COMBINATORICA

Akadémiai Kiadó – Springer-Verlag

NOTE

EFFECTIVE ON-LINE COLORING OF *P*₅-FREE GRAPHS

ANDRÁS GYÁRFÁS and JENŐ[,]LEHEL

Received November 10, 1989 Revised May 10, 1990

An on-line algorithm is given that colors any P_5 -free graph with $f(\omega)$ colors, where f is a function of the clique number ω of the graph.

A proper coloring of a graph is an assignment of positive integers called colors to its vertices such that adjacent vertices have distinct colors.

An *on-line coloring* is an algorithm that colors vertices of a (finite) graph in the following way:

- vertices are taken in some order v_1, v_2, \ldots ;
- a color c_i is assigned to v_i by only looking at the subgraph G_i induced by v_1 , ..., v_i , i = 1, 2, ...;
- the color of v_i never changes during the algorithm, $i = 1, 2, \ldots$;
- the obtained coloring is a proper coloring of G_i , i = 1, 2, ...

The most common on-line coloring is the first fit coloring, \mathbf{FF} , that at each step assigns the smallest possible integer as color to the current vertex of the graph. The concept of on-line and first fit chromatic number was introduced and investigated recently in [2], [3], [4] and [5]. Here we investigate the problem of effectivity of on-line coloring for a particular family of graphs.

An on-line coloring **A** is said to be *effective* on a family \mathcal{K} if there exists a function $f(\chi)$ such that the number of colors used by **A** for any ordering of V(G) is at most $f(\chi(G))$ for every $G \in \mathcal{K}$, where $\chi(G)$ denotes the chromatic number of G. In most cases a stronger statement is proved, namely that the number of colors is at most $f(\omega(G))$, where $\omega(G)$ is the order of the maximum clique of G.

A graph is called P_k -free if it contains no path on k vertices as induced subgraph. In [2], it is proved that **FF** is perfect for P_4 -free graph, i.e., if G is a P_4 -free graph, then **FF** colors G by exactly $\chi(G)$ colors.

On the other hand on-line colorings are ineffective on the family of P_6 -free graphs: there is a sequence G_1, G_2, \ldots of bipartite P_6 -free graphs such that every on-line coloring colors G_n by at least n colors for $n = 1, 2, \ldots$ (cf. [2]).

In this paper we fill the gap by proving the following theorem.

Theorem. There is an effective on-line algorithm for the family of P_5 -free graphs.

AMS subject classification code (1991): 05 C 85

The vertex set of a graph G = (V, E) is considered as an ordered set, and we assume that vertices are taken by the on-line coloring procedure according to that ordering. We denote by G[A] the ordered subgraph induced by $A \subseteq V$. For $x \in A$ let $A_x = \{v \in A : v \leq x\}$ (in particular $V_x = \{v \in V : v \leq x\}$). Let $G_x = G[V_x]$ and C_x be the component of G_x containing x. Let $\omega(G)$ denote the order of a maximum clique of G.

Our on-line coloring algorithm is a function $c(x, G_x)$ defined by recursion on subgraphs of G_x with smaller clique size. The value of $c(x, G_x)$ is a list of non-negative integers, all less than or equal to $\omega(G)$.

The algorithm maintains certain rooted forests, called "frames" of height at most three on subsets of V. If F is a frame and x > y for every $y \in V(F)$ then we shall define a new frame F_x on $V(F) \cup \{x\}$. For $u \in V(F)$ let CHAIN(u, F) be the list of colors on the unique path from a root of F to u, excluding u itself. (If u is a root of F then CHAIN(u, F) = 0.)

The function $c(x, G_x)$ is defined for each $x \in V$ by

$$c(x,G_x) = \begin{cases} (0,0,0) & \text{if } C_x = \{x\}\\ (\omega(C_x),CHAIN(x,F_x),c(x,G[S_x])) & \text{otherwise}, \end{cases}$$

where $S_x = \{v \in V(C_x) : \omega(C_v) = \omega(C_x) \text{ and } CHAIN(v, F_v) = CHAIN(x, F_x)\}.$ We shall show that $\omega(G_x) > \omega(G[S_x])$ which implies that the coloring procedure

terminates in at most $\omega(G_x)$ steps. Clearly, a proper coloring of G is obtained.

Let G be a P_5 -free graph. Then $G_x - x$ does not have two components each of which contains both neighbors and non-neighbors of x. If $G_x - x$ has one such component, call it $MCOM(x, G_x)$ (main component), otherwise $MCOM(x, G_x) = \emptyset$. Let $LCOM(x, G_x)$ (lessor component) be the union of all components of $G_x - x$ which only contain neighbors of x. The key idea used in the construction of frames is the obvious fact that $\omega(C_x) > \omega(LCOM(x, G_x))$.

We say that F is a *frame* of G if it is a spanning subforest of G satisfying that (i) each component of F is a rooted tree;

- (ii) paths of F starting at roots are induced paths of G;
- (iii) if x and y are vertices from different components of F, then xy is not an edge of G.

If F is a frame with vertex set A then F is also called a *frame on* A. The empty set is also considered a frame.

For colored frames an important property (Brothers' rule) is maintained. Let $x \in A$ and F be a frame on $A_x - \{x\}$. Assume for color $c(u) = c(u, G[A_u])$ is defined for every $u \in A_x$.

Brothers' rule. If F is a colored frame and u and v are inner vertices and brothers in F then $c(u) \neq c(v)$.

The basic step for the construction of frames is to define the frame F_x on A_x . We use the following notation.

FATHER(x, F) denotes a vertex y of $M = MCOM(x, G[A_x])$ adjacent to x and satisfying:

- (a) The path from the root r of M to y contains no vertex but y that is adjacent to x.
- (b) if there are inner vertices with property (a), then y is an inner vertex at minimum distance from r in M.

(c) if (b) does not hold, then y is a leaf at a maximum distance from r among leaves of M with property (a).

If $MCOM(x, G[A_x]) = \emptyset$ then set $FATHER(x, F) = \emptyset$. Note that frame property (ii) remains true when xy is added to F as a pendant edge.

- Then frame F on $A_x \{x\}$ is extended to a frame F_x on A_x as follows.
- 1. The sons of x in F_x are the vertices of $LCOM(x, G[X_x])$ and x becomes the son of FATHER(x, F). If $FATHER(x, F) = \emptyset$ then x becomes a new root of F_x .
- 2. In order to maintain Brothers' rule the current F_x being is modified according to steps 3 or 4 or both.
- 3. (FATHER(x, F) = y becomes inner.) If Brothers' rule is violated because y becomes an inner vertex in F_x , then there is a brother y' of y in F such that $y \neq y'$, y' is inner and c(y) = c(y'). Let z be a son of y' and let t be the father of y and y'. Since y is defined according to (c), it follows that $xt \notin E(G)$, $xy' \notin E(G)$, $xz \notin E(G)$. Also $yy' \notin E(G)$ because c(y) = c(y') and $zt \notin E(G)$ by definition of a frame.

Since G is P_5 -free, $zy \in E(G)$ follows. Thus all sons of y' in F are adjacent to y in G. Therefore we can modify F_x by replacing the edges y'z with yz for all sons z of y'. Notice that in this step the sons of y' gain a new father (namely y) having the same color as the old one.

4. (x becomes inner.) If Brothers' rule is violated because x become an inner vertex in $F_x (LCOM(x, G[A_x]) \neq \emptyset)$ then there exists an inner vertex x' in F such that x' is a brother of x in F_x and c(x') = c(x). Since the sons of x in F_x are not adjacent to any vertex of the path zx'y, by definition of a frame, $zx \in E(G)$ follows as in step 3. So it is possible to modify F_x by replacing the edges x'zwith xz for all sons z of x'. This modification again preserves the color of the father of z (as in step 3).

Let C_x be the component of $G[A_x]$ containing x. We show that $\omega(G[A_x]) > \omega(G[S_x])$, where S_x is the set of all vertices of C_x having a color with first and second fields identical to that of c(x).

By the definition of F_x , the first field of c(x), i.e., $\omega(C_x)$, is larger than the first field of the color of any vertex in $LCOM(x, G[A_x])$. Therefore $S_x - \{x\} \subset MCOM(x, G[A_x])$. Assume that $u \in S_x$, $u \neq x$. The second fields of c(x) and c(u) are equal, i.e., $CHAIN(x, F_x) = CHAIN(u, F_x)$. Then Brothers' rule implies that x and u are both brothers in F_x . Thus S_x is a subset of the sons of $FATHER(x, F_x)$ and $\omega(G[A_x]) > \omega(G[S_x])$ follows.

To prove the main theorem we show that the number of colors used in our coloring is bounded by a function of $\omega = \omega(G)$. Assume that any graph H with $\omega(H) < \omega$ is colored by at most $f(\omega - 1)$ colors.

Let F be the final frame on V(G). It is enough to show that a component of F has at most $f(\omega)$ colors, since on distinct components the same set of colors is used. One may assume that F has only one component.

Let x be an inner vertex of F and let L be the set of all sons of x in F. Then $L = A \cup B$, where $A = \{y \in L : y < x\}$ and $B = \{y \in L : y > x\}$. Since $\omega(G[A]) < \omega$ and $A \subset (V_x - \{x\})$, A is colored with at most $f(\omega - 1)$ colors. If $y \in B$, then the first field of c(y) is at least 2 and at most ω ; the second field is the same for all $y \in B$, and the third field can have at most $f(\omega - 1)$ values. Thus L is colored with at most $\omega \cdot f(\omega - 1)$ colors.

184 ANDRÁS GYÁRFÁS, JENŐ LEHEL : EFFECTIVE ON-LINE COLORING OF P_5 -FREE GRAPHS

Using the fact that F is a tree of height at most 3 follows that F (together with its root) is colored with at most $f(\omega) \leq \omega^3 \cdot f^3(\omega-1) + 1$ colors.

Notice that we could not decide whether there are simpler non-recursive algorithms, perhaps **FF** is effective to color a P_5 -free graph.[†]

Summer proved in [6] that if G is P_5 -free and $\omega(G) = 2$, then $\chi(G) \leq 3$, and in [1] it is shown that $\chi(G) \leq 4^{\omega-1}$, where $\omega = \omega(G)$. Summer's result has the following sharper form.

Proposition. If G is a P_5 -free graph with no triangle, then **FF** colors G with at most 3_1 colors.

Proof. Let G be a P_5 -free graph, $\omega(G) = 2$. Assume that **FF** colors G with $k \ge 4$ colors. Let A_i be the set of vertices colored with $i, 1 \le i \le 4$. Since **FF** is perfect on P_4 -free graphs (see [2]), there is an induced path (x_1, x_2, x_3, x_4) in the subgraph of G induced by $V(G) - A_1$. By definition of **FF**, $B_i = \Gamma(x_i) \cap A_i \ne \emptyset$ for each $i, 2 \le i \le 4$ ($\Gamma(x)$ denotes the set of all vertices adjacent to x in G). Since G is P_5 -free, we can find $x \in B_1 \cap B_3$ and $y \in B_2 \cap B_4$. Now $x \ne y$ follows from $\omega(G) = 2$, thus (y, x_4, x_3, x, x_1) is an induced P_5 in G, a contradiction.

Acknowledgement. We are grateful to a referee for the valuable comments improving the presentation of the algorithm.

References

- A. GYÁRFÁS: Problems from the world surrounding perfect graphs, Zastosowania Matematyki Applicationes Mathemaicae XIX. 3-4 (1987), 413-441.
- [2] A GYÁRFÁS, and JENŐ LEHEL: On-line and first fit colorings of graphs, Journal of Graph Theory, 12 (1988) 217-227.
- [3] A GYÁRFÁS, and JENŐ LEHEL: First fit and on-line chromatic number of families of graphs, Ars Combinatoria, 29 B (1990).
- [4] H. A. KIERSTEAD: The linearity of First-Fit coloring of interval graphs, preprint, 1988.
- [5] L. LOVÁSZ, M. SAKS, and W. T. TROTTER: An on-line graph coloring algorithm with sublinear performance ration, *Discrete Math.*, 75, (1989) 319–325.
- [6] D. P. SUMNER: Subtrees of a graph and the chromatic number, in: Theory and Applications of Graphs (ed. G. Chartrand), 1981, 557–576.

András Gyárfás

Jenő Lehel:

Computer and Automation Institute Hungarian Academy of Sciences h731gya@ella.hu Computer and Automation Institute Hungarian Academy of Sciences h265leh@ella.hu

[†] Note added in proof: H. A. Kierstead, S. G. Penrice and W. T. Troffer answered this affirmatively.