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ABSTRACT. On-line proper coloring can be viewed as a two-person game of 
GraphDrawer and GraphPainter. First both agree on some kit 1{, a fini~e or infinite 
family of graphs they are going to play on. Drawer succesi vely reveals vertices of a 
graph \vith all the edges to earlier vertices, and in each step Painter colors the current 
vertex. 

The aim of Painter consists in using as few distinct colors as possible. Define 
x*(J{) to be the minimum number of colors Painter must use when playing on J{. 
Then x*(J<) is called the on-line chromatic number of the family!{. 

The problem of characterizing graphs with on-line chromatic number not ex-
ceeding a fixed integer is investigated. vVe completely characterize trees with on-line 

· chromatic number at most k for every k. 
The best known on-line coloring is the fust fit coloring that assigns at each step 

the smallest possible integer as color to the current vertex of the graph. We also 
investigate the effectiveness of the first fit coloring on the family of F-free graphs 
where F is a forest. · 

1. Introduction 

A proper coloring of a graph is an assignment ~f positive integers called colors 
to its vertices such that adjacent vertices have distinct colors. 

An on-line coloring is an algorithm that colors vertices of a (fi:aite) graph in 
the following way: 

- vertices are taken in some order v1, v2, ... ; 

- A color Ci ~s assigned to Vi by only looking at the subgraph Gi induced by 
{ v1, ... , vi}, i = 1, 2, ... ; · 

- the color of Vi never changes during the algorithm, i = 1, 2, ... ; 

- the.obtained coloring is a proper coloring of Gi, i = 1, 2, ... . 

On-:line coloring can be viewed as a two-person game of GraphDrawer and 
GraphPainter. First of all both agree on some kit, a finite or infinite family of 
graphs they are going to play on. Drawer's moves consist in successively revealing 
vertices of a graph from the kit with all the edges to earlier vertices, and in each 
step Painter colors the current vertex thus personalizing an on-line coloring. Tha 



aim of Painter might be using as few distinct colors as possible and the strategy of 
Drawer against Painter consists in finding the most challenging piece of the kit that 
is a worst possible order of vertices of a graph from the family that forces as much 
colors as possible. 

Note that Drawer has the opportunity of 'cheating' (in fact, he is expected to 
do so): he needs not to fix any particular graph of the family, it's enough to mentain 
Painter's belief in a consistent game. This means that for every graph Gi induced 
by { v1, ... , vi} (i.e., the graph Painter can see in the ith step) there exists Hi E J( 

containing Gi as an induced subgraph, i = 1, 2, .... 

Let I< be a family of graphs. Define x*(I<) to be the minimum number of colors 
Painter must use when playing on K. Then x*(K) is called the on-line chromatic 
number of the family I<. 

For example, a result by Kierstead and Trotter in [4] can be stated in terms of 
on-line chromatic number as follows: x*(K) = 3k- 2 for the family K of all interval 
graphs with chromatic number at most k. 

Let A be a given on-line coloring. H Painter is restricted to use A when playing on 
I<, then the minimum number of colors Painter must use is called the A chromatic 
number of the family K and is denoted by XA(K). 

Note that when restricted to some fixed kit K on-line. colorings are deter-
Ininistic: XA(G') = XA(G) if G' ~ G, and G', G E K, furthermore monotone: 
XA(H) :s; XA(G) if His an induced subgraph of G, G E K. 

The best known on-line coloring is the first fit coloring, F F, that assigns at 
each step the smallest possible integer as color to the current vertex of the graph. 

In the case when the kit consists of a single graph G, we will say that XA( G) = 

XA({G}) is the A chromatic number and x*(G) = x*({G}) is the on-line chromatic 
number of G. Note that XA(G) is the maximum number of colors produced by A for 
all orderings of the vertices of G, and 

x*(G) = min{xA(G): A is an on-line coloring}. 

A given on-line coloring A is said to be effective on a family I< if there exists a 
function f(x) such that XA'(G) :s; f(x(G)) for every q E K, where x(G) denotes the 
chromatic number of G. On-line colorings are effective on Kif x*(G) ~ f(x(G)) for 
every G E I<. 

In this paper we present some results describing the limit of the power of F F 
among on-line colorings. In section 3 we characterize trees with on-line chromatic 
number k for every k = 1, 2, ... (Theorem 5). In particular, we obtain that x*(T) = 

XF F (T) for every tree T wich means that F F is as good as any other on-line algorithm 
on the family of trees. 



vVe show that F F is not effective on the family of permutation graphs (The-
orem 2). A result by Kierstead in (3] imply that on-line colorings are effective on 
permutation graphs if a transitive orientation of the component is given. It would be 
interesting to get rid of this orientation. It was known that F F is effective (in fact 
it is perfect) on P4 - free graphs but on-line algorithms are not effective on P6 - free 
graphs (see [1]). vVe almost decide here the effectiveness of FF on the family ofF 
- free graphs where F is a forest: the only unsettled case is F = P5 (Proposition 8 
and Theorem 9). However, we can prove (see (2]) that on-line colorings are effective 
on the family of all P5 - free graphs. 

2. On-line chro1natie nun1ber of fan1ilies 

Our first observation points out the difference between the two possible ways 
of considering on-line colorings as two-person game. There is a striking difference 
whether Painter knows the graphs which they are playing on or, as in our definition, 
he only knows the kit, the graph belongs to. 

In the following result we show a family K such that max {x*( G) : G E J(} =/= 

x*(J(). 

Theore1n 1. When playing on the family of all graph3 with on-line chromatic number 

three Drawer ha3 a 3trategy forcing Painter to U3e four color3. 

Proof. Suppose that v1 , v2 , ••• is the ordering of the vertices given by Drawer's 
successive moves, let Gi be the sub graph induced by { v1 , •.. , Vi} and denote by Ci 

the color of Vi assigned by Painter. 

B E 
8 E 

Figure 1. 

Let B and E be graphs in Fig. 1. Obviously, XFF (E).= 3 and it is easy to 
check that XA(B) = 3 for the on-line coloring A as follows: 

use FF to color Vi fori= 1, 2 and 3; 

i.f G4 ~ 2P2 , then let c4 = 3 and use F F fori= 5 and 6, 

otherwise use F F for i = 4, 5 and 6. 



Drawer's 'winning' strategy that forces the using of 4 colors is based on the fact 
that Drawer is allowed not to fix any particular graph in advance. In fact, he may 
delay his choice between B and E both contained in the kit until the very last move 
while Painter finds the play correct. In the first four moves Drawer reveals two edges 
VI V2 and V3V4. 

Ca.3e 1: Painter uses only two colors, say ci = c 3 = 1 and c 2 = c 4 = 2. 

Let Vs be joined to vi and v 4 . One may assume that Painter assigns c5 = 3. 
Now v6 joined with v2 , v 3 and v 5 is Drawer's winning move completing a copy of B. 

Ca.3e 2: Painter uses three colors, say ci = c3 = 1, c2 = 2 and c4 = 3. 

Let v5 be an isolated vertex. Then any color v5 gets there are three vertices 
in distinct components and colored with 1, 2 and 3. Indeed, if cs = 1 then c2 = 2, 
c4 = 3, and if c5 is different from 1, say cs = 3 then Ct = 1, c3 = 2. 

Now v6 joined to v1 , v3 and v5 is Drawer's winning move completing a copy 
of E. 

Kits may behave differently, e.g. in section 2 we show that if K is the family of 
all forests, then x*(K) = max{x*( G) : G E K}. 

We just propose the following question: how large can be the on-line chromatic 
number of the family containing all graphs of on-line chromatic number k. This 
question is open even fork= 3. 

The family of all ( P2 + 2 · P1 ) - free graphs is an example, where F F is not 
effective (see [1 ]). Here we show that permutation graphs have the same property. 

A graph G of order n is called a permutation graph if there;exists a labeling 
L: V( G) +-4 {1, ... , n} of its vertices and a permutation 1r of {1, ... , n} such that 
xy E E(G) if and only if (L(x)- L(y)) · (1r-1(L(x))- 1r-1(L(y)) < 0, where 1r-1 (i) 
denotes the position of i in 1r. 

A permutation graph is also characterized as a comparability graph such that 
its complement is also a comparability graph; a graph is called a comparability graph 
if there is a transitive orientation of its edges. 

Note that triangle-free permutation graphs are bipartite, since comparability 
graphs contain no induced odd cycles of length greater than 3. On the other hand, 
since bipartite graphs are comparability graphs, a bipartite graph G is a permutation 
graph if and only if the edges of its complement has a transitive orientation. 

Theorem 2. F F is not effective on the family of permutation graphs. 

Proof. We show that for every integer k there exists a bipartite permutation 
graph Gk such that XFF (Gk) ~ k. Define G(n, k) with 

V(G(n,k)) = {a(1), ... ,a(n)}U {b(1), ... ,b(n)} and 

E(G(n,k)) = {a(i)b(j): 1:::; i,j:::; n, 1:::; i -j < k}. 



Then G( n, k) is a bipartite graph, and it is easy to check that its complement is 
ordered transitively in the following way: 

(a(i), a(j)) and (b(i), b(j)) are arcs iff i < j, 
(a(i), b(j)) is an arc iff i $. j, and 

(b(j), a(i)) is an arc iff j ~ i- k. 

Let G k = G ( k2
, k). For p = 1, ... , k let 

Qp = U {a(ik + p), b(ik +-p)}. 

Clearly QP is a st~ble (independent) set of Gk, 1 ~ p ~ k. Observe that in the 
subgraph of Gk induced by U{Qp : 1 $. p ~ k} Q1 U · · · U Qp is a maximal stable 
sequence decomposition. Indeed, for every 1 $. p < q ~ k and 0 ~ j < k-q there is an 
edge from a(j k + q) to b(j k + p) E Q P, and also from b(j k + q) to a( (j + 1) k + p) E Q P. 

This maximal stable sequence partition with k classes has an extension to the whole 
Gk, whence F F colors Gk with at least k colors. 

3. On-line chromatic number of trees 

The first canonical tree T1 is the one-point 'rooted' tree; for k ;:::, 2 the kth 
canonical tree Tk is the disjoint union of a 'left' and 'right' copy of Tk-1 with an edge 
joining the two roots; the root of the left copy becomes the root of Tk. 

We formulate some properties of canonical trees in the next lemmas. The first 
one proves easily by definition. 

Lemma 3. Let x be the root of Tk. Then T2 is an edge and for every k;:::, 3 

( C.1) Tk - x has k - 1 connected components isomorphic to T1, . .. , Tk-1 and 
their root is joined to x. 

(C.2) the right copy is Tk-1 and the left copy is the subtree ind'-7ced by x and 
T1 U · .. U Tk-2; 

(C.3) each non-terminal vertex of Tk is adjacent to exactly one terminal vertex, 
and the deletion of the terminal vertices from Tk results in a tree isomorphic to Tk-1· 

Lemma 4. Suppose that K = {Tk} and N is a set. of k- 1 colors. Then Drawer 
has a strategy such that for arbitrary on-line coloring used by Painter the root of Tk 
will be colored with a color not in N. 

Proof. The lemma is true fork = 1 with N = 0 and fork = 2 with INI = 1. 
Let k ;:::, 3 and assume that the lemma is true forTi with a set Ni-t, INi-tl = i- 1, 
whenever 1 :5 i :5 k- 1. 

According to (C.1), Tk is the disjoint union of its root x and the component Ti 
with root Xi joined to x, i = 1, ... , k-1. Drawer plays successively on the components 



T1, ... , Tk-1 and the last vertex he reveals will be the root x. Let Ni-1 be the set 
of i -1 colors assigned to x 1 , ... Xi-l· Then by induction, Drawer can obtain a color 
c(xi) not in Ni-l· 

If c( xi) does not belong to N, then by ( C.2), Drawer may freely exchange the 
role of the right copy Ti with the left copy in the ( i + 1 )st canonical tree induced by 
Ti, Ti-l, ... , T1 and x. Thus a color c(xi) not inN is obtained for the root of Tk. 

Assume now that c(xi) E N for every i = 1, ... , k- 1. Since x is joined to each 
Xi, Painter has to assign a kth color to x which is obviously not in N. 

Theorem 5. If T i3 ~ tree and Tk i3 the kth canonical tree then 

( i)XA(Tk) ~ k for every on-lin€ algorithm A; 
( ii)XF p (T) :::; k if and only if T contain3 no induced 3ubgraph i3omorphic to Tk+l; 

(iii)x*(T) = XFF (T). 

Proof. (i) follows by Lemma 5. 

(ii) If Tk C T, then by (i), XA(T) ~ XA(Tk) ~ k for every on-line algorithm A. 

Sufficiency comes from the obvious fact that XFF (T) ~ k implies the existence of a 
copy of Tk in T. 

(iii) Assume that the largest canonical tree contained in T is Tk. Then by (ii) 
and (i), XFF (T) ::; XA(Tk) :::; XA(T) follows proving that x*(T) = min{XA(T) 
A on-line} ~ XF F (T). The other direction is obvious. 

As a colorally of (i) in Theorem 5 we obtain a result in [1]. For every integer k 

there exists a tree T such that xA(T) ~ k for every on-line algorithm A: 

Propo3ition 6. On-line colorings are not effective on the family of all trees. 

Note that (iii) says that in the case of trees no on-line algorithms can be more 
powerful than first fit. In (ii) of TheoremGtrees are characterized with regard to 
on-line colorings. We formulate also the dual version in the following proposition. 

Propo3ition 7. For a fixed forest H let ]( be the family of all H - free trees. 
Then XFF (T)::; IV( H) I- 1 for every T E ](. 

Proof. Based on (C.3) it follows by induction. on the order of H that Tk+l 
contains every forest of order k + 1. Then the proposition follows from Theorem 6 
with k = IV(H)l- 1. 

Note.that Proposition1 is sharp as the example of a star shows in the role of H. 

4. On-line chron1atic nu1nber and forbidden forests 

Propo3ition 8. Let F be a forest and assume that F is not an induced subgraph 
of the path Ps and K 1 ,p + ](1 with p ~ 1. Then the first fit coloring is ineffective for 
the family of F - free graphs. 



Proof. If F contains 2 · ]{1 + ]( 2 as an induced sub graph, then G = ]{ n,n - n · ](2 

is an F - free graph with XF F (G) = n, consequently, first fit is ineffective. 

Thus it is enough to show that if F contains no 2 · ](1 + 1(2 as an induced 
subgraph then F is an induced subgraph of P5 or I<1,p + ]{1· 

Let the maximum path ofF have k vertices. Then k ~ 5, since P6 contains an 
induced 2 · K 1 + ]{2 • Moreover F is isomorphic to Pk whenever k = 4 or 5. 

Now assume that k ~ 3, i.e., F is the disjoint union of stars. Let c. be the number 
of non-trivial star components (i.e., those with more than one vertex), clearly c. ~ 2. 
We can distinguish between the following cases: 

if c. = 0 then F · = p · ]{ 1 ; if c. = 2 then F = 2 · K 2 ; if c. = 1 then F has 
at most one trivial component. In each of these cases F is an induced subgraph of 
either Ps or I<1,p + J{l. 

Theore1n 9. If G i3 a (Kt,p + 1<1 ) -free graph (p ~ 1), then XFF (G) i3 bounded in 
term3 of w( G). 

Proof. 

Claim 1: x(G) < f(w(G),p). We use induction on w(G). The case w(G) = 1 
is trivial. Assume that x( G) ~ J( w( G), p) is true with w( G) < t and let G be a 
(Kt,p + I<t)- free graph with w( G)= t. 

If all vertices of G has degree smaller than R(t,p), then x(G) ~ R(t,p), ·where 
R(t,p) is the Ramsey function. Otherwise, there is a vertex of degree at least R(t,p) 
in G and J{ 1 ,p C G follows by definition of the Ramsey function. Fix this copy of 
I<t,p, then each vertex of V(G)- V(I<1 ,p) is adjacent to some vertex of I<1,p because 
G is (I<1,p + !{1)- free. Thus V(G) can be covered by the vertices of at most p + 1 

stars and each star is at most f( t - 1, p) + 1 chromatic by the inductive hypothesis. 
Thus 

f(t,p) < max{R(t,p), (p + 1)(f(t- 1,p) + 1)} 

and the claim is proved. 

By Claim 1, V(G) can be partitioned into m independent sets A1 , ••• , Am, where 
m ~ f(w(G),p). Assume that FF uses s colors to color G, let Bi denote the set of 
vertices colored by i ( i .= 1, ... , s ). The type of Bi is defined to be the set of all 
indices j such that B i n A i i= 0. 

Claim 2: if Bi, i E I C {1, ... , s }, have the same type, then 

III~ (m -1)(p -1) + 1 =h. 

By renumbering for convenience, assume indirectly that B 1 , ••• , Bh+l are all of 
the same type. The first fit rule implies that any x E Bh+l is adjacent to some 
Yi E Bi for i = 1, ... , h. By the pigeonhole principle, there exists Yib ••• , Yip E Aj 



and x, Yil, ... , Yip is an induced IC,p in G. Since the type of Bh+l is the same as 
types of Bi1, ... , Bip, Bh+l n Ai -=/= 0. 

Now selecting z E Bh+l n Aj, z is not adjacent to Yi 1, ... , Yip because Ai is 
independent, furthermore, z is not adjacent to x since z, x E Bh+l and Bh+l is inde-
pendent. Therefore {x, Yil, ... , Yip, z} induces a K 1 ,p+I<1 in G, and this contradiction 
proves Claim 2. 

Then theorems follows since the number of types is bounded by 2m - 1 and 
Claim 2 gives s::; (2m -1)((m -1)(p -1) + 1). Thus m is bounded in terms of x( G) 
and pas proved in Claim 1. 

Let F be a proper sub forest of P5 • The effectiveness of first fit for F_- free graphs 
is either trivial or is proved in [1]. The remaining case F = P5 is considered now. We 
were not able to prove the effectiveness of F F in spite of several efforts was made so 
far. However, we have proved separately: 

Theorem 10 [2]. There ij a function f(w) juch that x*(G) ::; f(w(G)) for every 

Ps-free graph G. 

Theorem 10 says that on-line algorithms are effective on the family of all 
P5 -free graphs; and as it was proved in [1] on-line algorithms are ineffective on P6-free 

graphs. This proposes the question of deciding about the status of on-line algorithms 
on the family of all F - free graphs for every tree F of radius 2 (different from P5 ). 

The case when F is the union of three edge disjoint copies ~of P3 sharing a 
common endpoint has a particular interest. In fact if F F is effective on the family 
K of all these graphs, then since comparability graphs are contained in I<, it follows 
that F F is effective on comparability graphs, a result that was proved in [3]. 

Our last result may show that on-line colorings are much more powerful than 
the FF algorithm. 

Theore1n 11. AjjUme that Fi, i = 1, ... , k, are vertex dijjoint forej~. If on-line 

coloringj are effective on the family of Fi - free graphj for i = 1, ... , k then on-line 

algorithms are aljo effective on the family of all F -free graphj, where F = U{Fi : 
1::;i::;k}. . 

Proof. It is clearly enough to prove the theorem for k = 2. Also we make 
a technical assumption that Painter knows the cliq~e number, w( G), of the graph 
being presented to him by Drawer. This assumption allows to present the proof as 
an iteration procedure of fixed depth. One can get rid of this assumption by rewriting 
the on-line algorithm in a recursive form. 

Assume therefore that G is an (F1 UF2)- free grah with w(G) = t and Painter has 
on-line algorithm At-1 to color any (F1 U F2 )- free graph H such that w(H) = t -1. 



Let A and B be on-line algorithm to color effectively any F1 - free and F2 - free 
graph, respectively. 

Painter can use the following strategy to color G. Apply algorithm A. until an 
induced copy of F1 is found. If F1 is never found, then A is the required algorithm. 
From this moment each vertex of G is classified into one of n 1 + 1 classes, where 
V ( F 1 ) = { 1, 2, ... , n 1 }, as a follows. The current vertex x is put into class i ( i = 
1, 2, ... , n 1 ) if xi is an edge of G (when x is adjacent to more than one vertex of 
F1 the choice is abitrary). If x is not adjacent to any v.ertex of F1 , then x is put 
into class n 1 + 1. Let C1 , C2 , ••• , Cn1 be n 1 'copies' of algorithm At-b each using 
a different set of colors. If x is the current vertex and x is from class i, 1 ~ i ~ n 1 , 

then the color of x is given by C i. If i = n 1 + 1, then x is colored by algorithm B. 

Clearly this is an effective on-line algorithm to color G. If t = 1, then G has no edge 
and the algorithm is trivial. 
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