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Abstract. We consider the following question: For a fixed positive integer t and a fixed r-coloring 

of the edges of Kn, what is the largest subset B of V (Kn) monochromatically covered by some 

t element subset of V(Kn)? 

1. INTRODUCTION. 

Let G be a graph, A, B ~ V (G). The set A is said to cover (or dominate) B if for every 

y E B- A there exists an x E A such that xy E E(G). Thus if A covers B then A covers 

A U B. In what follows this idea of covering will be applied to the monochromatically 

colored subgraphs of Kn obtained by coloring each of i~s edges by one of a fixed set of 

colors. 

A problem of this type due to Erdos and Hajnal is given in the following conjecture. 
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CONJECTURE. (ERDOS, HAJNAL). For given positive integers n, t and any 2-coloring of 

the edges of K n there exists a set Xt ~ V ( K n), with at most t vertices, which monochro

matically covers at least (1- 1/2t)n of the vertices of Kn. 

This conjecture is trivially true for t = 1, was proved by Erdos and Hajnal for t = 2, 

and proved in more general form in [1]. Before stating this general form we introduce 

additional terminology. If the edges of a graph have been 2-colored, we assume the colors 

are red and blue, and refer to a covering in the resulting red(blue) subgraph as an r- covering 

(b-covering). The result proved in [1] is the following. 

THEOREM A. [ 1]. Let G = [X, Y] be a 2-colored complete bipartite graph, t be a non

negative integer, and f3 any real number satisfying 0 < f3 < 1. Then at least one of the 

following two statements is true. 

(1) Some set oft vertices of X r-covers all but at most f3t+ 1(jXj + jYI) vertices of 

Y. 

(2) Some set oft vertices of Y b- covers all but at most (1 - f3)t+ 1(jXj + jYI) 

vertices of X. 

This gives as an immediate corollary the following generalization of the Erdos- Hajnal 

conjecture. (The case when f3 = 1/2 is the Erdos- Hajnal conjecture.) 

COROLLARY [ 1]. Let the edges of Kn be 2-colored, p a fixed vertex of Kn, k a positive 

integer, and {3 E (0, 1). Then there exists a set A~ V(Kn) such that pEA, jAj ::=;; k, and A 

either r-covers at least (1- f3k)n vertices of Kn or b-co;vers at least [1- (1- f3)k]n vertices 

of Kn. 

The proof of Theorem A given in [1] is constructive. In fact a greedy low order polyno

mial algorithm will find the covering set. Thus one might feel that the result of Theorem 

A is not sharp, but this is not the case as is shown by the next result. 
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THEOREM B [ 1]. For any fixed € > 0 and positive integer t there exists an no= no(€, t) 

and a 2-coloring of the edges of Kn for n ;::: no such that each t-element subset fails to 

monochromatically cover at least (1/2t- €)n vertices of Kn. 

This leaves as unsettled the general question of what happens if r-colorings of the edges 

of Kn are considered instead of 2-colorings. In particular if the edges of Kn are r-colored, 

then for which t does there exist some set oft vertices which monochromatically covers at 

least (1- (1- 1/r)t)n vertices of Kn? 

No such result can hold for arbitrary r and t, not even when r = 3 and t = 3. This 

was first noticed by H. A. Kierstead who gave the following example. Three color the 

edges of K n by partitioning its vertex set into three sets A 1, A2, A3 of equal order. If 

1 ~ i ~ j ~ 3 and x E Ai, y E Aj, then color edge xy with color i. Clearly any three vertices 

monochromatically cover at most 2n/3 vertices of Kn, while in this case (1- (1-1/r)t)n = 

19n/27. We shall see in the next section that this generalization will essentially hold for 

many values of r and t. Also we shall show when r = 3 that the expected number of vertices 

monochromatically covered by a "small" set is 2nj3. 

RESULTS (many colors). 

The example of Kierstead shows no "small set" of vertices can be found which, in 

general, monochromatically covers substantially more than 2n/3 vertices of Kn under a 

3-coloring of its edges. The first result of the paper shows that a covering of 2nj3 vertices 

can be realized using a "small set" of vertices. 

THEOREM 1. Three color the edges of Kn. Then there 1_xists a set of at most k vertices 

in Kn(k ~ 22) which monochromatically covers at least 2n/3 of its vertices. 

The upper bound of 22 on k is only a consequence of the method of proof of the 

theorem. A random 3-coloring of E(Kn), with each color of equal probability, provides an 

example of a 3-colored graph in which each pair of vertices monochromatically covers at 
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most 5n/9 vertices. Thus we know 3 ::::; k ::::; 22. Most likely k = 3 will suffice, but presently 

we have no proof. 

We next consider the general question mentioned earlier; for which r, t does there exist 

at element set which monochromatically covers at least (1- (1- 1/r)t)n vertices for any 

r-coloring of E(Kn)? With this in mind we prove the next theorem. 

THEOREM 2. Let G be a graph on n vertices and cn2 /2 edges, 0 < c < 1, and let 

t be a fixed positive integer. Set ~(G) = ~n, N1 = ~' and define Nt recursively by 

Nt = c+ (1- ~)Nt-1· Then there exists t vertices ofG which cover at least (max{~' Nt} )n 

vertices of G. Furthermore max{~, Nt} ~ min{1- (1- c)t, y'c}. 

One should observe that if G is a regular graph, then~= c and Nt = c+ (1- c)Nt-1 = 

1- (1- c)t, while if G = K..;cn' then ~ = y'c and Nt = c + (1- y'c)Nt-1 = y'c. 

It can be checked that the following slight modification of Theorem 2 is also true. Let 

then vertex graph G have c(n- 1)2/2 edges and set ~(G)= ~(n- 1). Then (with t and 

Nt as defined) G contains at element set which covers at least (max{~, Nt} )(n -1) vertices 

of G. The next corollary is a consequence of this modified from of Theorem 2 and gives a 

partial answer to the question asked earlier. 

COROLLARY 1. Let t be a fixed positive integer and let r be fixed and large. If the edges 

of Kn are r colored and n is large with respect tor, then there exists t vertices of Kn which 

monochromatically cover at least (1- (1- 1/r)t)(n- 1) of its vertices. 

PROOF: The dominant color class in the colored Kn has at least (n 2 - n)/(2r) ~ {1/r)(n-

1)2 /2 edges. Setting c = 1/r chooser large enough su~h that, for all large n, (1- {1- c)t ::::; 

y'c and apply the modified version of Theorem 2. I 

COROLLARY 2. Let Kn be edge colored with r colors and lett be a fixed positive integer. 

If either t = 2 or if the color class with the majority of edges is a r~gular graph, then there 

exists t vertices ofV(Kn) which monochromatically cover at least (1- (1- 1/r)t)(n- 1) 
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of its vertices. 

PROOF: If r = 2 and t = 2 the result follows from the corollary of Theorem A, while if 

r ~ 3 and t = 2 the result follows from the modified version of the theorem, since 

1 
1- (1- c) 2 ~ yfC for 0 ~ c ~ 3· 

If the color class with the majority of edges is regular, then that colored graph has at 

least c(n -1) 2 /2 edges with c ~ 1/r so that Nt ~ 1- (1- 1/r)t. Hence the modified version 

of Theorem 2 again applies. 1 

PROOFS OF THEOREMS 1 AND 2. 

Proof of Theorem 1: 

Assume that the three colors with which E(Kn) has been colored are named 1, 2, and 

3. Throughout the proof we use the following notation. For B ~ V(Kn) and x E V(Kn) 

let di(x) denote the degree of x in the subgraph of Kn induced by color i, and let d~B)(x) 

be its degree relative to the set B. 

The proof is indirect, so we suppose the Theorem is false. For each £(1 ~ £ ~ 3) select 

a set Ai of vertices that is covered by k vertices, let Bi = V(Kn) - Ai· Choose Ai such 

that the maximum degree in color i with respect to Bi is 8in, a minimum. 

Assume without loss of generality that 81 ~ 8z ~ 83 . Further, since !Ail < 2n/3 by 

assumption, IBil = (1/3 + Ei)n where Ei > 0. Let ci = {zcBildi(z) ~ n/6}. 

Since 2:::: d~B>)(x) ~ 8in2
, ICil ~ 8in2 /(n/6) = 68in. If y E (B1 n Bz)- (Cl U Cz), 

xeV(Kn) 

then d1 (y) < n/6 and dz(y) < n/6, so that d3(y) ~ 2n/3. Since this is impossible, 

Next observe 

and 
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Thus there exists a z1 EB1 such that 

and a vertex z2 EB2 such that 

Therefore {z1,z2} covers in B1 U B2(in color 3) at least an vertices, where 

a= 2/3 + (£1 + £2)- 6(81 + 82)- [1/3 + q)82 + (1/3 + £2)81]/ [1/3 + £] 

(1) -[(1/3 + £1)82 + (1/3 + £2)81] 1 [1/3 + £2] 

~ 2/3 + £1 + £2- 10(81 + 82)· 

Note that this later expression implies 81 + 82 > 0, since it has been assumed that the 

theorem is false. 

Next select vertices zs, z4, ... , Zk such that { z1, z2, Z3, ... , zk} covers as many vertices 

in Kn as possible in color 3. Since no such set covers 2n/3 vertices, it follows from (1) 

that at least one of the vertices in the set {zs, z4, ... , zk} covers (in color 3) at most 

([10(81 + 82)- (£1 + £2)]/[k- 2])n vertices not covered by the remaining ones. Hence if As 

is the set covered in color 3 by {z1, z2, ... , zd and Bs = V(Kn)- As, then for x£V(Kn) 

82) / ( k - 2), a contradiction for k > 22. I 

Before presenting the proof of Theorem 2 we prove the following needed polynomial 

inequality. 
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LEMMA 1. For k > 1let Pt be the polynomial of degree t + 1 given by 

where 0 < c < 1 satisfies 1- (1- c)t < JC. Then Pt(x) ::; c for c ::; x::; JC. 

PROOF: The equation 1- (1- c)t = .jC has a unique solution c = ct in the open interval 

(0, 1) with 1- (1- c)t < .jC if and only if a(O, q). It can be shown that 1- (1- c)t > .jC 

for c = ll(t2 - t) and 1- (1- c)t < .JC for c = 1l(t2 - t + 1), so that 

(2) 1 I ( t2 
- t + 1) < Ct < 1 I ( t2 

- t) . 

Since Pt(c) = c and Pt(.fC) = [1- (1- c)t].JC < c, to show Pt(x)::; c for c::; x::; .jC, it 

suffices to prove Pt has no relative maximum in ( c, .JC). 

We suppose Pt has a relative maximum in (c, ylc) and show this leads to a contradiction. 

Fort= 2 this is easy to check, so we assume t;::: 3. Suppose x1£(c,ylc) satisfies Pf(xi) = 0 

and Pt'(xi) < 0. Using (2) one can check that Pi( c) = 1- (1- c)t-l [t(t + 1)c- 2] < 0 and 

P£'(c) = (1- c)t- 2 [t(t + 1)c- 2] < 0. It follows that there is a point xo£(c,x1 ) such that 

P£( xo) and Pi'( xo) > 0, so that Pf' must have one zero in ( c, xo) and another in ( xo, x1). 

But Pf'(x) = (1- x)t-3 [(t- 1)(t- 2)c- 2 + 4tx- t(t + 1)x2 ] so that the sum of these zeros 

is 4l(t + 1). Thus 4l(t + 1) < 2Jc so that from (2) 

4l(t + 1)2 < c < 1l(t2
- t), 

which is impossible for t ;::: 3. I 

The recursive definition of Nt given in Theorem 2 is such that Nt = Nt(!:l) = c[1-

(1- !:l)t-1]1.6. + (1- .6.)t-1.6.. Therefore Pt as defined in Lemma 1 satisfies 

Pt(!:l) = (1- (1- c)t).6. + c- .6.Nt(.6.). 

35 



Hence Pt(..6.) ~ c if and only if Nt(..6.) ~ [1- (1- c)t]. This means that under the conditions 

of Lemma 1, when t > 1 and 0 < c < 1 satisfies 1- (1- c)t < ..JC, 

then Nt(..6.) ~ 1- (1- c)t for c ~ ..6. ~..[C. 

One can also show by straightforward calculations that for c ~ ..6. ~ ..JC and 1- (1- c )t ~ ..JC 

that Nt(..6.) ~ y!C. Thus for all c ~ ..6. ~ ..,fC 

(3) 

Proof of Theorem 2: 

We prove by induction on t that there exists t vertices which cover at least (max{ ..6., Nt} )n 

vertices of G. This is clear for t = 1, so we assume the result for t - 1. 

Let A denote the set of largest order covered by a t - 1 vertex set of G and let B = 

V(G)- A. Choose 8 such that (Nt-1 + 8)n = IAI and IBI = (1- Nt-1- 8)n. Further 

choose the smallest I such that the degree a( B) ( x) of each vertex x of G, relative to set B, 

is at most ln. Thus the maximum number N of edges in G (counting edges in A, from A 

to B, and in B) is at most 

N = [(Nt-1 + 8)(..6. -l)n2 ]/2 + (Nt-1 + 8)ln2 + [(1- Nt-1- 8)ln2 ]j2. 

Hence cn2 /2 ~ N which is equivalent to I~ c- Nt-1..6.- 8..6.. 

Since by assumption t - 1 vertices of G cover (Nt-1 + 8)n vertices, t vertices cover 

(max{t:..,l+Nt-1 +8} )n vertices ofG, where l ~ c-Nt-~1..6.-8..6.. Hence there exist t vertices 

ofG which cover at least (max{t:..,l+Nt-1 +8})n ~ (max{..6.,c+(1-..6.)Nt-1 +8(1-t:..)})n 

vertices of G. Since this last expression is minimum for 8 = 0, it follows that there exist t 

vertices of G which cover at least (max{ .6., Nt} )n vertices, where Nt = c + (1 - .6.)Nt_1. 

The fact that max{..6., Nt} ~ min{1- (1- c)t, y!C} follows from (3) and from the fact 

that the maximum degree of G is at least en. 1 
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4. CONCLUDING REMARKS. 

It would be nice to improve the result of Theorem 1 and show that if E(Kn) is 3-colored, 

then there exist a 3-verte;x set that monochromatically covers at least 2n/3 vertices. Some 

evidence for this possibility is provided by Theorem 2. Note that by Theorem 2 there 

exists 3 vertices which monochromatically covers at least nj.,f3 of the vertices. Also by 

Theorem 2 a 3-colored Kn with as many as (4/9)(n2 /2) edges in one color has 2 vertices 

which monochromatically covers 2n/3 vertices. Thus it appears that Theorem 1 may hold 

fork= 3. 

Also a theorem parallel to that of Theorem 1 could be considered for r colors, where 

r ;:::: 4. To consider this parallel problem we modify the definition of cover to say that A 

covers B in G if each vertex of B- A is adjacent to a vertex of A and each vertex of A 

' is incident to an edge of G. The vertices in A can not be isolated. With this alternate 

definition, define f(r) as the largest real number such that for all n and all r-colorings of 

E(Kn) at least f(r)n vertices can be monochromatically covered by some set A~ V(Kn). 

In [2] this problem is considered in a different setting. It is shown there that f(r) 

satisfies the following tabular results. 

2 3 4 5 6 7 8 9 10 11 12 13 

f(r) 1 2/3 3/5 5/9 1/2 3/7 5/12 2/5 3/8 5/14 1/3 4/13 

Thus, for example, if E(Kn) is 4-colored, then does there exist a "small set" which monochro-

matically covers at least 3n/5 vertices? 

An additional problem is to find the order of the smallest set which monochromatically 

covers f(r)n vertices in any r- coloring of E(Kn). This order was shown in Theorem 1 to 

be at most 22 for r = 3 and conjectured to be 3 for r = 3. 
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