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ABSTRACT 

Associated with Shelah's proof of van der Waerden's theorem are edge 
colorings of Km x Kn, where no K 2 x K 2 is colored with two alternating colors. 
Using projective spaces, such colorings are obtained from m = n = r 3 ; m = 
r 2r-l, n = 2r; m = rr+l, n = r 2 where r is the number of colors. It is shown 
that such an r-coloring exists form= n = rt+l if the t-dimensional projective 
space of order r has the following property: there is a permutation of the points 
which maps each hyperplane into the complement of some hyperplane. 

1. Introduction 

Associated with Shelah's nice new proof of the van der Waerden's theorem, 
the following question is raised ([2], [3]). A "square" is a 4-cycle, that is 
a K2 X K2 C Km X Kn. A good r-coloring of Km X Kn is an r-coloring of 
the edges of Km x Kn such that there are no squares with opposite edges 
having the same color. How large can n be, as a function of r, if Kn x Kn 
has a good r-coloring? Let f(r) denote the largest such n. In particular, is 
f(r) ~ rc for some fixed constant c? It was shown in [3] that f(r) ~ r 2 
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., (with a simple proof); moreover, f ( r) ~ kr3 for some positive k (with a 
! complicated proof)., It was also mentioned that n ~ r 3 when T is a prime. 

Here a simpler: construction is given to show f(r) ~ r 3 for r a prime 
power. The method uses a property of projective planes, and will give 
f(r) ~ rt+l if the t-dimensional projective space of order; r has this (com
plementary) property. 

Let PG{t, r) denote the t-dirnensional projective space of order r over 
the finite field GF(r) (r is a p11ime power). Call H = PG(t, r) complemen
tary if 

(i) there exists a permutation 1r on the points of H such that':the image of 
any hyperplane under 1r is disjoint from some hyperplane of H. 

We shall use an equivalent definition of the complementary property. 
Since PG( t, r) is self...:dual, (i) is equivalent to 

(ii) there exists a one-to-one map between the points and }ly;perplanes of H 
such that the image of any set of hyperplanes containing a given point 
is disjoint from some hyperplane of H. 

Using Singer's theorem, PG(t, r) can be generated by a difference set. 
The following property is stronger than (i): 

(iii) there exist two .disjoint difference sets generating· H (like:, { 1, 2, 4} and 
{3, 5, 6} for PG(2, 2)). 

Our interest in this complementary property comes from the following 
result. 

Theorem 1. If PG(t, r) is complementary, then f(r) ~ rt+l. 

For the case t = 2, the following can be proved. 

Theorem 2. The projective plane PG(2, r) is complementary. 

Actually the proof of Theorem 2 works for arbitrary projective planes 
of order r. 

From Theorems 1 and 2 we immediately get the following result. 

Theorem 3. If r is a power of a prime, then f(r) ~ r3
• 

Theorem 1 would imply that f ( r) ~ rt for some t (at least for r a prime 
power) if the answer is affirmative to the following problem. (We believe 
that a negative answer would also be interesting.) 
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Problem. Is there any t 2: 3 for which PG( t, r) is complementary? 

As Aart Blokhuis [1] remarked, t :::; r is necessary for the~oomplementary 
property. Suppose to the contrary that t > r and cGmsider the inverse 
mapping 1r- 1 . For a line L of PG(t, r) the inverse image 7r-J (fLJ is a set 
of r + 1 points. As t > r this pointset is contained in a hyper,:p>l@Jilte H and 
since 1r(H) contains the line L which intersects every hyperplaml'e, PG( t, r) 
cannot be complementary. 

(r+l) 
It is easy to show that f ( r) :::; r 2 (see [3]). Thus, by Theorem 3, 

j(2) = 8. For the off-diagonal version of Shelah's problem, it is obvious 
that Kr(r!l) x Kr+l has a good coloring. This is a consequence of coloring 

each of the r(r!l) copies of Kr+l differently, and then coloring ·the r + 1 
edges between two copies of a Kr+l such that the one pair of edges with 
the same color are in a square that is already well colored. From this1 it is 
also obvious that f(r) 2: r + 1. We have the following two results. 

Theorem 4. Kr2r-l .X K 2r has a good r-coloring. 

· Theorem 5. Krr+l x Kr2 has a good r-coloring if a projective plane of 
order r exists. 

Theorem 5 generalizes the result of [3] that Kr2 x Kr2 has a good r
coloring. The proofs ,are based on an equivalent formulation of a good 
r-coloring of K m X Kn. 

An ( m, r) -coloring is a coloring of the edges of a complete graph K 
with vectors of length m whose coordinates are from the set {1, 2, · · ·, r }. 
Let :Gij be the subgraph of K determined by those edges whose coloring 
vectors agree on the ith and lh coordinates. An ( m~ r) coloring of K n is 
good if x{Gii) :::; r for each i and j with 1 :::; i < j :::; m, where x denotes 
the chnnnatic number of a graph. 

Proposition 6. An (m., r )-colori~g of Kn is good if and only if Km x Kn 
has a good r-coloring. 

Proof. Denote by K~ = {xi, x~, · · · , x~} the ith copy of Kn in Km X Kn for 
i = 1, 2, · · · m. Then, r-colorings of U~1 K~ C Km x Kn are in one-to-one 
correspondence with (m, r)-colorings of Kn = {y1 , y2 , · · ·, Yn}: the color of 
an edge e of K~ is identified with the ith coordinate of the color vector of 
e. This correspondence is called the canonical mapping. 
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Assume a good (m, r)-coloring of Kn is given. Since x(Gii) :::; r, the 
vertices of Gij have a proper r-coloring Xii. Color K~ c Km x Kn according 
to the canonical mapping. The edges (x~, x~) of Km x Kn between K~ and 
K~ is colored with Xii (yp) for p = 1, 2, · · ·, m. Let S = {x~, x~, xi, xi} be a 

. . q q 

square in Km x Kn- If (x~, x~) = e1 and (x~, x~) = e2 have different colors, 
then S is well colored. If e1 and e2 are colored with the same color, then 
the ith and lh coordinates of the coloring vector of YpYq are the same (i.e. 
YpYq E E(Gij )). Therefore, Xii colors yP and yq with different colors, and 
the colors of (x~, x~) and (x~, x~) are different. Thus Km x Kn has a good 
r-coloring. 

If Km X Kn has a good r-coloring, then it implies an (m, r)-coloring on 
Kn by the canonical mapping. Then define Xii by coloring the vertex yP 
of Gij with the color of (x~, x~) in Km x Kn for p = 1, 2, · · ·, n. Assume 
that YpYq is an edge of Gij. Then (x~, x~) and (x~, x~) have the same color 
in K m X K n. Therefore, the square s = {X~' X~' X~' X~} has different colors 
on the edges (x~, x~) and (x~, x~). Thus Xii assigns different colors to yP 
and yq, proving that x(Gii):::; r, (i.e. Kn has a good (m,r)-coloring). This 
completes the proof of Proposition 6. • 

2. Proofs 

In the spirit of Proposition 6, good ( m, r )-colorings will be constructed in 
the following proofs. 

Proof of Theorem 1. Consider the projective space Ht+l = PG(t + 1, r) 
and a hyperplane Ht = PG(t, r) in Ht+l. Then At+1 = Ht+l - Ht is the 
( t + 1 )-dimensional affine space of order r. Let a 1 , a2 , · · · , art+l denote the 
points of At+l. Identify the points of At+l with the vertices of a complete 
graph K = Krt+l . 

A good (rt+l, r )-coloring of K is defined as follows. The coloring vectors 
are associated with the hyperplanes of Ht. If h is a hyperplane of Ht, then h 
defines a partition P( h) of At+ I into r parallel hyperplanes, B 1 , B2 , · · · , Br. 
Let v (h) = [Y1 , Y2 , · · · , Yrt+l ] be the coloring vector defined by 

Yi = j if and only if ai E Bi. 

Since Ht is complementary, there exists a one-to-one map a between points 
and hyperplanes of Ht with property (ii). Let (ai, a:7) be an edge of K. 
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Consider the line L( ai, aj) through ai and aj in Ht+l . Let z = L( ai, aJ) n Ht, 
and let h be the hyperplane of Ht with a(h) = z. Now (ai, aj) is colored 
with the vector v(h). 

To see that the given (r~+ 1 , r )-coloring is good, consider the set of 
coloring vectors "ViJ which agree in the ith and Ph coordinates. We have to 
show that the set of edges of K colored by vectors of "ViJ determines an r
colorable graph Gij. Let Hij denote the set of hyperplanes of Ht satisfying 
v (h) E "ViJ . If an edge ( aP, aq) of K is colored by v (h) E "ViJ, then aP and aq 
are in the same partition class of P( h). Therefore, L( aP, aq) n Ht = z E h 
for each h E Hij. Thus, the hyperplanes of Hij all contain z and then, by 
property (ii), a(Hij) n hij = 0 for some hyperplane hij of Ht. If ( ap, aq) 
is an edge of K colored with v(h) E Vij, then the definition of the color 
assignment implies L(ap,aq) n Ht E a(Hij)· Since hiJ n a(HiJ) = 0, the 
partition P(hij) on At+l defines a partition of K such that the set of edges 
colored by v(h) E Hij are all between different classes of P(hij ). Thus 
x( Gij) ~ r and Theorem 1 is proved. • 

Proof of Theorem 2. It is well known (and easy to prove by counting) 
that if H is a set of r + 1 points in PG(2, r), (or in any finite plane of order 
r) and H is not a line, then there exists a line H' such that H n H' = 0. 
Therefore, to prove that PG(2, r) is complementary, it is enough to find a 
permutation 1r that maps lines into non-lines. The number of permutations 
mapping a fixed line onto another fixed line is (r + 1)!(r2 !). Thus, the total 
number of wrong permutations is at most (r2 + r + 1)2 (r + 1)!r2 !, and it is 
easy to see that for r ~ 3 this number is smaller than ( r 2 + r + 1)!, the total 
number of permutations on PG(2, r). For the case r = 2, one can use (iii) 
noting that {1, 2, 4} and {3, 5, 6} are two disjoint difference sets generating 
the Farro plane. This completes the proof of Theorem 2. • 

The above proof works for arbitrary projective' planes. For PG(2, r) 
one can also use that it is possible to find two disjoint difference sets by 
taking a multiple of a difference set by a non-multiplier and using the same 
remark as in the beginning of the proof of Theorem 2. For example -1 is 
never a multiplier. 

Proof of Theorem 4. It is easy to see that the edge set of Kr2r-t 

can be partitioned into 2r - 1 graphs H1 , H 2 , · · · , H'2r-l so that each Gi 
is r-chromatic. The coloring vectors are defined as follows. The com
plete graph K 2r on vertices { x 1 , x 2 , • · ·, x2r} is factorized into 1-factors 
F1, F2, · · · , F2r- 1 . Then, each Fi defines a coloring vector of length 2r by 
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setting the pairs to 1, 2, · · ·, r on the coordinate pairs corresponding to Fi. 
The (2r, r )-coloring of Kr2r-l is good since Gij is just one of the graphs Hi. 
This completes the proof of Theorem 4. • 

Proof of Theorem 5. This proof is very similar to the proof of Theorem 
4. A good (r2 , r)-coloring is defined on Krr+l by partitioning the edges into 
r + 1 graphs H 1 , H2, · · · Hr+I that are each r-chromatic. Then, each Hi is 
colored with a different vector defined by the r + 1 partitions of the affine 
plane of order r. This completes the proof of Theorem 5. • 
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