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Covering t-element Sets by Partitions 

ZOLTAN FDREDI AND A. GYARFAS 

Partitions of a set V form a t-cover if each t-element subset is covered by some block of some 
partitions. The rank of a t-cover is the size of the largest block appearing. What is the 
minimum rank of a t-cover of an n-element set, consisting of r partitions? The main result says 
that it is at least n/q, where q is the smallest integer satisfying r ~ q1

-
1 + q1

-
2 + · · · + q + 1. 

1. INTRODUCfiON 

A partition is a decomposition of a set into pairwise disjoint subsets, called blocks. 
Partitions of a set V define at-cover if each t-element subset of Vis covered by at least 
one block. The rank of at-cover is the cardinality of the largest block appearing in the 
partitions. Define f(n, r, t) as the minimum rank of at-cover of an n-element set with r 
partitions. Thus a t-cover is a relaxation of resolvable t-designs with r parallel classes. 
The same function can be defined by the following Ramsey-type problem: f(n, r, t) is 
the maximum m such that in any r-coloring of the edges of K~ (the complete t-uniform 
hypergraph on n vertices) there exists a monochromatic connected component of at 
least m vertices. 

The problem of determining f(n, r, 2) have been proposed in [8], and later it was 
rediscovered in [1]. For r ~ 5, f(n, r, 2) have been determined in [2]. The authors of 
this paper independently proved the following. 

THEOREM A [4, 9]. f(n, r, 2) ~ n/(r -1), and this inequality is sharp if an affine 
plane of order r - 1 exists and r - 1 divides n. 

Applying the linear programming method we genealize Theorem A as follows. 

THEOREM 1. f(n, r, t) ~ n/q, where q is the smallest integer satisfying r ~ qt-1 + 
qt-2 + · · · + q + 1. The inequality is sharp for n = qtm and r = qt- 1 + qt-2 + · · · + q + 1 
if an A(t, q ), the affine space of dimension t and of ordet q? exists. 

A simple example is t = 3, r = 7. Theorem 1 says that a 3-cover of an n-set with 
seven partitions must be of rank at least n/2. This was conjectured in [10]. The result is 
sharp for n = Sm. 

To see that Theorem 1 is sharp when indicated, consider the t-cover of A(t, q), with 
r partitions defined by the parallel classes of hyperplanes. Then replace all points of 
A(t, q) by a set of m points. Since each hyperplane of A(t, q) has qt-1 points, the rank 
of this t-cover is qt-1m = n/ q. 

A further question is that what happens if r = qr- 1 + qt-2 + · · · + q + 1 but n is 
arbitrary. We do not go into this problem in this paper. It can be treated similarly to 
the case t = 2 in [7]. 

We give the lower bound for f(n, r, t) in the form 
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n 
f(n, r, t) ~ *( ) , 

r: r, t 
483 

© 1991 Academic Press Limited 



484 Z. Furedi and A. Gytirftis 

where r*(r, t) =max{ r*(Yt'): Ye is an r-partite t-wise intersecting hypergraph}, and 
r*( Yt') is the value of an optimal fractional transversal of Ye. The details will be given in 
Section 2. 

The proof of Theorem 1 is based on the following theorem, which is a special case of 
a conjecture of Frankl and Fiiredi ([3], or Conjecture 6.11 in [6]). 

THEOREM 2. Suppose that Ye is an r-partite hypergraph such that any two edges 
intersect in at least s elements. Then r*(Ye):%; (r- 1)/s. 

The cited conjecture says that 'r-partite' can be replaced by 'r-uniform' in Theorem 2 
unless Ye is a symmetric (r, s) design. Theorem 2 easily gives the following. 

THEOREM 3. Suppose that Ye is an r-partite t-wise intersecting hypergraph and let q be 
the smallest integer satisfying r:%; qt-l + qt-2 + · · · + q + 1. Then r*( Ye):%; q. 

,In fact, Theorem 3 is essentially the same as Theorem 1, as shown in the next 
section. Theorems 2 and 3 are proved in Section 3. In Section 4 the case of 'small' r is 
discussed, and f(n, r, t) is determined fort< r < 3t/2. 

2. FRACTIONAL TRANSVERSALS AND (-COVERS 

A hypergraph Ye = (V, ~) is a finite set V of vertices together with a collection ~ of 
subsets of V, called edges. Note that ~may contain the same set more than once. It is 
convenient to denote the number of edges in Ye by I Yf'l. We write E E Ye to indicate that 
E is an edge of Ye. For E E Yt', Ye- E denotes the hypergraph (V, ~\ { E} ). The 
number of edges containing x E V is the degree of x and is denoted by d(x). The 
maximum of d(x) for x E Vis denoted by D(Ye). A hypergraph is r-partite if its vertex 
set V can be partitioned into pairwise disjoint sets V1 , V2 , ••• , V,. such that IE n ~I= 1 
for each edge E EYe and i = 1, 2, ... , r. A set T c Vis a transversal of Yt'if T n E i=0 
for edge E E Yt'. The minimum cardinality of a transversal of Ye is r( Yt'), the transversal 
number of Ye. The dual of Ye, Ye*, is defined as follows: the vertices of Yt'* correspond 
to the edges of Ye and the edges of Ye* correspond to the vertices of Ye, while the 
vertex-edge incidence is preserved. A hypergraph is t-wise intersecting if any t edges 
have non-empty intersection. ~ 

Now we define the main tool in this paper, the fractional transversal number, r*(Yt'), 
of a hypergraph. A fractional transversal of Ye = (V, ~) is a non-negative function 
t: V ~ R+ such that t(E): = ~xeE t(x) ~ 1 for all E E Yt'. The value oft is defined as 

It I = 2: t(x ). 
XEV 

The fractional transversal number, r*(Yt'), is the infimum of ltl over all fractional 
transversals. 

A fractional matching of Ye = (V, ~) is a function w: ~ ~ R+ such that 

w(p) := 2: w(E):%; 1 for allp E V. 
E3p 

The value of w is defined as lwl = ~Ee;Jt' w(E). The fractional matching number, 
v*(Yt'), is the supremum of lwl over all fractional matchings of Ye. 

The duality theorem of linear programming implies that there is an optimal 
fractional transversal t, and an optimal fractional matching w with ltl = lwl = r*(Yt'). 
Observe that w(E) = 1/ D(Ye) is always a fractional matching of Ye. Its value is 
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ldt'I/D(Ye): therefore v*(Ye) ~ ldei/D(Ye); that is, 

(i) D(Ye) I del 
~ -r*(Ye). 

A hypergraph de is -r* -critical' if -r* (de - E) < -r* (de) for each edge E E de. 
Let de be a hypergraph with an optimal fractional matching w. The support of w is 

the set {x E V: w(x) = 1}. A maximal support of de is a support not contained in any 
other support of de. 

LEMMA l [7]. If de is -r*-critical and Sis a maximal support, then I del :o.=.; lSI. 

Consider a t-cover of an n-element set with r partitions. It can be considered as a 
hypergraph de with n vertices, the edges of which are the blocks of the partitions. The 
dual of de, de*, is an r-partite t-wise intersecting hypergraph with n edges. The rank of 
the t-cover is D(de*). Therefore 

(ii) f(n, r, t) = min{D(Ye): de is r-partite, t-wise intersecting with n edges}. 

Introducing 

-r*(r, t): =max{ -r*( de): de is r-partite, t-wise intersecting} 

(i) and (ii) imply 

(iii) 
n 

f(n, r, t) ~ -----;-----( ) . 
T r, t 

Therefore a lower bo~nd for f(n, r, t) follows from an upper bound of -r*(r, t). Thus, 
in particular, Theorem 1 follows from Theorem 3. The advantage of (iii) is that an 
integer extremal value, f(n, r,_ t), can be estimated by a rational optimum, -r*(r, t). The 
same approach is applied in Section 4. 

It is worth mentioning that (iii) can be paralleled by the following upper bound: 

(iv) 
n 

f(n, r, t) < *( ) + r-r*(r, t). 
T r, t 

To see this, select a -r*-critical YtQ such that -r*(Ye0) = -r*(r, t). Define de from dt'0 by 
taking each edge E E Yeo with multiplicity r w ( E)n I -r* ( YCQ) l ' where w is an optimal 
fractional matching of dt'0 with maximal supportS. Lemma~ implies that 

Ideo! :o.=.; lSI :o.=.; L L w(E) = L lEI w(E) :o.=.; -r*(dt'o)r. 
pEV E3p EE'iJeo 

Clearly, I del~ ~EElfeo w(E)n/-r*(YCQ)*n, and 

~ ( w(E)n ) n n * 
D( de)< f:P -r*( Yeo)+ 1 :o.=.; -r*( YCQ) + I YCQI :o.=.; -r*( YCQ) + rT ( YCQ), 

proving (iv). 

3. PROOFS OF THEOREMS 2 AND 3 

PROOF oF THEOREM 2. We may assume that de is -r*-critical. Assume indirectly that 
-r*(Ye) > (r- 1)/s, 

r-1 
-r*( de) = -- + a- for some a> 0. 

s 
(1) 
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Select an optimal fractional matching w with maximal support S. Then ~EeYe w(E) = 
-r*( 'Je) and for every edge E 0 E 'Je and for every p E E 0 we have 

Thus 

w(p)+r-1~ 2: w(x)= 2: IEnE0 Iw(E) 
xeE0 EeYe 

~ s-r*( 'Je) + (r- s )w(E0 ) = r- 1 +sa:+ (r- s )w(E0 ). 

_w-=(p_:_)_-_s_a: ~ w ( E
0

) > 0, 
r-s 

(2) 

where w(E0 ) > 0 follows from 'Je being -r*-critical. Now (2) imples that w(p)- sa> 0; 
that is, a:< w(p )Is~ 1ls. Therefore (1) yields 

-r*( 'Je) < r Is. (3) 

Adding inequality (2) for all edges containing p we obtain 

d( ) >- (r- s )w(p) > 
p ,.___ w (p) - sa: r - s' (4) 

where the last inequality follows from a:> 0. Since (r- 1)ls < -r*('Je) < rls, -r*('Je) is 
not an integer; thus 

(5) 

Assume that 'Je has h vertex classes ~ such that IS n ~I = l -r*( 'Je)j. Applying 
Lemma 1, we obtain 

( ~r l -r*( 'Je)j ). (6) 

For h > 0, let V11 V2, ... , Vh be the vertex classes with IS n ~I= l-r*('le)J. Since~ is a 
transversal of 'Je, and 1~1 ~ -r*('Je) > l-r*('Je)j, we can choose viE ~\S for i = 
1, 2, ... , h. LetT:= {v 11 ... , vh}· 

If an edge E E 'Je contains vi E T, then 

-r*( 'Je) = 2: w(x) = 2: w(x) + 2: w(x) 
xeVf xesnv; x~snv; 

x~snv; 

Therefore w( vi)~ -r*( 'Je)- l -r*( 'Je)j = { -r*( 'Je)}, where { } denotes the fractional part. 
Applying this to (2) we obtain 

( ) 
w(v) -sa: {-r*('Je)} -sa {-r*('Je)} 

wE~ ~ <---
r-s r-s r-s 

(7) 

for v E E n T, E E 'Je. 
Let 'Je' = (V', ~')be the hypergraph with V' = v, ~I=;= {E E 'Je: En T =F 0}. 

CLAIM. For h > 0, I 'Je'l >h. 

PROOF. First we show that there is no edge E* E 'Je' with IE* n Tl > r- s. Suppose 
the contrary. Then IE n E *I ~ s implies E n T =F 0 for all E E 'Je; that is, 'Je' = 'Je. Thus 
(7) implies 

-r*( 'Je) = 2: w(E) = 2: w(E) < I 'le'l { -r*( 'Je)} I 'lei { -r*( 'Je)} · 
E e Y{ E e Y{' T - S T - S 
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Applying (6) and the inequality LY J {y} ~ y -1, which holds for ally~ 1, we continue 
the previous inequality as follows: 

r*(~) < l~l { r*(~)} ~ r Lr*(~)J { r*(~)} ~ r( r*(~) -1). 
r-s r-s r-s 

We conclude that r*(~) ~ r/s, contradicting (3). 
Thus IE* n Tl ~r -s holds for all E* E ~'.Then (4) implies 

I
OJP'I ~xerd(x) ITI(r-s) 
en. ~ > = h, 

r-s r-s 

proving the claim. • 
Returning to the proof of Theorem 2, we have w(E) < 1/(r- s) by (2), and 

w(E') < { r*(~)}/(r- s) for all E' E ~' by (7). Hence r*(~) can be estimated as 

follows: l~l l~'l { *(~)} 
r*(de) = L w(E) + L w(E') ~ - + r 1~'1 

Ee'!Je\'!Je' E'e'!Je' r- S r- S 

1~1-1~'1 (1- {r*(~)}) 

r-s 

But 1~1 ~ r(Lr*(~)J -1) + h by (6), and 1~'1 > h by the Claim, so we have 

1~1-1~'1 (1- { r*(~)}) < r(Lr*(~)J -1) + h- h(1- { r*(de)}) 

= r(Lr*(~)J -1) + h{ r*(~)} ~ r(Lr*(de)J -1) + r{ r*(~)} = rr*(de)- r. 

Therefore r*(de) < (rr*(~)- r)/(r- s) giving r/s < r*(de}, contradicting (3). 
This implies a~ 0, and r*(~) ~ (r -1)/s follows. 0 

PROOF OF THEOREM 3. Use the notation q<i> = qi + qi-1 + · · · + q + 1, q<0> = 1. If 
IE n Fl ~ q <t-2> for all E, F E ~' then one can apply Theorem 2 with s = q <t-2>. 

r- 1 q<t-1 ) -1 
r*( ~) ~ (r-2) ~ (t-2) q. 

q q 

So, we may suppose that there exist Ei, E~ E de with 

lEi n E~l ~ q <r-z> - 1. (8) 

Let a be the largest integer such that there exist a edges E'f, E~, ... , E~ E ~ with 

I 
rl Efl ~ q<r-a>- 1. 
!=1 

(9) 

Here 2 ~a by (8), and a~ t -1 since ~is t-wise intersecting. Set Z = n1 ,.;;i,.;;a Ef. The 
definition of a implies that 

IZ n El ~ q<t-a-1) 
holds for all E E de. 

Define the following fractional transversal t: V ~ R+ of de 

{
1/q(t-a-1) 

t(x) = 
0 

for x E Z, 
otherwise. 

(10) 

In equality (10) shows that tis really a fractional transversal of ~' and (9) implies that 
r*(~) ~ ltl ~ (q<t-a) -1)/q<t-a-1) = q. 0 
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4. (-COVERS WITH FEW PARTITIONS 

It is easy to prove that f(n, t, t) = n ([9]) and follows also from Theorem 1. In other 
words, a t-cover with t partitions must include the whole underlying set as a block. 
Equivalently, if the edges of a complete t-uniform hypergraph are colored by t colors, 
then some color class determines a connected subhypergraph. The case t = 2 was 
observed by Erdos and Rado. 

If r > t but r is close to t (say, r < 2r), then the lower bound of Theorem 1 is n /2. 
Better estimates can be given; in fact, f(n, r, t) can be determined fort< r < 3t/2. 

THEOREM 4. Suppose that t < r < 3t/2, and let 'Je be an r-partite, t-wise intersecting 
hypergraph. Then 

2 
r*('Je) ~ 1 + ---

3t- r + 1 

PROOF. It was proved in [F2] that the conclusion of Theorem 4 holds for every 
r-uniform t-wise intersecting hypergraphs 'Je, unless 'Je contains one of six special 
substructures. It is easy to check that these substructures cannot occur in an r-partite 
hypergraph; thus Theorem 4 is a corollary of Theorem 3.8 from [5]. 0 

Using (iii) from Section 2, Theorem 4 implies the lower bound for f(n, r, t) in the 
following theorem. 

THEOREM 5. Suppose that t < r < 3t/2, and let y represent (3t- r + 1)/(3t- r + 3). 
Let n == l mod(3t- r + 3), 0 ~ l <3r-t+ 3. Then: 
(a) f(n, r, t) = r yn l' for l < (3t- r + 3)/2 or l ~ t + 1; and 
(b) r yn l ~f(n, r, t) ~ r yn l + 1, otherwise (i.e. for (3t- r + 3)/2 ~ l ~ t). 

PROOF (construction). Let n = k(3t- r + 3) + l for some integer k ~ 1. First, con­
sider the case l = 0. Partition the n-element set V into sets Ai(1 ~ i ~ 3(r- t + 3)) and 
Bj (1 ~j ~ 3t- 2r- 3), where 

IAil = k and IBjl = 2k. (11) 

Now the r partitions of a t-cover will be defined as follows. Every partition has two 
blocks, so it is enough to define only one block, Pi, for each partition i = 1, 2, ... , r. 
The first 3(r- 1- t) blocks form triangle-like structures, for 1 ~ i ~ r- 1- t set 

The rest of the blocks are the Bi's: for 1 ~ i ~ 3t- 2r- 3 let 

pi+3r-3-3t = Bi. 

It is easy to see that this is a t-cover of rank k(3t- r + 1). This rank is equal to r yn l, 
the lower bound in Theorem 5. 

If n = k(3t- r + 3) + l, where 0 ~ l ~ t, then distribute l extra vertices arbitrarily 
among the sets A/s and B/s, but at most one extra vertex goes to one set. Then, the 
rank of the obtained t-cover is k(3t- r + 1) + l. In the case l < (3t- r + 3)/2, this rank 
equals r yn l; otherwise it is r yn l + 1. 

If l ~ t + 1, then modify the definition (11) in the following way: 

{ 
k+1 

!Ail = k or k + 1' 
if i ==0 or 1 mod3, 

otherwise, 

IBjl = k + 1 for all j 
The rank of the obtained t-cover is k(3t- r + 1) + 1- 1, and this equals r yn 1. 0 
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For r = t + 1 and t + 2 case (a) holds in Theorem 5. For r = t + 1, we obtain 
f(n, r, r- 1) = r n(r- 1)/r l (r ~ 4), as was proved in [9]. 

With more work one can improve the lower bound to show that in case (b) the upper 
bound is the true value of f(n, r, t). 
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