order 
at least four. This bound docs not extend to hypcrgraphs as Corollary 2.3 shows. 
For hypergraphs ofrankr (the maximwn cardinality of an edge), the next theorem 
proves s( H) ~ rjV( H) I - r + 1. Most likely, there is no absolute constant c 
with s(H) ~ ciV( H) 1. 

Theorem 2.4. If His a vertex distinguishable hypergraph of rank r( Is( H) D < 
oo then 

s( H) ~ riV( H) 1- r + 1. 

Proof: Theproofisinductiononn= IV(H)Iandm= IE(H)I. Thecasesn= 1 
and m = 1 are trivial. Let IE( HI) I ~ 2 and remove an arbitrary edge feE( H) 
from If. In case this resulting hypergraph is not vertex distinguishable after the 
removal off, then consider a minimal vertex set Y c V (H)\! such that H' with 
V(H') = V(H)\Y and E(H') = {e' = e\Y: e£E(H)\{f}} becomes a vertex 
distinguishable hypergraph. It should be noted that every hyperedge e£E( H) with 
e n Y ¥ ¢> also satisfies e n f ¥ ¢> • In particular, H' has no isolated vertices and 
no multiple edges. By the inductive hypothesis s( H') ~ riV( H') I - r + 1 ~ 
rn- r + 1. 

An irregular weighting w( e'), e' £E( H'), of minimum strength can be extended 
tolfinanaturalway: w(e) = w(e') foree(E\{f}) andletw(f) bethesmallest 
positive integer k such that 

k + dw( u) i dw( tJ) 

for all u£/ and v£(V(II)\f). (Here (dw(x) denotes the weighted degree of 
vertex X.) 

Since there are at most r( n- 1) forbidden values fork, w(f) ~ ru- r + 1. 
Also the irregularity of the extension w( e) ,e£E( H) can be easily verified. 1 

The next three propositions are formulated for usc in the last two sections of 
this paper. 

Proposition 2.5. Let w be an irregular weighting of H = ( V, E) and let H = 
(V, E) be the complement of H with edge set E = {e = V\e: e£E}. If w is 
defined by w(e) = w( e), then w is an iiTegular weighting of H if and only if w 
is an irregular one for H. 

Proof: For any vertex v£V and any edge e£E, either vee or v£e. Therefore 

Lw(e) = dw(v) + dw{v). 
etE 

(Here dw and dwdenote the weighted degree of vertex v in Hand If respectively.) 
Hence for u, v£V dw( v) f. dw( u) iff dw{ v) f. dw( u). I 
An immediate corollary is the next proposition. 
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Proposition 2.6. s( H) = s( H). I 

A partial hypcrgraph II' of H is called spanning if V(JI') = V( II). 

Proposition 2.7. A regular hypergraph If has irregularity strength s( H) = 2 if 
and only if If contains an irregular spanning hypcrgraph. 

Proof: Let If be a regular hypcrgraph with an irregular weighting w such that 
s( H) = 2. Form the spanning hypcrgraph If' of If by defining E( If') = { elec:H 
and w( e) = 2 }. Conversely if If' is an irregular spanning hypcrgraph of tl1e d­
regular hypergraph If, then define a weighting w on If as follows: for ec:E( If) 
let 

. w(e) = { ~ if ec:E(H') 

otherwise 

In both cases dn•( v) = dH( v) + d for all vc:V( II) = V( H'). Hence s( H) = 2 
if and only if If contains an irregular spanning hypergraph H'. I 

3. Direct and random constructions of irregular bypergraphs. 

In this section the existence of irregular r-uniform hypergraphs of order n is stud­
ied. It is clear that for r = 2 tllere are no irregular hypergraphs and for r 2 6 it 
will be shown that almost all are irregular. 

The smallest irregular uniform hypergraph (apart from the one-vertex hyper­
graph) is shown in Figure 1 in terms of its vertex-edge incidence matrix (it has six 
vertices, seven edges, it is of rank 3). Its irregularity is shown by tl1e distinct row 
sums. Starting from tllis example, an inductive construction will give irregular r­

uniform hypcrgraphs on n vertices for each nand r satisfying n 2 r + 3, r 2 3. 

1 

1 1 

1 1 1 

1 1 1 1 

1 1 1 1 1 

1 1 1 1 1 1 

Figure 1. The vertex-edge incidence matrix of an irregular 3-uniform hypergraph 

A pair ( n, r) will be called irregular if tllere exists an irregular r-uniform hyper­
graph of order n. A vertex of degree(;=~) is called afull vertex in an r-uniform 
hypergraph on n vertices. 
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Proposition 3.1. If ( n, r) is irregular then ( n + 1, r) is also irregular. 

Proof: Let H be an irregular r-unifonn hypergraph on n vertices. If H has a full 
vertex then define H' by adding an isolated vertex to H. If H has no full vertex 
then H' is defined by adding a new vertex to Hand making this new vertex full 
in H'. It is easy to check that H' is irregular. 1 

Since irregularity is preserved by complementation (Proposition 2.6), the next 
proposition follows. 

Proposition 3.2. If ( r + 3, 3) is irregular then ( r + 3, r) is also irregular. 1 

Theorem 3.3. If n ~ r + 3 and r ~ 3 then there exist irregular r-unifoim 
hypergraphs with n vertices. 

Proof: Since ( 6, 3) is irregular, ( r + 3, 3) is also irregular by ProJX>sition 3.1. 
Proposition 3.2 implies that ( r + 3, r) is irregular and applying Proposition 3.1 
again gives that ( n, r) is irregular. 1 

Note that if H( n) is the irregular hypergraph constructed inductively for the 
irregular pair ( n, r), then H( n, r) may contain (one) isolated vertex x. It is easy 
to alter H ( n, r) so that the resulting h ypergraph is irregular and has no isolated 
vertex. One way is to add n- 1 new edges E 1 , E 2 , ••. , En-t to H( n, r) in such 
a way that lEd= r, xgEi for 1 ~ i ~ n- 1 and the sets Ei- x form an ( r- 1)­
regular ( r- 1) uniform hypergraph. 

Also observe that Theorem 3.3 characterizes the irregular ( n, r) pairs. This is 
stated formally in Proposition 4.2 which says that hypergraphs with r ~ n ~ r+ 2 
are not irregular. 

The next objective is to show that for r ~ 6, almost all r-uniform hypergraphs 
are irregular or equivalently, the probability of identical vertex degrees in a random 
r-uniform hypergraph of order n approaches 0 as n ~ oo. 

Theorem 3.4. Almost all r-unifoim hypergraphs are irregular. 

Proof: The proof proceeds by giving an upper bound on the number of r-uniform 
hypergraphs on n vertices having at least two vertices of the same degree. It will be 
shown that this number is "small" in comparison to the total number of r-uniform 
hypergraphs on n vertices. 

Choose x1 and x 2 , two fixed vertices of the hypergraph. The number of r­
unifonn hypergraphs of order n such that x 1 and x 2 have the same degree is at 
most 

This follows by considering three types of edges. Those that contain x 1 or 
x 2 but not both, those that contain both x 1 and x2 , and those edges that contain 
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neither. Since x 1 and x2 are to have the same degree, only the number of edges 

containing exactly one of them needs to be the same number, that being ((~D). 
All other edges appear arbitrarily, so the sum is taken over all possible t. Since x 1 

and xz are fixed, but chosen randomly, the total number of r-uniform hypergraphs 
having at least two vertices of the same degree is at most 

Asymptotically, this is equal to 

(n) 1 (2,._2) ("-2) (,_2) -----:-2 r-1 2 r-2 2 r 
2 7T(n-2) t 

r-1 

by Stirling's formula. But, 

so it follows that the number of the r-uniform hypergraphs on n vertices with at 
least two vertices of the same degree is at most 

1
n(n- 1) 

2 
I t • 2 ( ~) 

7T(n-2) I 
r-1 

Since 2 ( ~) is the total number of r-uniform hypergraph of order n, and for r ~ 6, 

1
. n( n - 1) 1 _ 

0 1m 1 - , 

n.-->oo 2 1r(n-2)! 
r-1 

the theorem follows. I 
This result is also true for a special class of r-uniform hypergraphs. A hy­

pergraph is r-partite if the vertices of the hypergraph can be partitioned into r 
sets A 1 , A2 , ••• , A,.. so that the edges contain at most one vertex from Aj, for 
i = 1, 2 , ... , r. Note that in case of an r-uniform r-partite hypergraph each edge 
contains exactly one vertex for each Ai, fori = I , 2 , ... , r. An ( r x m) hypergraph 
is an r-partite, r-uniform hypergraph with m vertices in each vertex class. Using 
the same argument as given for Theorem 4.1 the following result is obtained. 

Theorem 3.5. For either fixed m ~ 6 or fixed r ~ 6, almost all (r x m) 
hypcrgraphs are irregular. I 
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4 The Strength of Complete Hypergraphs 

In this section the irregularity strength of two particular classes of complete uni­
fonn hypergraphs are studied: K~,..), the complete r-uniform hypergraph of order 
n, and K ( r x m), the completer-partite r-uniform hypergraph with m vertices in 
each vertex (partite) class. As mentioned earlier each edge inK (r x m) contains 
one vertex from each of the r partite classes. 

For the most part the hypergraphs in each of the two mentioned classes will 
have irregularity strength 2. In such cases it follows from Propostion 2.6 that this 
is equivalent to showing the existence of an irregular r-uniform hypcrgraph of 
a given order (and possibly given type). With the results in Section 3 this leads 
immediately to the determination of the strength of K~r). 

Theorem 4.1. For r ~ 3, 

ifn=r+1 

ifn= r+ 2 

ifn~ r+ 3 

Proof: By Proposition 2.5 s(K~r)) = s(~,..)) = s(K~n-r)). Ifn = r+ 1, the 
edges are singletons and thus s( K~,..)) = n. For n = r+ 2 ,K~n-r)) is the complete 
graph Kn and its strength is well known to be 3, see[l]. In case n :2:: r + 3, by 
Theorem 3.3, there exists an irregular r-uniform hypergraph H' of order n. Since 
H' is a spanning partial hypergraph of K~,..) it follows from Propositions 2.6 that 
s( K~r) s) = 2 . I 

A consequence of Theorem 4.1 and Proposition 2.6 is the following result. 

Proposition 4.2. There exist no irregular r-uniform hypergraphs on n vertices 
for r ~ n ~ r + 2 . 

The remaining portion of this section is devoted to r-partite hypergraphs.The 
next two propositions are given without proof, since the proofs either involve small 
order irregular (r x m)-hypergraphs or giving special arguments showing no 
such irregular hypcrgraphs exist for certain small orders. The propositions arc 
needed to start later inductive arguments and to determine exceptional cases (cases 
where K ( r x m) is not of strength 2). Only one of the eight irregular hypergraphs 
needed to verify Proposition 4.4 is included (Figure 2). The constructions of these 
eight hypergraphs are nontrivial and a vital part of the final result, Theorem 4.7. 

Propoition 4.3. If K is one of the hypergraphs K (3 x 2), K ( 4 x 2), or K (3 x 
3), then s( K) = 3 . I 

Propositon 4.4. There exist irregular (r x m)-hypcrgraphs for every r, m with 
(r,m)e:{(3,m)l4 ~ m ~ 7} U {(4,m)l3 ~ m ~ 4} U {(5,2)}. I 
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In order to determine that "most" completer-partite r-uniforrn hypergraphs are 
of strength 2, the existence of appropriate irregular (r x m)-hypcrgraphs needs to 

be established. This is the remaining major objective of the section. 

Theorem 4.5. There exist irregular ( r x m) hypergraphs for each r ~ 5 and 
m= 2,3. 

x, 1 1 1 1 1 

y, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

x.t 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 

x 3 1 1 1 1 1 1 1 

y:!> 1 1 1 1 1 1 1 1 1 1 1 1 

x_. 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 

Figure 2. The vertex-edge incidence matrix of an irregular ( 5 x 2) -hypergraph 

Proof: 
Case 1. m = 2. 
The proof is by induction on r, with the hypergraph of Figure 2 establishing the 

result for r = 5. Thus assume II is an irregular ( r x 2) - hypcrgraph with vertex 
classes {xi, !li}, 1 ~ i ~ r, such that 1 ~ du(xJ) < · · · < dH(Xr) and such 
that { x 1 , x2 , ... Xr} f/:. E( H). Note that when r = 5, the hypergraph of Figure 2 
satisfies these conditions. 

An irregular (( r + l) x 2) -hypergraph H' is constructed from H by adjoining 
to V( H) the new vertex class { xo, vo} withE( H') = { e u {yo }IeeE( H)} u 
{x!,X2, ... ,xr,!/O}U{yl,!/2, ... ,yr,xo}. Notethatdw(xo) = 1 < dw(u) = 
du(u)+1 < IE(H)I+1 = dll'(Yo) forallueV(H),sothatH'isirregular. Infact 
inH'l ~ du,(xo) < du,(x!) < ··· < dll'(xr) and{xo,x,, ... ,xr} EE(H'). 
This completes the induction and the proof when m = 2. 
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Case2. m = 3. 
In the construction of H given in Case 1, careful examination of this irregular 

(r x 2 )-hypergraph shows that each of the following hold: 

(1) thevertexclassesare{xi,Vi},i= 1,2, ... ,r,with1 ~ dH(xt) < dH(xz) < 
· · · < dH(Xr) < dH(Vr) < dH(Vr- 1) < · .. < dH(Vt), 

(2) { xr , xz, ... , Xr} ¢ E( H) , and 
(3) dH(Xr) = r+ 4 

The existence of these irregular (r x 2 )-hypcrgraphs is used to construct the 
irregular (r x 3)-hypcrgraphs. 

To accomplish this first add a new vertex zi to each of the r classes {xi, Vi} 
of the irregular ( r x 2) - hpergraph H. Letting H 1 denote the hypergraph under 
construction define E( H 1

) = E( H) U Er U E 2 where 

Er = {{xr,Xr-1 1 ••• 1 Xr-i 1 Zr-i-1 1 ····zt} I i= O,l. ... ,r-1} 

and 

& = E(H*)- {{vr,vz, ... ,vr}}. 

Here H* denotes the K ( r x 2) hypergraph with vertex classes {Vi, zi}, 1 ~ 
i ~ r. 

Only the fact that the (r x 3 )-hypergraph H 1 is irregular needs verification. 
From the definition and conditions (1),(2), and (3) it follows that 

(i) H1 has no multiple edges, 
(ii) 1 < dH'(xr) < · · · < dH'(xr) ~ (r + 4) + r, 

(iii) 2r-l -1 = dH'(Zr) < · .. < dH'(zr) ~ (2r-l -1) + (r-1), 
(iv) (2r-l) -1 + r+ 4 < dH'(Vr) < · ·· < dH'(vr). 

Since 2 r + 4 < 2 r-t - 1 for r ~ 5, JJI is irregular, completing the proof. 1 

The hypergraphs constructed in the last proposition are used to construct irregu­
lar (r x m)-hypergraphs for all r ~ 5 and m ~ 4 by concatenating vertex classes. 
For a precise contruction let r ~ 3 and 2 ~ mz ~ m 1 ~ mz + 1. Further let Hi = 
(Vi, Ei) be irregular (r x mi)-hypergraphs, i = 1, 2. Form the (r x ( mr + mz) )­
hypergraph H by letting V (H) = Vi U Vz and E( H) = Er U Ez U Eo, where 
Eo is the set of all r-tuples with one vertex from each vertex class and precisely 
one vertex from V2 • 

In the proof of the lemma that follows it is assumed that either no vertex of H 2 

has maximum degree m;-t, or each vertex of H1 has degree at least 2. If in fact 
H2 has a vertex of maximum degree, then each of its vertices has degree at least 
m2-2 ~ 2. In such a case the roles of H1 and Hz can simply be interchanged. 
Thus assume without loss of generality that maximum degree of a vertex in H 2 is 
strictly less than m;-t. 
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Lemma 4.6. The (r x ( m 1 + m 2 )) -hypcrgraph constructed above is irregular. 

Proof: Let d1(x),d2(x), and d(x) denote the degree of x in H1,H2, and lf 
respectively. As noted above 1 ~ dt(x) ~ m1-1 ,u:Vt, and 1 ~ d2{x) ~ 
m2-1 

- 1 , x.s V2 . 
From the construction give 

d( vr) = d1 ( vt) + ( r- 1) m!-2 m2 and 

d(v2 = d2{v2) + m!-1 ,forv1t::Vi,v2,t::V2. 

The irregularity of H is verified by showing d( v2) < d( v1) for all v1 E V1 and 
v2.sV2. 

Observe that 

d( v2) ~ m2- 1 + m!-1 - 1 and 

d( Vt) > ( r- 1)m1-2m2, v1t::V1, v2.sV2. 
(1) 

If r = 3, then (noting ffi2 ~ ffi1 ~ m2 + 1) ( 1) gives d( V2) :::;; mi + mr- 1 ~ 
2mt m2 < d( vt). 

For r > 3 and mt = m2 + 1, 

( )

,.--2 

:~ m2 + m1 < m2 + mt = 2 m1 - 1 ~ 3( mt - 1) ~ ( r- 1) m2, 

so that by {1) 

When m 1 + m2 , then again 

d(v2) ~ 2m1-1 < (r- l)m!- 1 < d(vt). 
I 

Hence d( v2) < d( v1) for all v1 E V1 and v2 s V2 completing the proof of the 
lemma. I 

Theorem 4.7. Let K = K (r x m} with r ~ 3 and m ~ 2. Then 

{ 
3 ifr+ m < 6 

s(K) = -
2 otherwise. 

Proof: Proposition 4.3 gives the result of this theorem when r + m ~ 6. When 
r + m > 6, using Propositions 4.4 and 4.5 together with Lemma 4 .6, the existancc 
of irregular (r x m)-hypergraphs is obtained. Since each of these hypergraphs is 
a spanning partial hypcrgraph of K ( r x in), the result follows from Proposition 
2.6. I 
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