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Abstract. Problems and results are presented concerning the strong chromatic index, where 
the strong chromatic index is the smallest k such that the edges of the graph can be k-colored 
with the property that each color class is an induced matching. This parameter was suggested 
by Erdos and Nesetril and it is related to an extremal problem of Bermond, Bond and Peyrat 
concerning induced matchings of graphs. 

1. INTRODUCTION. 
Graphs in this paper are finite, undirected, without loops, but parallel edges are al­

lowed. A strong matching in a graph G is an induced subgraph of G that forms a matching 
(i.e. a set of pairwise disjoint edges of G, no two of them being adjacent to the same edge 
of G). The strong chromatic index, sq(G), is the smallest integer k such that E(G) (the 
edge set of G) can be partitioned into k strong matchings. For convenience we introduce 
strong edge colorings, i.e. edge colorings where each color class is a strong matching of the 
graph. Then sq(G) is the smallest number of colors in a strong edge coloring of G. For 
simplicity, in this paper we use the term coloring for strong edge coloring. We address the 
following Vizing-type problem of Erdos and Neseti'il: give an upper bound for sq(G) in 
terms of .6-(G), the maximum degree of G. 

It is useful in studying sq (G) to introduce some other parameters. Let sm( G) denote 
the maximum number of edges in a strong matching of G. Also let am( G) denote the 
maximum number of edges in G such that each pair of them are incident to some edge 
of G. Such an edge set is called an antimatching. Observe that the following obvious 
inequalities provide lower bounds for the strong chromatic index where d(x) denotes the 
degree of vertex x, and cr(G) is defined below. 

(1) 

(2) 

sq(G) ~am( G)~ max {d(x) + d(y)- 1} := u(G), 
xyEE(G) 

sq(G) > IE(G)I. 
- sm(G) 

To obtain an upper bound on sq(G), observe that the color of an edge xy E E(G) can 
be affected by the color of at most 2(L(G)- 1) edges incident to xy and by the colors of 
at most 2(.6-(G)- 1) 2 "second neighbors" of xy. Therefore 

(3) 
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and a good coloring with at most 2~ 2 (G) - 2~ (G) + 1 colors can be found by the greedy 
algorithm. 

The following constructions motivate the open problems. For even ~' replace the 
vertices of a five-cycle by ~/2 vertices. For odd ~' replace two consecutive vertices of a 
five cycle by¥ vertices and replace the three other vertices by ~21 vertices(~~ 3). The 
graphs obtained are ·antimatchings with maximum degree ~- For convenience, introduce 
the function 

if xis even 

if xis odd. 

Then, the antimatchings defined above have !(~) edges. 
The main open problem is 

CONJECTURE 1. sq(G) ~!(~(G)). 

There are two interesting special cases of Conjecture 1. 

CONJECTURE 2. am( G)~ !(~(G)). 

CONJECTURE 3 .. IE(G)I ~ f(~(G))sm(G). 

The special case of Conjecture 3, when sm(G) = 1, has been asked by Bermond et al. 
in [1] and has been proved in [3]. A weaker form of Conjecture 2 is proved in this paper 
(Theorem 2). 

If we restrict ourselves to bipartite graphs then the analogue of Conjecture 1 is the 
next conjecture. 

CONJECTURE 4. If G is bipartite then sq(G) ~ ~2 (G). 

For bipartite graphs, the analogues of Conjectures 2 and 3 are true: am(G) ~ ~2 (G) 
is proved in this paper (Theorem 1) and IE(G)I ~ ~2 (G)sm(G) was proved in [4]. 

Most of our results concern the strong chromatic index of special graphs like trees, the 
cubes, Kneser graphs, and planar graphs. In this paper we also consider the relationship 
between the strong chromatic index and some extremal problems involving set systems. 
The paper concludes with several open problems concerning the strong chromatic index of 
graphs with maximum degree 3. 

2. LARGEST ANTIMATCHINGS. 
In the proofs that follow r F ( x) denotes the set of vertices adjacent to x in a graph F 

and dF(x) = lrF(x)l. 

Theorem 1. IfG is bipartite, then am(G) ~ ~2 (G); 

Proof: Assume that X and Y are the two vertex classes of G and let G1 be the subgraph 
of G induced by the edges of an antimatching of G. Select xy E E(G') such that s = 
dat(x) = ~(G'). Assume that x E X,y E Y. Set X 1 = ra(Y), Y 1 = ra(x). Denote by 
G[A, B] (G 1[A, B]) the set of edges in G (in G1

) with one endvertex in A and with the other 
endvertex in B. Since the edges of G1 define an antimatching in G we have 

G'[X- X', Y- Y'] = 0. Moreover, 
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at most ~(G)-sedges of G1[X1
- x, Y- Y'] can be incident to a vertex of X 1

- x. Using 
these properties and IX'I ~~(G), and IY'I ~~(G) we obtain 

IE(G')I = IG'[X,Y']I + IG'[X'- x,Y- Y']l 

~ siY'I +(~(G)- s)(IX'I- 1) ~ s~(G) +(~(G)- s)(~(G)- 1) 

= ~2 (G)- ~(G)+ s ~ ~2 (G). I 

Theorem 2. There is a constant f > 0 such that am(G) ~ (2- E)~2 (G). 

Proof: Suppose to the contrary that for every f > 0 there is an integer ~ = ~(E) and 
a graph G with maximum degree ~ that satisfies am( G) > (2 - E)~ 2 . Fix a small f and 
choose G accordingly. Let Ao ~ E(G) be an antimatching of size am(G). We note that 
~(E)- oo when f- 0, since am( G) ~ 2~2 - 2~ + 1 by (3). Below, for convenience the 
Ei will denote some functions of E, such that Ei - 0 as f - 0. 

Take an edge eo= xy E Ao. Since every e E Ao meets the at most a (2~)- element 
vertex set r(x) ur(y), and lAo I > (2- £)~2 , each of r(x)\(r(y) u{y}) and r(y)\(r(x)u{x}) 
contains at least {1-El)~ vertices z with the following property: There are at least (1-£1 )~ 
edges zw E Ao such that w t/:. r(x) U r(y). The set of these z is denoted by Z. Hence, 
IZI ~ (2- 2q)~. 

For z E Z, set F(z) = { w E V(G)\(Z U e) : zw E Ao}. By our assumptions, ~ ~ 
IF(z)l ~ {1- EI)~. Since Ao is an antimatching, for each pair z, z 1 E Z, zz1 t/:. E(G) implies 
that the bipartite subgraph spanned between F(z)\r(z1

) and F(z')\r(z) is complete. Note 
that lr(z)\F(z)l ~ fl~ for z E. Z. 

Choose a zo E Z, and let {z1, ... , zk} be the set of vertices of Z not adjacent to 
zo. Clearly 2~ ~ k ~ {2- €2)~. Letting ni = IF(zo) n F(zi)l, we have a lower bound 
mi = max{0,(1- 2£1)~- ni} for both IF(zo)\r(zi)I and IF(zl)\r(zo)l. Thus, there are 
at least mr edges joining F(zi)\r(zo) to F(zo). Such an edge may belong to several F(zi); 
however, the degrees are bounded by ~- Thus the set Eo of edges having precisely one 
endpoint in F(zo) and being disjoint from Z satisfies 

(4) 

On the other hand, we have at least 

edges with one endpoint in F(zo) and the other in Z. Therefore, again by the degree 
assumption and the lower bound for k, 

i=l 
k 

~ ~2 + I)mi- (1- 2£1)~) 
i=l 

k 

(5) = (2:::.: mi)- (1- Eg)~2 . 
i=l 
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Rearrangement of (4) and (5) yields 

(1- ,3)~' ~ (t.m;) (1- L~i m;) 
a contradiction because f3 < 1/2 holds for a sufficiently small f. 1 

We finish this section by showing that am( G) and sq( G) can be of different orders of 
magnitude for an infinite sequence of graphs G. Let Pq be a projective plane of order q. The 
bipartite graph B(Pq) is defined by letting the points and lines of Pq be the vertex classes 
of B ( Pq) and letting adjacency be defined by the incidences of Pq. Illes and Szi::inyi proved 
[5] that at most qy'q + 1 lines of Pq can be strongly represented (and for certain planes this 
is best possible). In our terminology their theorem says that sm(B(Pq)) ~ qy'q + 1. Using 
( 2), this implies 

s (B(P. )) > (q2 + q+ 1)(q+ 1) 
q q - qy'q_ + 1 

Therefore B(Pq) is an example of a C4-free graph G with strong chromatic index at least 
.6. (G) folG}. On the other hand, it is easy to see that am( G) ~ 2.6. (G)- 1 for any C4-free 
bipartite graph. 

3. CHROMATIC INDEX OF SPECIAL GRAPHS. 

Theorem 3. H G is a tree then 
sq(G) = u(G) 

Proof: It is obvious that sq(G) is at least the stated value (see inequality (1)). The other 
direction is proved by induction on IV (G) I· Let A denote the set of vertices of degree one in 
G. Let uv be an edge of the tree T spanned by V (G) - A in G such that u is of degree one 
in T. (If lv(T)I = 1 then G is a star, a trivial case.) Select wE A such that uw E E(G). 
Applying the induction hypothesis for the tree G- w, the edges of G- w can be colored by 
at most u( G - w) colors. From the choice of u and w, the uncolored edge uw E E( G) has 
at most dc-w(u) + dc-w(v)- 1 < dc(u) + dc(v)- 1 ~ u(G) forbidden colors. Therefore 
a "free" color can be assigned to uw E E( G). 1 

Theorem 4. For the d-dimensional cube Qd, 

sq(Qd) = am(Qd) = 2d if d ~ 2. 

Proof: Notice that any C4 in Qd together with the edges incident to two consecutive 
vertices of the C4 give a sub graph of Qd with 2d edges and this sub graph is an antimatching. 
Thus sq( Qd) ~ am( Qd) ~ 2d. 

To prove the upper bound, represent a vertex x of Qd by a 0-1 vector v(x) of length 
d. The two vertices x, y are adjacent if and only if v(x) and v(y) are equal in all but one 
coordinate. Define the i-th edge class Ei as the set of edges xy in which v(x) and v(y) 
differ in the i-th coordinate (1 ~ i ~d). A refinement! Ef U Ei = Ei of this edge partition 

is obtained in the following way: an edge xy E Ei belongs to E{ (1 ~ i ~ d, 1 ~ j ~ 2) if 
and only if the sum of all coordinates of v(x) (or v(y)) except for the i-th one, is congruent 
to j (mod 2). Obviously, each E{ is a strong matching in Qd, implying sq(Qd) ~ 2d. 1 

The following bipartite graph, RDd, is often referred to as the " revolving door" graph: 
the vertices of RDd are the (d- 1)-element subsets and d-element subsets of a (2d- I)­
element ground set. Two vertices are adjacent if one of the corresponding sets is a subset 
of the other. 
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Theorem 5. For the revolving door graph RDd, 

sq(RDd) = am(RDd) = 2d- 1 = u(RDd) 

Proof: Since RDd is a d-regular graph, any edge together with its incident edges defines 
an antirnatching of2d-1 eqges. Thus sq(RDd) 2::: am(RDd) 2::: 2d-1. Therefore the theorem 
follows by giving a good (2d- 1 )-coloring of RDd. To see this, let X = {1, 2, ... , 2d- 1} 
be the ground set, and select A c B c X such that IAI = d -1, IBI =d. The edge of RDd 
corresponding to the pair (A, B) is assigned the color identified with the set B- A. It is 
easy to check that this is a good coloring of E(RDd) using 2d- 1 colors. I 

The next result concerns a rather special family of graphs, for which Conjecture 4 is 
true. Although Conjecture 4 holds for these graphs probably the best upper bound is much 
smaller, in fact linear in .6.(G). 

Theorem 6. IfG is a graph in which all its cycle lengths are divisible by 4, then sq(G):::; 
.6.2(G). 

Proof: The proof is by induction on IE(G)I. If d(x) = 1 for some xy E E(G), then delete 
xy from G. Then a coloring of G- xy can be extended toG, since at most (.6.(G) -1).6.(G) 
colors are forbidden on xy. Therefore the minimum degree of G is at least 2. Select a path 
x1, x2, ... , Xt of maximum length in G. There is an x 8 such that s f. t- 1 and x 8 xt E E( G). 
Now d(xt) = 2 follows, since G has no cycle with a diagonal. Also, d(xs+l) = 2 from the 
maximality of the path length. Delete the two edges (xtXt-1 and Xtx 8 ) incident to Xt and 
color the remaining graph with at most .6.2(G) colors. There are at most .6.(.6.-1)+.6.-1 = 
.6.2 - 1 forbidden colors for the edge XtXt-1· Moreover, there are at most .6.(.6.- 1) + 1 
forbidden colors in G- XtXs- XtXt-1 for the edge XtX8 , since d(xs+l) = 2. Therefore XtXt-1 
can be colored with a free color and there is an additional free color for the edge Xtx 8 , if 
.6. (G) 2::: 3. If .6. (G) = 2, then G is the union of disjoint cycles and 4 colors are clearly 
sufficient for a good coloring. 1 

The Kneser graph K N;[" is defined for m 2::: 2n as follows. The vertices are the n­
element subsets of a fixed m-element ground set. Two vertices are adjacent if and only if 
the corresponding sets are disjoint. The set of edges defined by pairs of disjoint n-sets in 
a fixed 2n-element subset is clearly a strong matching. Since these (~) strong matchings 
cover all edges of K N;[", we immediately obtain 

(4) sq(KN~):::; (;:). 

We give two simple proofs to show that equality holds here. The first proof is based on the 
following proposition which also appears in [6] with the same proof. 

Proposltion 7. 

Proof: A strong matching inK N;[" corresponds to a syste:fu of pairs(~, Bi), i = 1, 2, ... , k 
such that Ai n Bj, Ai n Aj, Bin Bj are non-empty sets, if i f. j but ~ n Bi = 0 for all 
i (!Ail = IBil = n for all i ). Define Ai+k = Bi, Bi+k = ~ for i = 1, 2, ... , k. Then 
{(~, Bi) : i = 1, 2, ... , 2k} is a system of pairs such that ~n Bj f. 0 for 1 :::; i,j:::; k, if.;· 
and Ai n Bi = 0 for 1 :::; i :::; 2k. Applying a theorem of Bollobas ([2]), 

2k:::; ( 2nn) follows. I 
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Theorem 8. 

sq(K N~) = (;:) 

Proof: 

The upper bound is given in ( 4). Since K N~ has 

edges inequality (2) yields 

applying Proposition 7. 1 
The second proof that 

sq(KN~) ~ (m) 
2n 

comes from the following statement. 

Proposition 9. 

_
2
1 (mn) (m n- n) 

Proof: Consider an ordering of them-element ground set X. For each 2n-element subset 
H of X let AH denote the first n elements of H under the given ordering, and set BH = 
H - A H. It is easy to check that the edges in K N~ corresponding to the pairs (A H, B H) 
form an antimatching. 1 

The first part of (1) and Proposition 9 imply Theorem 8. 

Theorem 10. IfG is a planar graph, then sq(G) ~ 4.6.(G)+4. Moreover for every integer 
~ 2 there exists a planar graph G with .6.(G) = .6. and sq(G) = 4.6.- 4. 

Proof: The second part of the theorem follows by identifying a fixed C4 in Kz,m with a 
fixed C4 in Km,2 by glueing together corresponding edges of the C~s. The graph obtained 
is a planar antimatching with maximum degree m and it has 4m - 4 edges. 

To see the first part, apply Vizing's theorem to decompose E( G) into at most .6. (G)+ 1 
(not necessarily strong) matchings. If M is one of these matchings, define the graph G(M) 
as one with vertex set M and two vertices in G ( M) adjacent if and only if the corresponding 
two edges in M do not form a strong matching in G. Since G(M) is planar, in fact can 
be obtained from the induced subgraph GIM by contracting the edges of M, its chromatic 
number is at most 4 by the four color theorem. Therefore M can be decomposed into 4 
strong matchings. 1 ~ 

We conclude this section by giving a small list of regular graphs with their parameters 
related to strong matchings. 

G .6.(G) sq(G) am( G) sm(G) 
Petersen graph 3 5 5 3 
Heawood graph 3 7 5 3 
Dodecahedron 3 5 5 6 
Octahedron 4 12 12 1 
Icosahedron 5 15 13 2 

210 



4. OPEN PROBLEMS FOR GRAPHS WITH ~(G)= 3. 
In each of the following problems we assume that ~(G)= 3. 

(1) The strong chromatic index sq(G) ~ 10. (This special case of Conjecture 1 is 
true if G is not 3-regular.) 

(2
3

) If G is bipartite, then sq(G) ~ 9. (This is a special case of Conjecture 4.) 
( ) If G is planar, then sq( G) ~ 9. (The complement of C6 shows that if true, this 

is best possible.) 
(4) If G is bipartite and if for each edge xy E E(G),d(x) + d(y) ~ 5, then sq(G) ~ 

6. (If true, this is best possible. If the bipartite condition is dropped, then 
sq(G) ~ 7 follows and this is best possible.) 

(5) If G is bipartite and C4 ¢. G, then sq(G) ~ 7. 
(6) If G is bipartite and its girth is large, then sq( G) ~ 5 
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