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Abstract
Gyarfds, A., Graphs with k odd cycle lengths, Discrete Mathematics 103 (1992) 41-48.

If G is a graph with £ =1 odd cycle lengths then each block of G is either K, ., or contains a
vertex of degree at most 2k. As a consequence, the chromatic number of G is at most 2k + 2.

For a graph G let L(G) denote the set of odd cycle lengths of G, i.e.,
L(G)={2i+ 1: G contains a cycle of length 2i + 1}.

With this notation, bipartite graphs are the graphs with |L(G)| = 0. Bollobds and
ErdSs asked how large can the chromatic number of G be if |L(G)| = k. They
conjectured that |L(G)|=k implies x(G)<2k +2 and this is best possible
considering G = Ky 5.

The case k=1 is checked by Bollobas and Shelah (see [1, p. 472] for the
motivation). Gallai suspected that a stronger statement is true, namely if G is
2-connected, |L(G)| =k, G # K, then the minimum degree of G is at most 2k.
The aim of this paper is to prove this stronger version of the original conjecture.

Theorem 1. If G is a 2-connected graph with minimum degree at least 2k + 1 then
|L(G)| =k =1 implies G = Ky .

Assuming that |L(G)| = k, Theorem 1 clearly allows to color the vertices of the
blocks of G with at most 2k + 1 colors except when a block is a K,,,. Thus the
following corollary is obtained.

Corollary. If |[L(G)| =k =.1 then the chromatic number of G is at most 2k +1,
unless some block of G is a Ky, (If there is such a block, then the chromatic
number of G is 2k +2.)
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For the proof of Theorem 1 and for the lemmas we adopt the following
notation: Graph G is a 2-connected graph with minimum degree at least 2k + 1
and with |L(G)| =k =1. Let C denote a longest odd cycle of G. The subgraph of
G induced by V(G) — V(C) is denoted by G'. A longest path of G' is denoted by
S, A and B are the endpoints of S. |C| and |S| denote the length of C and S. If S
is a path and x, y are two vertices of S then S(x, y) denotes the subpath of S
between x and y. I'(x) denotes the set of vertices adjacent with x in G. The
degree of a vertex is denoted by d(x).

Proof of Theorem 1. If A=5B, i.e., G' has no edges then Lemma 5 implies
G = K, ,. We may assume therefore that A+ B, i.e., |§|=1.

If I(A)NC=@ (or I'(B)NC=@) then d(A)=2k+1 (or d(B)=2k+1)
implies that G' contains a cycle with 2k — 1 diagonals incident to the same vertex
(A or B) of the cycle. Let H be this subgraph of G’. Applying Lemma 2, either
|L(H)| = k or H is bipartite. The former case leads to a contradiction because of
Lemma 1. Therefore H is bipartite. Since G is 2-connected, there exist two
vertex-disjoint paths §; and S, joining V(C) and V(H). Apply Lemma 3 with
x=V(H)NS, and y =V (H)NS,. The k + 1 paths ensured by Lemma 3 together
with §; and S, and with the arc of C of suitable parity define £ + 1 odd cycles of
different lengths. Thus we get a contradiction again.

We conclude that I'(A) N C#@ and I'(B) N C ##. Due to the symmetry of A
and B we may assume that

1=sp=I'(A)NC|<|I'(B)NC|.
Let [I'(A)N S| =gq + 1, that is there are g diagonals of S starting from A. Since
d(A)=2k +1, p + g = 2k follows.

Case 1: T(A)NC#I'(B)NC.
Lemma 4 implies

o e R R
== =|——|+g=k—|Z{+qg>k,
@)= [B]+a= [F72] +a=k- |2] 44
leading to a contradiction unless ¢ =0 and p + g =2k, i.e., p =2k. This case is
handled in Lemma 8 and also leads to |L(G)|=k + 1.

Case2: T(A)NC=T(B)NC.

Now lemma 4 can be applied with p — 1 in the role of p and we get

IL(G)| = [——1+q [M—l] g=k- {q—g—IJ+q>k

unless g =1and p +q =2k, org=0and p + q is 2k or 2k + 1. The case g =1 is
treated in Lemma 6 and the case g =0 is treated in Lemma 7. In both cases we
get k +1 odd cycles of different lengths leading to a contradiction. Thus the only
possibility is that G = K, ., and Theorem 1 is proved. [

Lemma 1. If C' is an odd cycle of G' then |C'| <|C].
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Proof. Assume that |C’'|=|C|. Since G is 2-connected, there exist two
vertex-disjoint paths P, and P, in G such that |[,NC|=1 and [P,NC'|=1 for
i=1, 2. The subgraph CUC'U P, U P, is clearly the union of two odd cycles C,
and C,. Since |Cy| + |Co| > |C| 4+ |C'| =2 |C|, |C4| or |C,| is larger than |C| and we
reach a contradiction. U

Lemma 2. Let H be a graph we get from a cycle T by adding 2k — 1 diagonals,
each of them incident to the same vertex x, of T. Then either H is a bipartite graph
or |L(H)|=k.

Proof. Assume that T has diagonals e; =xox; for i=1,2,...,x_,. W.lo.g.,
Xo> X1, - - . » Xox—1 follow each other on T in this order. Let a; denote the length of
the path on T from x;_, to x; following the order of x; —s. Consider x, as X, for
convenience. The proof is by induction on k. The case k =1 is clear. Assume that
the lemma is true for each k' <k and k =2. If T is odd then each e; divides T U ¢;
into an odd and an even cycle. Let C; denote the odd cycle fori=1, 2, ..., 2k —
1. If e and f are the edges of T incident to x, then each C; contains either e or f.
There are k indices i such that C; contains one of {e, f}. These cycles satisfy the
requirements of the lemma.

If T is an even cycle, e; is called even if it divides T into two even cycles,
otherwise it is called odd. If the only odd diagonal of T is e, then we can define k
odd cycles as follows. Let C; be the cycle of H containing e; and e, for

i=1,2,...,k~1, and let C, be the cycle containing e, and the path on T from
X to x, containing x,, ..., x,_;. Otherwise let p be the smallest integer in
{1,2,...,k—1} such that either e, or e,._, is an odd diagonal. If no such p

exists then H is bipartite. Apply the inductive hypothesis to H* defined as the
cycle C* determined by e, and e,._, in T together with the diagonals e; for
p <i<2k—p. If H* is bipartite then both e, and e,,_, are odd diagonals of T.
By symmetry, one may assume that a, =a,,_, ;. Let C; be the cycle determined
by the diagonals e; and ey, for i=p,...,2k—p. Let D; be the cycle
determined by the diagonals e; and e,,_, for i=1,2,...,p —1. Let D, be the
cycle determined by e,,_, and the path on T from x, to x,._, following the order
X0, X1, . - -, Xok—p- All these cycles are odd and a, = ay_, ., ensures that

1Cok—p| <+ -+ <G| S [Dpa| <+ - <Dy <[Do.

Therefore we defined at least 2k —2p + 1+ p — 1 =2k — p odd cycles of different
lengths. Clearly 2k — p >k since k = p + 1 by the definition of p.

If H* is not bipartite then by induction it contains odd cycles Cy, C,, . .., Cy_,
such that |C| <|C,| < - <|Cr_,|. Let D; be the cycle determined by e, and
ex—prifori=1,2,...,p—1. Let D, be the cycle determined by e, and the path
X0, X1, ..., X, on T. Clearly |C,_,| <|Ds| <---<|D,| thus we have the desired
cycles. O
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Lemma 3. Let H be a graph we get from a cycle T by adding 2k — 1 diagonals
e;=xox; to T. Assume that H is a bipartite graph and x,y € V(H), x #y. Then
there exist k + 1 paths Py, . . ., P,y in H from x to y such that |P| = |P| mod 2 and
|P,|#|P| for1<i<j<k+1.

Proof. If x,=x or xo=1y, say x,=x then one of the two xy paths of T contains k
vertices of X = {x1, ..., Xox_1}, Sy X1, X2, - . . , X;. The paths xqe;x; - - - x,y for
i=1,2,...,k and the path x,x,x, - - - x, y satisfy the requirements.

If xo¢ {x,y}, assume that one of the paths from x to y in 7 contains
X1, X25 -« s Xmy X05 Xn+1> Xn+2, - - - » Xop—1 10 this order and the other xy path on
T contains vertices X,,+1, Xm+2, - - - » X, in this order. Then xx;e;xoe;x; - - - x,,y for
i=1,2,...,m j=m+1,..., n obviously contains n paths of the same parity
and of different lengths. Similarly, xxexoex;---xy_y for i=1,2,...,m,
j=n+1,...,2k—1 and xxyx;- - X, XoXp41 " - Xox—y determines m +2k —n
paths of the same parity and of different lengths. The two path systems have
m + 2k paths together therefore one of them have at least £ + 1 paths unless
m = 0. But in this case » = k and we can apply the same argument by exchanging
the role of x and y. [

Lemma 4. Assume that A is adjacent to p vertices, y,, ¥, . .., ¥, 0f Cand to q +1
vertices of S. Moreover, B is adjacenttoy e V(C) —{y,, ..., y,}. Then |L(G)|=

p/2] +q.

Proof. Assume that y;, y», ..., y, and y follow each other in this order along C.
Let Az, Az, ..., Az, be ghe diagonals of § in this order starting from A. We
shall define g + 1 paths §; and p paths P, as follows:

S =S, S$i1=A,2,241,...,2, B fori=1,2,...,q
P=A % Y41, - Yy, B fori=12,...,p.

Let a denote the length of the subpath z,B on §. It is easy to check that the
following numbers are all odd cycle lengths:

fi=I8—a+1 if|S]—aiseven, (1
g; =S|+ P| if |S;] + B is odd, )
h; =S| +|Cl— Pl +2 if |S|+ |P] is even. 3)

By the symmetry of (2) and (3) one may assume that a is even.
Let i, j, m be indices such that

|S;] is even, S;] is odd, |P,.| is even. 4)
If f=gm, i.e., |S)]| —a+1=|S]+|P,| then (3) implies that
i = 18i| + |Cl = |Pp| +22|5;| + |Py| +a— 1+ |C| = |P,| +2
=S| +1+a+|C|>|C|
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contradicting the maximality of C. Therefore f; <g,, for each choice of indices
satisfying (4). Thus g;,, takes at least J + M — 1 values where

J=j: 18| is odd}|, M =|{m:|P,] is even}|.

If I=|{i:|S,| is even}| then f; <g,, implies that f; and g,, together take at least
g + M values, i.e.,

IL(G)| =g + M. 6)
Similarly, let i, j, n be indices such that
|S;| is even, 5| is odd, |P,| is odd. (6)
If f;=hy,, ie., S| —a+1=|S] +|C| - |P,| + 2 then (2) implies
8in = ISl + B Z S| +|Cl = [Bil +2+a—1+|F,]
=S| +a+1+|C|>|C|

leading to a contradiction. Therefore f; < h,, for each choice of indices satisfying
(6). Thus for N = |{n: |P,| is odd}| we get

IL(G)|=q +N. ™)

Since M + N = p, either M or N is at least [p/2] and the lemma follows from (5)
and (7). O

Lemma 5. If V(G) — V(C) is an independent set then G = K, ,».

Proof. If V(G)—V(C)=0 then |L(G)=k + 1 follows from Lemma 2 and we
have a contradiction. Select a vertex T € V(G)—V(C). Then d(T)=2k+1
implies that T is adjacent to X = {x,, X5, . . ., X2¢41} = V(C) and assume that the
vertices of X follow each other in this order. This order gives an orientation to C.
Set A7=af+a3+---+a; where x =x,, and aj is the length; of the path on C
from x,,4;_1 t0 X4, i =1,2, ..., 2k + 1. Here indices are taken modulo 2k + 1
and the path is understood according the fixed orientation of C. Clearly
A%, .1 =|C] for any x € X. Moreover, for any x € X we have the following odd
cycle lengths:

Af+2 if A¥is odd and 1<i<2k+1, -
|C| —A+2 if A¥is even and 1<i<2k +1.

For any x € X there are k + 1 elements of {A7}?" having the same parity. If
they are even then (8) implies that |L(G)| = k + 1, a contradiction. Thus we may
assume that for each x € X, {A¥}?*7* contains exactly K + 1 odd numbers and
A7 +2=|C| for some i. This implies that X divides C into paths of length 1 or 2.
If A% =2 for some x € X then there are k odd numbers in {A¥}?, but all of them
are larger than 3. Since |C| is odd, there exists y € X, AJ=1 and we have a
3-cycle giving k + 1 odd cycle lengths altogether. Thus the only possibility is that
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X divides C into paths of length 1, i.e., [C| =2k +1. Now V(G) — V(C) = {T}
otherwise we get a cycle of length 2k + 3, thus G has odd cycle lengths 2i + 1 for
i=1,2,...,k+1, leading to a contradiction. Thus |V(G)| =2k + 2 and since
each degree of G is at least 2k +1, G = Ky p. [

Lemma 6. If S has one diagonal at A and one at B, and, moreover, I'(A)N C =
I'BYNC, |IFA)NC| =2k —1 then |[L(G)|) =k + 1.

Proof. Let I'(A)NC=T(B)NC=X ={xy, x3,...,%Xy_1} and assume that
Xy, X5, - .., Xy 18 their order on C. We use the notation A7 for i=
1,2,...,2k —1 as defined in Lemma 5. First we assume that k = 2.

Let W denote the graph consisting of S with its two diagonals. Let R(W)
denote the set of path lengths in W from A to B. It is easy to check that
IR(W)| =3 except when R(W)={b+2,3b+2} or when R(W)={2, b +2} for
some b (in these cases S has two crossing diagonals and b is the length of the
middle segment of S).

If x, y e X, x #y, then x and y can be connected by paths of length 2 and 2 +2
for h € R(W). Therefore we have the following odd cycle lengths:

A7 +2, A7+h+2 if A7 is odd and A € R(W) is even,
AT+ h+2 if A7 is even and A e R(W) is odd, ©)
|C|—A7+2,|C|—Af+h+2 if Af is even and h € R(W) is even,

|C|—A7+h+2 if A7 is odd and 2 € R(W) is odd.

The index i in (9) can take values 1,2,...,2k —2.

If there are at least kK A7 of the same parity for some x € X then selecting two
numbers from {2} U {h +2: h € R(W)} of the same parity, (9) implies |L(G)|=
k +1, contradiction. Assume that A} is even for some x € X. Then A, ..., A3, _;
contain & — 1 numbers of the same parity where y is the vertex in X following x.
Adding A7 to the largest of these numbers we get k different numbers of the same
parity. Therefore A7 is odd for each x € X. Consequently

min{A}: x € X} = min{A7: x € X}

is an odd number thus min{Aj:xe€ X} +2 and Af+h+2' gives k+1 odd
numbers if A is even and 4 is odd, provided that R(W) has two odd numbers. If
[R(W)| =3 then this is true because {2} U R(W) must contain two odd and two
even numbers (three of the same parity would give k£ + 1 odd cycles by the second
or fourth line of (9)). But if |R(W)|=2 then W is described before. If
R(W)={b+2,3b +2} then for even b, {2} UR(W) contains three even num-
bers, for odd b, R(W) contains two odd numbers. If R(W) = {2, b + 2} then for
even b, {2} UR(W) contains three even numbers. For odd b one can find k + 1
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odd numbers as follows:
min{Af:x e X} +2, min{AT: x e X} +4,
A7+ b +4 for A7 even.

Finally, the case k =1 is treated. Now | X| =1 and using the 2-connectedness of
G, there is a path from V(C)— X to S. One can easily find two odd cycles of
different lengths, the missing details are omitted here. [

Lemma 7. If [(A)NC=I(B)NC and |[[(A)NC|=2k, A+ B then |L(G)|=

k+1.

Proof. Assume that NA)NC=X = {xy, x5, ..., x5} and we shall use the
notations of the previous lemmas. Let s denote the length of S. It is clear that for
each x e X A7, A3, ..., A3, must consist of £ — 1 numbers of one parity and k

numbers of the other parity, otherwise |L(G)|= k + 1 follows. It is easy to check
that if {A¥}?' contains kK —1 odd numbers then {AY}?7! contains k odd
numbers for y =x;,, if x = x;.

If s is odd then select x such that {A7}7! contains kK — 1 odd numbers, i.e., k
even numbers: b;<b,<---<b,. Then we have k+1 different odd cycle
lengths: s +2, b;+s+2fori=1,..., k.

If s is even then select x such that A7 contains k£ odd numbers: b; <b, <---<
by. Now b +2<b,+2<:--<b,+2<b,+2+s are different odd cycle
lengths. O

Lemma 8. If |I'(A)| N C| =2k and y € (I'(B) N C) — I'(A) then |L(G)| =k + 1.

Proof. Assume that T(A)NC={xy, x5, ..., x0=X and y=x¢, X1, ..., Xz
follow each other on C in this order. Let a; be the length of the path connecting x;
and x;_; on C which does not contain other x;. The length of S is denoted by s.
Set A;=a,+---+a;fori=1,2,...,2k. We may assume that {4,;}?*, contains
k odd and k even numbers otherwise |L(G)| = k + 1 is obvious.

Case 1: a;+s=0mod 2.

Let I be the set of those indices for which A; +s + 2 is odd. Clearly, |I| =k and
fori,jel, A;~a,+2=A;+s+2, therefore A;,—a,+2 and A;+s +2 are odd
cycle lengths in G. Let A; be the smallest element of {A,:iel}, then
A;j—a;+2<A;+s+2forielsince A;<A;+s +a, for i € I. Therefore A; and
A; +s+2foriel gives k + 1 different odd cycle lengths.

Case 2: a;+s=1mod 2.

In this case 4, + s + 2 is an odd cycle length. Let I be the set of indices i such
that |C|—A;+a;+2 is odd. Clearly, |I| =k. We claim that a, +s +2+#|C| —
A;+a;+2 for i el If there is equality for some i e then A;=|C|—s. Since



48 A. Gyarfas

IC|—A; +a;+2isodd, A;=a; mod 2 therefore A, +2+s=a;+2+s=1mod 2.
Thus A;+2+s=|C|—s+2+s=|C|+2 and A; + 2+ is the length of an odd
cycle. This contradicts the maximality of C. Thus a; +s5 +2 is different from
|C| —A;+a,+2for i el and we have k + 1 different odd cycle lengths.
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