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Abstract. A graph G with at least 2k vertices is k-path pairable if for any k pairs of distinct vertices 
9f G there are k edge disjoint paths between the pairs. It will be shown for any positive integer k 
that there is a k-path pairable graph of maximum degree three. 

1. Introduction 

We shall consider graphs without loops or multiple edges. Any such graph can quite 
naturally represent a computer or communication network. There are various 
reasonable ways to measure the capability of the network represented by this graph 
to transfer information and handle communications. We will consider the capability 
of the network to allow messages to be passed simultaneously between any fixed 
number of pairs of nodes of the network. With this in mind, we give the following 
formal definition. 

Definition. Given a fixed positive integer k, a graph G is k-path pairable if for any 
pair of disjoint ordered sets of vertices X = { x 1 , x2 , ... , xk} and Y = {y1 , y2 , ... , Yk} 
of G there are kedge-disjoint paths Pi, where Pi is a path from xi to yi, for 1 ~ i ~ k. 

The concept of k-path pairable is related to several other concepts. It is closely 
related to but is not the same as weakly k-linkable. The definition of weakly 
k-linkable is the following: 

Definition. Given a fixed positive integer k, a graph G is weakly k-linked if for any 
collection of k pairs of vertices (not necessarily distinct pairs) {(xi, y J 1 ~ i ~ k} of 
G, there are k edge-disjoint paths Pi, where Pi is a path from xi to yi, for 1 ~ i ~ k. 

In both weakly linked and path pairable graphs k edge disjoint paths are 
required, but duplication of the pairs is allowed in the weakly linked case and 
prohibited in the path pairable case. By definition, any k-linked graph is k-pairable. 
However, any graph that is weakly k-linked is clearly at least k-edge connected. It 

Research is partially supported by ONR research grant N000014-88-K-0070 and NAS Ex
change grant. 



46 R.J. Faudree, A. Gyarfas, J. Lebel 

has been shown by Andreas Huck [7] that any (k + 2)-edge-connected graph is 
k-linked. This edge connectivity condition is not implied by k-path pairable. For 
example, it can be shown that the Petersen graph on 10 vertices is 5-path pairable, 
but the graph is regular of degree three. In fact, it will be shown for any positive 
integer k that there is. a k-path pairable graph of maximum degree three. 

There are vertex versions of the previous concepts which are stronger. Given a 
positive integer k a graph G is k-linked if given any collection of k pairs of vertices 
there are k vertex disjoint paths, one between each of the k pairs of vertices. It was 
proved independently by [8] and [6] that any 3k · 2(3zk) vertex connected graph is 
k-linked. Another related concept is that of superconcentrator, which is a bipartite 
graph with the property that between any two sets of the same cardinality d in 
different parts of the bipartite graph, there are d vertex disjoint paths between the 
corresponding sets of vertices. It has been shown that there are sparse graphs that 
are superconcentrators (see [ 4], [10], and [11]). 

Let pdn, L1) be the minimum number of edges in a graph G of order n and 
maximum degree at most L1 that is k-path pairable. Our objective is to evaluate 
the function Pk(n, L1). Useful in the determination of this function is the function 
Pk(n, L1, 6), which is the minimum number of edges in a graph G of order n with 
maximum degree at most L1 and minimum degree at least b that is k-path pairable. 
We start with some trivial observations. 

Any connected graph is 1-path pairable, so p1 (n, L1) = n - 1 for any 2 ~ L1 < n. 
The star K 1 ,n-i is k-path pairable for any k ~ n/2, so Pk(n, n- 1) = n- 1 for all 
k ~ n/2. More generally consider the graph obtained from a Km by attaching stars 
with (n- m)jm edges on each vertex of the Km (assume m divides n). This graph has 

. (m - 1) d . d n d . . n vertices, n + 
2 

- 1 e ges, maximum egree; + m- 2, an It IS easy to 

verify that it is (m - 1)-path pairable. Thus for k and 1 fixed with l :?: k + 1 and n 
sufficiently large, Pk(n, njl) ~ n + c for some c = c(k, 1). However, when there are 
additional restrictions placed on the maximal degree of the graph (the maximum 
degree is not a positive fraction of the number of vertices), then the number of edges 
required will be more. 

In [5], we deal with the cases k = 2 and 3. We prove, among others, that for 
L1 :?: 9 a fixed integer and n sufficiently large, Pk(n, L1) = (1 + c:)n, where c: depends 
upon L1 and approaches 0 as L1 increases. Fork>) the nature of minimal k-path 
pairable graphs differs from those for k = 2 or 3. Here we prove the following 
theorem which illustrates this 

Theorem. Let k > 3 be a fixed integer. For n sufficiently large there exist constants 
c:1 and c:2 (that depend upon k and approach 0 ask increases) such that 

(!- c:l)n < Pk(n, 3) < G- C:z)n. 

It would be nice to be able to get a sharp bounc\ for Pk(n, 3) for k > 3 similar to 
what was done fork = 2 or 3 in [5]. Also, it would be interesting to show for any 
fixed positive integer L1 > 3 that Pk(n, L1) is essentially the same as Pk(n, 3), and the 
maximum degree hypothesis of the Theorem could be changed from 3 to L1. 

We will generally follow the notation of [3]. For a graph G, the vertex and edge 
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set will be denoted by V(G) and E(G) respectively. The cardinality of V(G) and E(G) 
will be called the order and size respectively of the graph G. If X is a collection of 
vertices and edges of G, then G - X will denote the graph obtained from G by 
deleting the edges in X and by deleting the vertices in X and the edges incident to 
a vertex in X. If u and v are vertices in G, then the edge determined by this pair of 
vertices will be denoted by uv. 

2. Upper Bound 

For any fixed positive integer k we describe a graph of large order n that has 
maximum degree three and is k-path pairable. We start with some preliminary 
observations. 

Let Br denote the complete binary tree with r levels in which the root has degree 
three as well. Therefore, Br has 3 · 2r- 2 vertices and 3 · 2r-1 leaves. For each nonleaf 
v of the tree Br consider the unique path Pv from v to a leaf of the tree by first taking 
the right tree rooted at v and the left tree at each subsequent step. It is straight
forward to verify that distinct vertices of the tree determine edge disjoint paths to 
appropriate leaves of the tree. Therefore, for any collection oft nonleaf vertices of 
the tree, there are t edge disjoint paths from these vertices tot distinct leaves of the 
tree. Also, note that if the t vertices are all in the first s levels of the tree (s < r), then 
the endvertices of the t paths associated with these vertices will be pairwise at a 
distance of at least 2(r- s), since the last r - s vertices in each of these paths will 
be in different rooted binary trees with r - s levels. 

Also note that the same conclusion is true for the complete binary tree with a 
root of degree two instead of a root of degree three. Furthermore, a vertex of degree 
one can be attached to the root of degree two of this tree, and a path that always takes 
the left trees can be associated with this new vertex. This gives 2r edge disjoint paths 
from the nonleaves and the new vertex to the 2r leaves of the original binary tree. 

If a graph G has sufficiently high vertex connectivity, then G will be k-linked. 
More specifically, recall that a connectivity of 3k · 2e2k) is sufficient for a graph to 
be k-linked. With that in mind, we will describe a graph that will have sufficient 
connectivity to have the linked properties needed in the proof of the next theorem. 

For fixed positive integers d :::;; g, and for n sufficiently large there exists a graph 
of order n that is regular of degree d, is d-connected, and has girth at least g (see 
[1]). Let Gn(d, g) be a graph with this property. If dis even, then the graph has a 
2-factorization by Petersen's Theorem [9]. Thus the edges of Gn(d, g) can be colored 
with d/2 colors such that each monochromatic subgraph is a disjoint union of cycles, 
and each vertex of Gn(d, g) will be incident to precisely two edges of each color. 

Consider the case when d = 3 · 2r, so the edges of Gn(3 · 2r, g) are colored with 
3 · 2r-l colors. Associate with each vertex of Gn(3 · 2r, g) a distinct binary tree B,. The 
3 · 2r- 1 leaves of each of these complete binary trees Br can be colored with the same 
3 · 2r-l colors. Now, a new graph G:(3 · 2r, g) that is regular of degree three can be 
constructed from Gn(3 · 2r, g) by replacing each vertex v with 3 · 2r-l vertices, one 
associated with each ofthe 3 · 2r-t colors, and making each of these vertices incident 
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to the two edges of that color that were incident to v. Now identify each colored 
leaf of the binary tree associated with v with the new vertex derived from v associated 
with the same color. The graph G:(3 · 2', g) has (3 · 2' - 2)n vertices, all of which 
have degree three. 

This graph has two kinds of edges: there are the tree edges that came from the 
attached binary trees, and there are the graph edges that are identified with edges 
in the initial graph Gn(3 · 2', g). The girth of the graph G:(3 · 2', g) is at least g, since 
any cycle in this graph determines a closed Eulerian circuit in Gn(3 · 2', g) and each 
of the cycles associated with that circuit has at least g vertices. The graph Gn(3 · 2', g) 
will be called the core graph of the graph G:(3 · 2', g), and the binary trees B, 
associated with each vertex of the core will be called the attached trees. These graphs 
are central to the proof of the following theorem. 

Theorem 1. For any positive integer k and for n sufficiently large there is a graph of 
order n and regular of degree three that is k-path pairable. 

Proof. For k = 1, any connected 3-regular graph will suffice, so we will assume 
that k ~ 2. Select any integer r such that r ~ 9k2 /2. Consider a graph G* = 

G:(3 · 2', 3 · 2'), and let G denote the core graph of G*. Let X = { x 1 , x 2 , ... , x2d be 
a set of 2k vertices in G* with x2 i_1 paired with x 2 i for 1 ~ i ~ k. We will show that 
there are edge disjoint paths between these k pairs of vertices. 

We will first partition the vertices in X such that the vertices in the same partition 
class are close and vertices in different partitions are far apart. More specifically, 
we will find an integers with 2r ~ s ~ (2r)6 2k-t = 62krj3 and a subset T of X such 
that each vertex of X is within a distances of precisely one of the vertices ofT and 
the distance between vertices in Tis at least 5s. 

To verify the existence of this partition, first try s1 = 2r, and T1 = X. If each 
pair of vertices in X are a distance at least 5(2r) apart, we have the desired partition. 
If not, then let s2 = 6s1 = 12r. If two vertices of T1 are within a distance 5(2r) of 
each other, then one of these vertices will not be needed to cover the set X if we use 
a distance 6(2r). Thus, we can select a proper subset T2 of T1 such that each vertex 
of X is within a distance s2 of the vertices of T2 . If this gives the desired partition, 
we are done. If not, then there are two vertices in T2 that are within a distance 5s2 

of each other. Therefore, if we let s3 = 6s2 , then there is a proper subset T3 of T2 

such that each vertex of X is within a distance s3 ofa vertex in T3 . Since there are 
only 2k vertices in X, within 2k steps this procedure will yield the appropriate subset 
T and integer s. 

Let {y1 , y2 , ••• , Yt} be the vertices ofT, and let Xi be the subset of X of those 
vertices that are within a distances of Yi> for 1 ~ i ~ t. If, for any i, we consider the 
vertices of G that are within a distance 2s of Yi, then we have a binary tree (with a 
root of degree three) since the graph is 3-regular and the girth g is large (g > 4s). 
Therefore from the previous observations about bin:;uy trees, there are for each i, 
edge disjoint paths of lengths between s and 2s from each of the vertices in Xi, such 
that the terminal vertices of these paths are pairwise at a distance of at least 2s. 
Because the distance between vertices in Tis at least 5s, there are edge disjoint paths 
from all of the vertices in X such that the terminal vertices of these paths are pairwise 
at a distance at least s. Let { P1 , P2 , .•. , P2d denote these paths of length at most 2s 
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and let { w 1 , w 2 , ... , w 2 k} be the collection of these end vertices of the paths from 
{x 1 , x2 , ... , x2 k} respectively. 

Because of the distance between the vertices in { w1 , w 2 , ... , w2 k}, each of the 
vertices wi is in a different attached binary tree of G* that was associated with the 
vertices of the initial core graph G. We can also assume that each wi is a leaf of this 
attached binary tree. For each i, let w; be the vertex in the core graph G that is 
associated with the attached tree containing wi. In the 2k paths from the xi to the 
wi there are a total of at most 4ks + 2k vertices. Delete all of the vertices in these 
paths, except for the terminal vertices { w 1 , w 2 , ... , w 2 k}, and in fact delete all of the 
vertices of any of the attached binary trees that contain vertices in these paths. Let 
Z* denote the vertices deleted from G*. Related to the deletion of the set of Z* 
vertices of G*, there is the deletion of a corresponding set Z of at most 4ks vertices 
in the core graph G. 

3
k 

The graph G - Z is still 3k · 2( 2 Lconnected, since r was chosen to satisfy 
3 · 2r - (4k)(6 2krj3) > 3k · 2e2k), as the reader can check easily. Therefore by [8] and 
{6], the graph G - Z is k-linked. Thus in G - Z there are k vertex disjoint paths 
between the pairs w;i_1 and w;i for 1 ::::;; i ::::;; k. This translates into k edge disjoint 
paths Qi in the graph G* - Z* between the pairs w 2 i_1 and w 2 i for 1 ::::;; i::::;; k. These 
k paths are edge disjoint from the 2k paths Pi for 1 ::::;; i ::::;; 2k. Combining the paths 
P2i_1 , P2 i and Qi give the desired paths between the pairs x2i-1 and x2i for 1 ::::;; i ::::;; k. 
This completes the proof of Theorem 1. D 

In the proof of Theorem 1, the roots of the attached binary trees were of degree 
three. However, it is sufficient to attach complete binary trees with roots that are 
of degree two. In addition, a vertex of degree one can be joined to the root of 
each of the attached binary trees and the same construction for a path pairable 
graph will be valid. Only minor obvious adjustments would have to be made in the 
verification ofthe path pairable property. If we use the notation of Theorem 1, then 
in the case when a binary tree with a vertex of degree one joined to the root of the 
tree is the attached tree, the graph G* would have 2r+1n vertices and all these vertices 
would have degree three except for n vertices of degree one. Thus G* would have 
(3 · 2r- 1)n edges. Thus as a consequence of the proof of Theorem 1 we have the 
following corollary. 

For k > 3 fixed and n sufficiently large, there is a graph of maximum degree 

th~ee with n vertices and ~ (1 -
3 

~ 
2
r) n edges (where~ r = 9k2 /2) that is k-path 

pmrable. 

Theorem 2. Let k > 3 be a fixed integer. For n sufficiently large, 

3n( 1 ) 
Pk(n, 3) < 2 1 - 3. 29k2f2 . 

3. Necessary Conditions 

We begin with some general observations about graphs that are k-path pairable. 
Let G beak-path pairable graph, and let X be a set of cut edges of G that separates 
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the vertices into two sets C1 and C2 . 1ft vertices in one part are paired with t vertices 
in the other part, then there must be at least t edges in X. Thus, 

lXI ~ min{IC1 I, IC2 I,k}. 

This condition is called the Cut Condition for a k-path pairable graph, and is 
clearly a necessary condition for a graph to be k-path pairable. However, as we shall 
see later, it is not sufficient. 

There are several immediate consequences of the Cut Condition. Let H be a 
connected subgraph of order m for m ~ k of a k-path pairable graph G that has 
maximal degree A, and assume that H contains mi vertices of degree i in G fori = 
1, 2. Then, the number of edges emanating from H is at most rnA - (L1 - 2)m2 -

(A - 1)m1 - 2m + 2 (the extreme case is when His a tree and all of the vertices are 
of degree 1, 2, or L1), and this number must be at least m by the Cut Condition. 
Therefore, 

(A - 2)m2 + (A - 1)m1 ~ (L1 - 3)m + 2. 

In particular, this implies that a vertex of degree d cannot be adjacent to I~ l vertices 

of degree 1 for d ~ 2k - 2. Also, if the maximum degree of G is 3, then in any 
collection of k vertices that form a connected subgraph there will be at most one 
vertex of degree one (and no other vertices of degree less than 3) or at most two 
vertices of degree two (and no vertices of degree one). This implies that in such a 
graph G no vertex of degree less than 3 can be within a distance k- 1 of a vertex 
of degree one, and at most one vertex of degree less than 3 can be within a distance 
(k- 1)/2 of a vertex of degree two. A suspended path in a graph is a path in which 
all of the interior vertices have degree two in the graph. For k ~ 3, the graph G 
cannot have a suspended path with 5 vertices (three interior vertices of degree two), 
because this would imply the existence of two vertices within a distance one of a 
vertex of degree two. 

The Cut Condition implies that certain induced subgraphs are forbidden in a 
k-path pairable graph. There are, however, other forbidden subgraphs that are not 
implied by the Cut Condition. For example, for every k > 1 the graph of the 
2k-dimensional cube is not k-path pairable, however it can be shown that satisfies 
the Cut Condition (see [2]). 

4. Lower Bound 

Theorem 2 together with Theorem 3 proved in this section conclude the proof of 
the main result stated in the first section. 

Theorem 3. Let k > 3 be a fixed integer. For n sufficiently large, 

3n( 4 ) 2 1 - 3(k + 1) < Pk(n, 3). 
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Proof. Consider a graph G of order n that is k-path pairable. Let n1 , n2, and n3 be 
the number of vertices of degree 1, 2, and at least 3 respectively in the graph G. To 
each vertex v 1 of G of degree one identify the vertices in G that are within a distance 
f(k - 1)/21 of v1 , and to each vertex v2 of degree two identify the vertices of G than 
are within a distance l(k ~ 1)/31 of v2 . Any vertex of G identified with a vertex of 
degree one is not identified with any other vertex. 

Also, no vertex of G can be identified with more than two vertices, for if a vertex 
were identified with three vertices then there would be either a vertex of degree less 
than three within a distance k - 1 of a vertex of degree one, or there would be three 
vertices of degree two in a connected graph with at most k vertices. These are 
forbidden structures in a k-path pairable graph. With each vertex of degree one 
there are at least (k - 1)/2 vertices of degree at least three identified with this vertex, 
and with each vertex of degree two there are at least (k- 1)/3 vertices of degree at 
least three identified with this vertex. Hence we have 

(k- 1) (k- 1) 
n3 2: --2- nl + --6- n2 

vertices of degree three. Also, the average degree in G is at least (n 1 + 2n2 + 3n3 )/ 

2(n 1 + n2 + n3 ). Thus, the average degree in G is at least 

This reduces to 

n1 + n2 + 3(k- 1)n1 /2 + 3(k- 1)n2 /6 

2(n1 + n2 + (k - 1)nd2 + (k- 1)n2 /6 · 

(3k - 1)nd2 + (k + 1)n2 /2 3 ( 4 ) 
2(k + 1)nd2 + (k + 1)n2 /6) 2: 2 1 

- 3(k + 1) · 

This verifies the left hand inequality of (3) and completes the proof of Theorem 3. 
D 
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