Graphs with k odd cycle lengths

A. Gyárfás

Computer and Automation Institute, Hungarian Academy of Sciences, XI. Kende U. 13–17, 1502 Budapest PF. 63, Hungary

Received 21 November 1989
Revised 20 August 1990

Abstract

If G is a graph with $k \geq 1$ odd cycle lengths then each block of G is either K_{2k+2} or contains a vertex of degree at most $2k$. As a consequence, the chromatic number of G is at most $2k + 2$.

For a graph G let $L(G)$ denote the set of odd cycle lengths of G, i.e.,

$$L(G) = \{2i + 1: G \text{ contains a cycle of length } 2i + 1\}.$$

With this notation, bipartite graphs are the graphs with $|L(G)| = 0$. Bollobás and Erdős asked how large can the chromatic number of G be if $|L(G)| = k$. They conjectured that $|L(G)| = k$ implies $\chi(G) \leq 2k + 2$ and this is best possible considering $G = K_{2k+2}$.

The case $k = 1$ is checked by Bollobás and Shelah (see [1, p. 472] for the motivation). Gallai suspected that a stronger statement is true, namely if G is 2-connected, $|L(G)| = k, G \neq K_{2k+2}$ then the minimum degree of G is at most $2k$. The aim of this paper is to prove this stronger version of the original conjecture.

Theorem 1. If G is a 2-connected graph with minimum degree at least $2k + 1$ then $|L(G)| = k \geq 1$ implies $G = K_{2k+2}$.

Assuming that $|L(G)| = k$, Theorem 1 clearly allows to color the vertices of the blocks of G with at most $2k + 1$ colors except when a block is a K_{2k+2}. Thus the following corollary is obtained.

Corollary. If $|L(G)| = k \geq 1$ then the chromatic number of G is at most $2k + 1$, unless some block of G is a K_{2k+2}. (If there is such a block, then the chromatic number of G is $2k + 2$.)
For the proof of Theorem 1 and for the lemmas we adopt the following notation: Graph \(G \) is a 2-connected graph with minimum degree at least \(2k + 1 \) and with \(|L(G)| = k \geq 1 \). Let \(C \) denote a longest odd cycle of \(G \). The subgraph of \(G \) induced by \(V(G) - V(C) \) is denoted by \(G' \). A longest path of \(G' \) is denoted by \(S \). Let \(A \) and \(B \) be the endpoints of \(S \). If \(S \) is a path and \(x, y \) are two vertices of \(S \) then \(S(x, y) \) denotes the subpath of \(S \) between \(x \) and \(y \). \(T(x) \) denotes the set of vertices adjacent with \(x \) in \(G \). The degree of a vertex is denoted by \(d(x) \).

Proof of Theorem 1. If \(A = B \), i.e., \(G' \) has no edges then Lemma 5 implies \(G = K_{2k+2} \). We may assume therefore that \(A \neq B \), i.e., \(|S| \geq 1 \).

If \(\Gamma(A) \cap C = \emptyset \) (or \(\Gamma(B) \cap C = \emptyset \)) then \(d(A) \geq 2k + 1 \) (or \(d(B) \geq 2k + 1 \)) implies that \(G' \) contains a cycle with \(2k - 1 \) diagonals incident to the same vertex \(A \) or \(B \) of the cycle. Let \(H \) be this subgraph of \(G' \). Applying Lemma 2, either \(|L(H)| \geq k \) or \(H \) is bipartite. The former case leads to a contradiction because of Lemma 1. Therefore \(H \) is bipartite. Since \(G \) is 2-connected, there exist two vertex-disjoint paths \(S_1 \) and \(S_2 \) joining \(V(C) \) and \(V(H) \). Applying Lemma 3 with \(x = V(H) \cap S_1 \) and \(y = V(H) \cap S_2 \). The \(k + 1 \) paths ensured by Lemma 3 together with \(S_1 \) and \(S_2 \) and with the arc of \(C \) of suitable parity define \(k + 1 \) odd cycles of different lengths. Thus we get a contradiction again.

We conclude that \(\Gamma(A) \cap C \neq \emptyset \) and \(\Gamma(B) \cap C \neq \emptyset \). Due to the symmetry of \(A \) and \(B \) we may assume that

\[
1 \leq p = |\Gamma(A) \cap C| \leq |\Gamma(B) \cap C|.
\]

Let \(|\Gamma(A) \cap S| = q + 1 \), that is there are \(q \) diagonals of \(S \) starting from \(A \). Since \(d(A) \geq 2k + 1 \), \(p + q \geq 2k \) follows.

Case 1: \(\Gamma(A) \cap C \neq \Gamma(B) \cap C \).

Lemma 4 implies

\[
|L(G)| \geq \left\lceil \frac{p}{2} \right\rceil + q \geq \left\lceil \frac{2k - q}{2} \right\rceil + q = k - \left\lfloor \frac{q}{2} \right\rfloor + q > k,
\]

leading to a contradiction unless \(q = 0 \) and \(p + q = 2k \), i.e., \(p = 2k \). This case is handled in Lemma 8 and also leads to \(|L(G)| \geq k + 1 \).

Case 2: \(\Gamma(A) \cap C = \Gamma(B) \cap C \).

Now lemma 4 can be applied with \(p - 1 \) in the role of \(p \) and we get

\[
|L(G)| \geq \left\lceil \frac{p - 1}{2} \right\rceil + q \geq \left\lceil \frac{2k - q - 1}{2} \right\rceil + q = k - \left\lfloor \frac{q + 1}{2} \right\rfloor + q > k
\]

unless \(q = 1 \) and \(p + q = 2k \), or \(q = 0 \) and \(p + q = 2k \) or \(2k + 1 \). The case \(q = 1 \) is treated in Lemma 6 and the case \(q = 0 \) is treated in Lemma 7. In both cases we get \(k + 1 \) odd cycles of different lengths leading to a contradiction. Thus the only possibility is that \(G = K_{2k+2} \) and Theorem 1 is proved. \(\square \)

Lemma 1. If \(C' \) is an odd cycle of \(G' \) then \(|C'| < |C| \).
Proof. Assume that $|C'| \geq |C|$. Since G is 2-connected, there exist two vertex-disjoint paths P_1 and P_2 in G such that $|P_1 \cap C| = 1$ and $|P_2 \cap C'| = 1$ for $i = 1, 2$. The subgraph $C \cup C' \cup P_1 \cup P_2$ is clearly the union of two odd cycles C_1 and C_2. Since $|C_1| + |C_2| > |C| + |C'| \geq 2|C|$, $|C_1|$ or $|C_2|$ is larger than $|C|$ and we reach a contradiction. \(\square \)

Lemma 2. Let H be a graph we get from a cycle T by adding $2k - 1$ diagonals, each of them incident to the same vertex x_0 of T. Then either H is a bipartite graph or $|L(H)| \geq k$.

Proof. Assume that T has diagonals $e_i = x_0 x_i$ for $i = 1, 2, \ldots, x_{2k-1}$. W.l.o.g., $x_0, x_1, \ldots, x_{2k-1}$ follow each other on T in this order. Let a_i denote the length of the path on T from x_{i-1} to x_i following the order of $x_j - s$. Consider x_0 as x_{2k} for convenience. The proof is by induction on k. The case $k = 1$ is clear. Assume that the lemma is true for each $k' < k$ and $k \geq 2$. If T is odd then each e_i divides $T \cup e_i$ into an odd and an even cycle. Let C_i denote the odd cycle for $i = 1, 2, \ldots, 2k - 1$. If e and f are the edges of T incident to x_0 then each C_i contains either e or f. There are k indices i such that C_i contains one of $\{e, f\}$. These cycles satisfy the requirements of the lemma.

If T is an even cycle, e_i is called even if it divides T into two even cycles, otherwise it is called odd. If the only odd diagonal of T is e_k then we can define k odd cycles as follows. Let C_i be the cycle of H containing e_i and e_k for $i = 1, 2, \ldots, k - 1$, and let C_k be the cycle containing e_k and the path on T from x_0 to x_k containing x_1, \ldots, x_{k-1}. Otherwise let p be the smallest integer in $\{1, 2, \ldots, k - 1\}$ such that either e_p or e_{2k-p} is an odd diagonal. If no such p exists then H is bipartite. Apply the inductive hypothesis to H^* defined as the cycle C^* determined by e_p and e_{2k-p} in T together with the diagonals e_i for $p < i < 2k - p$. If H^* is bipartite then both e_p and e_{2k-p} are odd diagonals of T. By symmetry, one may assume that $a_p \geq a_{2k-p+1}$. Let C_i be the cycle determined by the diagonals e_i and e_{2k-p+1} for $i = p, \ldots, 2k - p$. Let D_i be the cycle determined by the diagonals e_i and e_{2k-p} for $i = 1, 2, \ldots, p - 1$. Let D_0 be the cycle determined by e_{2k-p} and the path on T from x_0 to x_{2k-p} following the order $x_0, x_1, \ldots, x_{2k-p}$. All these cycles are odd and $a_p \geq a_{2k-p+1}$ ensures that

$$|C_{2k-p}| < \cdots < |C_p| \leq |D_{p-1}| < \cdots < |D_1| < |D_0|.$$

Therefore we defined at least $2k - 2p + 1 + p - 1 = 2k - p$ odd cycles of different lengths. Clearly $2k - p > k$ since $k \geq p + 1$ by the definition of p.

If H^* is not bipartite then by induction it contains odd cycles $C_1, C_2, \ldots, C_{k-p}$ such that $|C_1| < |C_2| < \cdots < |C_{k-p}|$. Let D_i be the cycle determined by e_p and e_{2k-p+i} for $i = 1, 2, \ldots, p - 1$. Let D_p be the cycle determined by e_p and the path x_0, x_1, \ldots, x_p on T. Clearly $|C_{k-p}| < |D_1| < \cdots < |D_p|$ thus we have the desired cycles. \(\square \)
Lemma 3. Let H be a graph we get from a cycle T by adding $2k - 1$ diagonals $e_i = x_0x_i$ to T. Assume that H is a bipartite graph and $x, y \in V(H)$, $x \neq y$. Then there exist $k + 1$ paths P_1, \ldots, P_{k+1} in H from x to y such that $|P_i| \equiv |P_j| \mod 2$ and $|P_i| \neq |P_j|$ for $1 \leq i < j \leq k + 1$.

Proof. If $x_0 = x$ or $y_0 = y$, say $x_0 = x$ then one of the two xy paths of T contains k vertices of $X = \{x_1, \ldots, x_{2k-1}\}$, say x_1, x_2, \ldots, x_k. The paths $x_0 e_i x_1 \cdots x_k y$ for $i = 1, 2, \ldots, k$ and the path $x_0 x_1 x_2 \cdots x_k y$ satisfy the requirements.

If $x_0 \notin \{x, y\}$, assume that one of the paths from x to y in T contains $x_1, x_2, \ldots, x_m, x_0, x_{n+1}, x_{n+2}, \ldots, x_{2k-1}$ in this order and the other xy path on T contains vertices $x_{m+1}, x_{m+2}, \ldots, x_n$ in this order. Then $xx_i e_i x_0 e_j x_1 \cdots x_k y$ for $i = 1, 2, \ldots, m, j = m + 1, \ldots, n$ obviously contains n paths of the same parity and of different lengths. Similarly, $xx_i e_i x_0 e_j x_1 \cdots x_{2k-1} y$ for $i = 1, 2, \ldots, m, j = n + 1, \ldots, 2k - 1$ and $xx_i x_2 \cdots x_m x_0 x_{n+1} \cdots x_{2k-1}$ determines $m + 2k - n$ paths of the same parity and of different lengths. The two path systems have $m + 2k$ paths together therefore one of them have at least $k + 1$ paths unless $m = 0$. But in this case $n = k$ and we can apply the same argument by exchanging the role of x and y. □

Lemma 4. Assume that A is adjacent to p vertices, y_1, y_2, \ldots, y_p of C and to $q + 1$ vertices of S. Moreover, B is adjacent to $y \in V(C) - \{y_1, \ldots, y_p\}$. Then $|L(G)| \geq \lfloor p/2 \rfloor + q$.

Proof. Assume that y_1, y_2, \ldots, y_p and y follow each other in this order along C. Let Az_1, Az_2, \ldots, Az_q be the diagonals of S in this order starting from A. We shall define $q + 1$ paths S_i and p paths P_i as follows:

$$S_i = S, \quad S_{i+1} = A, z_i, z_{i+1}, \ldots, z_q, B \quad \text{for } i = 1, 2, \ldots, q$$

$$P_i = A, y_i, y_{i+1}, \ldots, y_p, y, B \quad \text{for } i = 1, 2, \ldots, p.$$

Let a denote the length of the subpath z_qB on S. It is easy to check that the following numbers are all odd cycle lengths:

$$f_i = |S_i| - a + 1 \quad \text{if } |S_i| - a \text{ is even,}$$

$$g_q = |S_1| + |P_1| \quad \text{if } |S_1| + |P_1| \text{ is odd,}$$

$$h_p = |S_1| + |C| - |P_1| + 2 \quad \text{if } |S_1| + |P_1| \text{ is even.}$$

By the symmetry of (2) and (3) one may assume that a is even.

Let i, j, m be indices such that

$$|S_i| \text{ is even,} \quad |S_j| \text{ is odd,} \quad |P_m| \text{ is even.}$$

If $f_i \geq g_j$, i.e., $|S_i| - a + 1 \geq |S_j| + |P_m|$ then (3) implies that

$$h_{im} = |S_i| + |C| - |P_m| + 2 \geq |S_j| + |P_m| + a - 1 + |C| - |P_m| + 2$$

$$= |S_j| + 1 + a + |C| > |C|$$
contradicting the maximality of \(C \). Therefore \(f_i < g_{jm} \) for each choice of indices satisfying (4). Thus \(g_{jm} \) takes at least \(J + M - 1 \) values where

\[
J = \{|j: |S_j| \text{ is odd}|\}, \quad M = \{|m: |P_m| \text{ is even}|\}.
\]

If \(I = \{|i: |S_i| \text{ is even}|\} \) then \(f_i < g_{jm} \) implies that \(f_i \) and \(g_{jm} \) together take at least \(q + M \) values, i.e.,

\[
|L(G)| \geq q + M.
\]

Similarly, let \(i, j, n \) be indices such that

\[
|S_i| \text{ is even}, \quad |S_j| \text{ is odd}, \quad |P_n| \text{ is odd}.
\]

If \(f_i > h_{jn} \), i.e., \(|S_i| - a + 1 \geq |S_j| + |C| - |P_n| + 2 \) then (2) implies

\[
g_{in} = |S_i| + |P_n| \geq |S_j| + |C| - |P_n| + 2 + a - 1 + |P_n| = |S_j| + a + 1 + |C| > |C|
\]

leading to a contradiction. Therefore \(f_i < h_{jn} \) for each choice of indices satisfying (6). Thus for \(N = \{|n: |P_n| \text{ is odd}|\} \) we get

\[
|L(G)| \geq q + N.
\]

Since \(M + N = p \), either \(M \) or \(N \) is at least \(\lfloor p/2 \rfloor \) and the lemma follows from (5) and (7). \(\Box \)

Lemma 5. If \(V(G) - V(C) \) is an independent set then \(G = K_{2k+2} \).

Proof. If \(V(G) - V(C) = \emptyset \) then \(|L(G)| \geq k + 1 \) follows from Lemma 2 and we have a contradiction. Select a vertex \(T \in V(G) - V(C) \). Then \(d(T) \geq 2k + 1 \) implies that \(T \) is adjacent to \(X = \{x_1, x_2, \ldots, x_{2k+1}\} \subseteq V(C) \) and assume that the vertices of \(X \) follow each other in this order. This order gives an orientation to \(C \). Set \(A_i^x = a_1^x + a_2^x + \cdots + a_i^x \) where \(x = x_m \) and \(a_i^x \) is the length of the path on \(C \) from \(x_{m+j-1} \) to \(x_{m+j} \), \(i = 1, 2, \ldots, 2k + 1 \). Here indices are taken modulo \(2k + 1 \) and the path is understood according the fixed orientation of \(C \). Clearly \(A_{2k+1}^x = |C| \) for any \(x \in X \). Moreover, for any \(x \in X \) we have the following odd cycle lengths:

\[
A_i^x + 2 \quad \text{if } A_i^x \text{ is odd and } 1 \leq i < 2k + 1,
\]

\[
|C| - A_i^x + 2 \quad \text{if } A_i^x \text{ is even and } 1 \leq i \leq 2k + 1.
\]

For any \(x \in X \) there are \(k + 1 \) elements of \(\{A_i^x\}_{i=1}^{2k+1} \) having the same parity. If they are even then (8) implies that \(|L(G)| \geq k + 1 \), a contradiction. Thus we may assume that for each \(x \in X \), \(\{A_i^x\}_{i=1}^{2k+1} \) contains exactly \(k + 1 \) odd numbers and \(A_i^x + 2 = |C| \) for some \(i \). This implies that \(X \) divides \(C \) into paths of length 1 or 2. If \(A_i^x = 2 \) for some \(x \in X \) then there are \(k \) odd numbers in \(\{A_i^x\}_{i=1}^{2k} \) but all of them are larger than 3. Since \(|C| \) is odd, there exists \(y \in X \), \(A_i^y = 1 \) and we have a 3-cycle giving \(k + 1 \) odd cycle lengths altogether. Thus the only possibility is that
X divides C into paths of length 1, i.e., $|C| = 2k + 1$. Now $V(G) - V(C) = \{T\}$ otherwise we get a cycle of length $2k + 3$, thus G has odd cycle lengths $2i + 1$ for $i = 1, 2, \ldots, k + 1$, leading to a contradiction. Thus $|V(G)| = 2k + 2$ and since each degree of G is at least $2k + 1$, $G = K_{2k + 2}$.

Lemma 6. If S has one diagonal at A and one at B, and, moreover, $\Gamma(A) \cap C = \Gamma(B) \cap C$, $|\Gamma(A) \cap C| = 2k - 1$ then $|L(G)| \geq k + 1$.

Proof. Let $\Gamma(A) \cap C = \Gamma(B) \cap C = X = \{x_1, x_2, \ldots, x_{2k-1}\}$ and assume that $x_1, x_2, \ldots, x_{2k-1}$ is their order on C. We use the notation A^i_x for $i = 1, 2, \ldots, 2k - 1$ as defined in Lemma 5. First we assume that $k \geq 2$.

Let W denote the graph consisting of S with its two diagonals. Let $R(W)$ denote the set of path lengths in W from A to B. It is easy to check that $|R(W)| \geq 3$ except when $R(W) = \{b + 2, 3b + 2\}$ or when $R(W) = \{2, b + 2\}$ for some b (in these cases S has two crossing diagonals and b is the length of the middle segment of S).

If $x, y \in X$, $x \neq y$, then x and y can be connected by paths of length 2 and $h + 2$ for $h \in R(W)$. Therefore we have the following odd cycle lengths:

\[
\begin{align*}
A^i_x + 2, A^i_y + h + 2 & \quad \text{if A^i_x is odd and $h \in R(W)$ is even,} \\
A^i_x + h + 2 & \quad \text{if A^i_x is even and $h \in R(W)$ is odd,} \\
|C| - A^i_x + 2, |C| - A^i_y + h + 2 & \quad \text{if A^i_x is even and $h \in R(W)$ is even,} \\
|C| - A^i_x + h + 2 & \quad \text{if A^i_x is odd and $h \in R(W)$ is odd.}
\end{align*}
\]

The index i in (9) can take values $1, 2, \ldots, 2k - 2$.

If there are at least $k A^i_x$ of the same parity for some $x \in X$ then selecting two numbers from $\{2\} \cup \{h + 2: h \in R(W)\}$ of the same parity, (9) implies $|L(G)| \geq k + 1$, contradiction. Assume that A^i_x is even for some $x \in X$. Then $A^i_y, \ldots, A^{2k-3}_y$ contain $k - 1$ numbers of the same parity where y is the vertex in X following x. Adding A^i_y to the largest of these numbers we get k different numbers of the same parity. Therefore A^i_x is odd for each $x \in X$. Consequently

\[
\min\{A^i_x: x \in X\} = \min\{A^i_y: x \in X\}
\]

is an odd number thus $\min\{A^i_x: x \in X\} + 2$ and $A^i_x + h + 2$ gives $k + 1$ odd numbers if A^i_x is even and h is odd, provided that $R(W)$ has two odd numbers. If $|R(W)| \geq 3$ then this is true because $\{2\} \cup R(W)$ must contain two odd and two even numbers (three of the same parity would give $k + 1$ odd cycles by the second or fourth line of (9)). But if $|R(W)| = 2$ then W is described before. If $R(W) = \{b + 2, 3b + 2\}$ then for even b, $\{2\} \cup R(W)$ contains three even numbers, for odd b, $R(W)$ contains two odd numbers. If $R(W) = \{2, b + 2\}$ then for even b, $\{2\} \cup R(W)$ contains three even numbers. For odd b one can find $k + 1$
Graphs with \(k \) odd cycle lengths

odd numbers as follows:

\[
\min\{A_i^x: x \in X\} + 2, \quad \min\{A_i^z: x \in X\} + 4,
\]

\(A_i^z + b + 4 \) for \(A_i^x \) even.

Finally, the case \(k = 1 \) is treated. Now \(|X| = 1 \) and using the 2-connectedness of \(G \), there is a path from \(\nu(C) - X \) to \(S \). One can easily find two odd cycles of different lengths, the missing details are omitted here. \(\square \)

Lemma 7. If \(\Gamma(A) \cap C = \Gamma(B) \cap C \) and \(|\Gamma(A) \cap C| = 2k \), \(A \neq B \) then \(|L(G)| \geq k + 1 \).

Proof. Assume that \(\Gamma(A) \cap C = X = \{x_1, x_2, \ldots, x_{2k}\} \) and we shall use the notations of the previous lemmas. Let \(s \) denote the length of \(S \). It is clear that for each \(x \in X \) \(A_i^z \), \(A_j^z \), \(\ldots, A_{2k}^z \) must consist of \(k - 1 \) numbers of one parity and \(k \) numbers of the other parity, otherwise \(|L(G)| \geq k + 1 \) follows. It is easy to check that if \(\{A_i^z\}_{i=1}^{2k-1} \) contains \(k - 1 \) odd numbers then \(\{A_i^z\}_{i=1}^{2k-1} \) contains \(k \) odd numbers for \(y = x_{i+1} \) if \(x = x_i \).

If \(s \) is odd then select \(x \) such that \(\{A_i^z\}_{i=1}^{2k-1} \) contains \(k - 1 \) odd numbers, i.e., \(k \) even numbers: \(b_1 < b_2 < \cdots < b_k \). Then we have \(k + 1 \) different odd cycle lengths: \(s + 2 \), \(b_1 + s + 2 \), \(\ldots, b_k + 2 < b_k + 2 + s \) are different odd cycle lengths.

Lemma 8. If \(|\Gamma(A)| \cap C = 2k \) and \(y \in (\Gamma(B) \cap C) - \Gamma(A) \) then \(|L(G)| \geq k + 1 \).

Proof. Assume that \(\Gamma(A) \cap C = \{x_1, x_2, \ldots, x_{2k}\} = X \) and \(y \equiv x_0, x_1, \ldots, x_{2k} \) follow each other on \(C \) in this order. Let \(a_i \) be the length of the path connecting \(x_i \) and \(x_{i-1} \) on \(C \) which does not contain other \(x_j \). The length of \(S \) is denoted by \(s \).

Set \(A_i = a_1 + \cdots + a_i \) for \(i = 1, 2, \ldots, 2k \). We may assume that \(\{A_i\}_{i=1}^{2k} \) contains \(k \) odd and \(k \) even numbers otherwise \(|L(G)| \geq k + 1 \) is obvious.

Case 1: \(a_1 + s = 0 \mod 2 \).

Let \(I \) be the set of those indices for which \(A_i + s + 2 \) is odd. Clearly, \(|I| = k \) and for \(i, j \in I \), \(A_i - a_1 + 2 = A_j + s + 2 \), therefore \(A_i - a_1 + 2 \) and \(A_j + s + 2 \) are odd cycle lengths in \(G \). Let \(A_j \) be the smallest element of \(\{A_i: i \in I\} \), then \(A_j - a_1 + 2 < A_i + s + 2 \) for \(i \in I \) since \(A_j < A_i + s + a_1 \) for \(i \in I \). Therefore \(A_j \) and \(A_i + s + 2 \) for \(i \in I \) gives \(k + 1 \) different odd cycle lengths.

Case 2: \(a_1 + s = 1 \mod 2 \).

In this case \(a_1 + s + 2 \) is an odd cycle length. Let \(I \) be the set of indices \(i \) such that \(|C| - A_i + a_1 + 2 \) is odd. Clearly, \(|I| = k \). We claim that \(a_1 + s + 2 \neq |C| - A_i + a_1 + 2 \) for \(i \in I \). If there is equality for some \(i \in I \) then \(A_i = |C| - s \). Since
|C| - A_i + a_1 + 2 is odd, \(A_i \equiv a_1 \mod 2 \) therefore \(A_i + 2 + s = a_1 + 2 + s \equiv 1 \mod 2 \). Thus \(A_i + 2 + s = |C| - s + 2 + s = |C| + 2 \) and \(A_i + 2 + s \) is the length of an odd cycle. This contradicts the maximality of \(C \). Thus \(a_1 + s + 2 \) is different from \(|C| - A_i + a_1 + 2 \) for \(i \in I \) and we have \(k + 1 \) different odd cycle lengths.

Reference