MONOCHROMATIC COVERINGS IN COLORED COMPLETE GRAPHS

P. ERDÖS

Hungarian Academy of Sciences

R. J. FAUDREE*

Memphis State University

R. J. GOULD*

Emory University

A. GYÁRFÁS

Hungarian Academy of Sciences

C. ROUSSEAU

Memphis State University

R. H. SCHELP

Memphis State University

Abstract. We consider the following question: For a fixed positive integer t and a fixed r-coloring of the edges of K_n , what is the largest subset B of $V(K_n)$ monochromatically covered by some t element subset of $V(K_n)$?

1. INTRODUCTION.

Let G be a graph, $A, B \subseteq V(G)$. The set A is said to cover (or dominate) B if for every $y \in B - A$ there exists an $x \in A$ such that $xy \in E(G)$. Thus if A covers B then A covers $A \cup B$. In what follows this idea of covering will be applied to the monochromatically colored subgraphs of K_n obtained by coloring each of its edges by one of a fixed set of colors.

A problem of this type due to Erdös and Hajnal is given in the following conjecture. 1980 Mathematics subject classifications (1985 Revision): *Research partially supported under ONR grant no. N00014-88-K-0070

CONGRESSUS NUMERANTIUM 71(1990), pp.29-38

CONJECTURE. (ERDÖS, HAJNAL). For given positive integers n,t and any 2-coloring of the edges of K_n there exists a set $X_t \subseteq V(K_n)$, with at most t vertices, which monochromatically covers at least $(1 - 1/2^t)n$ of the vertices of K_n .

This conjecture is trivially true for t = 1, was proved by Erdös and Hajnal for t = 2, and proved in more general form in [1]. Before stating this general form we introduce additional terminology. If the edges of a graph have been 2-colored, we assume the colors are red and blue, and refer to a covering in the resulting red(blue) subgraph as an *r*-covering (b-covering). The result proved in [1] is the following.

THEOREM A. [1]. Let G = [X, Y] be a 2-colored complete bipartite graph, t be a nonnegative integer, and β any real number satisfying $0 < \beta < 1$. Then at least one of the following two statements is true.

- Some set of t vertices of X r-covers all but at most β^{t+1}(|X| + |Y|) vertices of Y.
- (2) Some set of t vertices of Y b- covers all but at most $(1 \beta)^{t+1}(|X| + |Y|)$ vertices of X.

This gives as an immediate corollary the following generalization of the Erdös - Hajnal conjecture. (The case when $\beta = 1/2$ is the Erdös - Hajnal conjecture.)

COROLLARY [1]. Let the edges of K_n be 2-colored, p a fixed vertex of K_n , k a positive integer, and $\beta \in (0,1)$. Then there exists a set $A \subseteq V(K_n)$ such that $p \in A, |A| \leq k$, and Aeither r-covers at least $(1 - \beta^k)n$ vertices of K_n or b-covers at least $[1 - (1 - \beta)^k]n$ vertices of K_n .

The proof of Theorem A given in [1] is constructive. In fact a greedy low order polynomial algorithm will find the covering set. Thus one might feel that the result of Theorem A is not sharp, but this is not the case as is shown by the next result. THEOREM B [1]. For any fixed $\epsilon > 0$ and positive integer t there exists an $n_0 = n_0(\epsilon, t)$ and a 2-coloring of the edges of K_n for $n \ge n_0$ such that each t-element subset fails to monochromatically cover at least $(1/2^t - \epsilon)n$ vertices of K_n .

This leaves as unsettled the general question of what happens if *r*-colorings of the edges of K_n are considered instead of 2-colorings. In particular if the edges of K_n are *r*-colored, then for which *t* does there exist some set of *t* vertices which monochromatically covers at least $(1 - (1 - 1/r)^t)n$ vertices of K_n ?

No such result can hold for arbitrary r and t, not even when r = 3 and t = 3. This was first noticed by H. A. Kierstead who gave the following example. Three color the edges of K_n by partitioning its vertex set into three sets A_1, A_2, A_3 of equal order. If $1 \le i \le j \le 3$ and $x \in A_i, y \in A_j$, then color edge xy with color i. Clearly any three vertices monochromatically cover at most 2n/3 vertices of K_n , while in this case $(1 - (1 - 1/r)^t)n =$ 19n/27. We shall see in the next section that this generalization will essentially hold for many values of r and t. Also we shall show when r = 3 that the expected number of vertices monochromatically covered by a "small" set is 2n/3.

RESULTS (many colors).

The example of Kierstead shows no "small set" of vertices can be found which, in general, monochromatically covers substantially more than 2n/3 vertices of K_n under a 3-coloring of its edges. The first result of the paper shows that a covering of 2n/3 vertices can be realized using a "small set" of vertices.

THEOREM 1. Three color the edges of K_n . Then there exists a set of at most k vertices in $K_n(k \leq 22)$ which monochromatically covers at least 2n/3 of its vertices.

The upper bound of 22 on k is only a consequence of the method of proof of the theorem. A random 3-coloring of $E(K_n)$, with each color of equal probability, provides an example of a 3-colored graph in which each pair of vertices monochromatically covers at

most 5n/9 vertices. Thus we know $3 \le k \le 22$. Most likely k = 3 will suffice, but presently we have no proof.

We next consider the general question mentioned earlier; for which r, t does there exist a t element set which monochromotically covers at least $(1 - (1 - 1/r)^t)n$ vertices for any r-coloring of $E(K_n)$? With this in mind we prove the next theorem.

THEOREM 2. Let G be a graph on n vertices and $cn^2/2$ edges, 0 < c < 1, and let t be a fixed positive integer. Set $\Delta(G) = \Delta n, N_1 = \Delta$, and define N_t recursively by $N_t = c + (1 - \Delta)N_{t-1}$. Then there exists t vertices of G which cover at least $(\max{\{\Delta, N_t\}})n$ vertices of G. Furthermore $\max{\{\Delta, N_t\}} \ge \min{\{1 - (1 - c)^t, \sqrt{c}\}}$.

One should observe that if G is a regular graph, then $\Delta = c$ and $N_t = c + (1-c)N_{t-1} = 1 - (1-c)^t$, while if $G = K_{\sqrt{cn}}$, then $\Delta = \sqrt{c}$ and $N_t = c + (1-\sqrt{c})N_{t-1} = \sqrt{c}$.

It can be checked that the following slight modification of Theorem 2 is also true. Let the *n* vertex graph *G* have $c(n-1)^2/2$ edges and set $\Delta(G) = \Delta(n-1)$. Then (with *t* and N_t as defined) *G* contains a *t* element set which covers at least $(\max{\{\Delta, N_t\}})(n-1)$ vertices of *G*. The next corollary is a consequence of this modified from of Theorem 2 and gives a partial answer to the question asked earlier.

COROLLARY 1. Let t be a fixed positive integer and let r be fixed and large. If the edges of K_n are r colored and n is large with respect to r, then there exists t vertices of K_n which monochromatically cover at least $(1 - (1 - 1/r)^t)(n - 1)$ of its vertices.

PROOF: The dominant color class in the colored K_n has at least $(n^2 - n)/(2r) \ge (1/r)(n-1)^2/2$ edges. Setting c = 1/r choose r large enough such that, for all large $n, (1 - (1 - c)^t \le \sqrt{c}$ and apply the modified version of Theorem 2.

COROLLARY 2. Let K_n be edge colored with r colors and let t be a fixed positive integer. If either t = 2 or if the color class with the majority of edges is a regular graph, then there exists t vertices of $V(K_n)$ which monochromatically cover at least $(1 - (1 - 1/r)^t)(n - 1)$ of its vertices.

PROOF: If r = 2 and t = 2 the result follows from the corollary of Theorem A, while if $r \ge 3$ and t = 2 the result follows from the modified version of the theorem, since

$$1 - (1 - c)^2 \le \sqrt{c}$$
 for $0 \le c \le \frac{1}{3}$.

If the color class with the majority of edges is regular, then that colored graph has at least $c(n-1)^2/2$ edges with $c \ge 1/r$ so that $N_t \ge 1 - (1-1/r)^t$. Hence the modified version of Theorem 2 again applies.

PROOFS OF THEOREMS 1 AND 2.

Proof of Theorem 1:

Assume that the three colors with which $E(K_n)$ has been colored are named 1, 2, and 3. Throughout the proof we use the following notation. For $B \subseteq V(K_n)$ and $x \in V(K_n)$ let $d_i(x)$ denote the degree of x in the subgraph of K_n induced by color i, and let $d_i^{(B)}(x)$ be its degree relative to the set B.

The proof is indirect, so we suppose the Theorem is false. For each $i(1 \le i \le 3)$ select a set A_i of vertices that is covered by k vertices, let $B_i = V(K_n) - A_i$. Choose A_i such that the maximum degree in color *i* with respect to B_i is $\delta_i n$, a minimum.

Assume without loss of generality that $\delta_1 \leq \delta_2 \leq \delta_3$. Further, since $|A_i| < 2n/3$ by assumption, $|B_i| = (1/3 + \epsilon_i)n$ where $\epsilon_i > 0$. Let $C_i = \{z \epsilon B_i | d_i(z) \geq n/6\}$.

Since $\sum_{x \in V(K_n)} d_i^{(B_i)}(x) \le \delta_i n^2, |C_i| \le \delta_i n^2/(n/6) = 6\delta_i n$. If $y \in (B_1 \cap B_2) - (C_1 \cup C_2)$, then $d_1(y) < n/6$ and $d_2(y) < n/6$, so that $d_3(y) \ge 2n/3$. Since this is impossible, $|B_1 \cap B_2| \le |C_1 \cup C_2| \le 6(\delta_1 + \delta_2)n$.

Next observe

$$\sum_{x \in B_2} d_2^{(B_1)}(x) = \sum_{x \in B_1} d_2^{(B_2)}(x) \leq (1/3 + \epsilon_1) \delta_2 n^2$$

and

$$\sum_{x \in B_1} d_1^{(B_2)}(x) = \sum_{x \in B_2} d_1^{(B_1)}(x) \leq (1/3 + \epsilon_2) \delta_1 n^2.$$

Thus there exists a $z_1 \epsilon B_1$ such that

$$d_3^{(B_2)}(z_1) \geq (1/3 + \epsilon_2)n - ([(1/3 + \epsilon_1)\delta_2 + (1/3 + \epsilon_2)\delta_1]/[1/3 + \epsilon_1])n,$$

and a vertex $z_2 \epsilon B_2$ such that

$$d_3^{(B_1)}(z_2) \geq (1/3+\epsilon_1)n - ([(1/3+\epsilon_1)\delta_2+(1/3+\epsilon_2)\delta_1]/[1/3+\epsilon_2])n.$$

Therefore $\{z_1, z_2\}$ covers in $B_1 \cup B_2$ (in color 3) at least αn vertices, where

(1)

$$\alpha = 2/3 + (\epsilon_1 + \epsilon_2) - 6(\delta_1 + \delta_2) - [1/3 + \epsilon_1)\delta_2 + (1/3 + \epsilon_2)\delta_1] / [1/3 + \epsilon]$$

$$-[(1/3 + \epsilon_1)\delta_2 + (1/3 + \epsilon_2)\delta_1] / [1/3 + \epsilon_2]$$

$$\geq 2/3 + \epsilon_1 + \epsilon_2 - 10(\delta_1 + \delta_2).$$

Note that this later expression implies $\delta_1 + \delta_2 > 0$, since it has been assumed that the theorem is false.

Next select vertices z_3, z_4, \ldots, z_k such that $\{z_1, z_2, z_3, \ldots, z_k\}$ covers as many vertices in K_n as possible in color 3. Since no such set covers 2n/3 vertices, it follows from (1) that at least one of the vertices in the set $\{z_3, z_4, \ldots, z_k\}$ covers (in color 3) at most $([10(\delta_1 + \delta_2) - (\epsilon_1 + \epsilon_2)]/[k-2])n$ vertices not covered by the remaining ones. Hence if A_3 is the set covered in color 3 by $\{z_1, z_2, \ldots, z_k\}$ and $B_3 = V(K_n) - A_3$, then for $x \in V(K_n)$

$$d_3^{(B_3)}(x) \leq ([10(\delta_1+\delta_2)-(\epsilon_1+\epsilon_2)]/[k-2])n.$$

(-)

Therefore $\delta_3 \leq [10(\delta_1 + \delta_2) - (\epsilon_1 + \epsilon_2)]/[k-2]$. But then $0 < (\delta_1 + \delta_2)/2 \leq \delta_3 \leq 10(\delta_1 + \delta_2)/(k-2)$, a contradiction for k > 22.

Before presenting the proof of Theorem 2 we prove the following needed polynomial inequality.

LEMMA 1. For k > 1 let P_t be the polynomial of degree t + 1 given by

$$P_t(x) = [1 - (1 - c)^t]x + (c - x^2)(1 - x)^{t-1},$$

where 0 < c < 1 satisfies $1 - (1 - c)^t < \sqrt{c}$. Then $P_t(x) \le c$ for $c \le x \le \sqrt{c}$.

PROOF: The equation $1 - (1-c)^t = \sqrt{c}$ has a unique solution $c = c_t$ in the open interval (0,1) with $1 - (1-c)^t < \sqrt{c}$ if and only if $c\epsilon(0, c_t)$. It can be shown that $1 - (1-c)^t > \sqrt{c}$ for $c = 1/(t^2 - t)$ and $1 - (1-c)^t < \sqrt{c}$ for $c = 1/(t^2 - t + 1)$, so that

(2)
$$1/(t^2 - t + 1) < c_t < 1/(t^2 - t).$$

Since $P_t(c) = c$ and $P_t(\sqrt{c}) = [1 - (1 - c)^t]\sqrt{c} < c$, to show $P_t(x) \le c$ for $c \le x \le \sqrt{c}$, it suffices to prove P_t has no relative maximum in (c, \sqrt{c}) .

We suppose P_t has a relative maximum in (c, \sqrt{c}) and show this leads to a contradiction. For t = 2 this is easy to check, so we assume $t \ge 3$. Suppose $x_1\epsilon(c,\sqrt{c})$ satisfies $P'_t(x_1) = 0$ and $P''_t(x_1) < 0$. Using (2) one can check that $P'_t(c) = 1 - (1-c)^{t-1}[t(t+1)c-2] < 0$ and $P''_t(c) = (1-c)^{t-2}[t(t+1)c-2] < 0$. It follows that there is a point $x_0\epsilon(c,x_1)$ such that $P'_t(x_0)$ and $P''_t(x_0) > 0$, so that P''_t must have one zero in (c,x_0) and another in (x_0,x_1) . But $P''_t(x) = (1-x)^{t-3}[(t-1)(t-2)c-2+4tx-t(t+1)x^2]$ so that the sum of these zeros is 4/(t+1). Thus $4/(t+1) < 2\sqrt{c}$ so that from (2)

$$4/(t+1)^2 < c < 1/(t^2-t),$$

which is impossible for $t \geq 3$.

The recursive definition of N_t given in Theorem 2 is such that $N_t = N_t(\Delta) = c[1 - (1 - \Delta)^{t-1}]/\Delta + (1 - \Delta)^{t-1}\Delta$. Therefore P_t as defined in Lemma 1 satisfies

$$P_t(\Delta) = (1 - (1 - c)^t)\Delta + c - \Delta N_t(\Delta)$$

Hence $P_t(\Delta) \leq c$ if and only if $N_t(\Delta) \geq [1-(1-c)^t]$. This means that under the conditions of Lemma 1, when t > 1 and 0 < c < 1 satisfies $1 - (1-c)^t < \sqrt{c}$,

then
$$N_t(\Delta) \geq 1 - (1-c)^t$$
 for $c \leq \Delta \leq \sqrt{c}$.

One can also show by straightforward calculations that for $c \leq \Delta \leq \sqrt{c}$ and $1-(1-c)^t \geq \sqrt{c}$ that $N_t(\Delta) \geq \sqrt{c}$. Thus for all $c \leq \Delta \leq \sqrt{c}$

(3)
$$N_t(\Delta) \ge \min\{1 - (1 - c)^t, \sqrt{c}\}.$$

Proof of Theorem 2:

We prove by induction on t that there exists t vertices which cover at least $(\max{\Delta, N_t})n$ vertices of G. This is clear for t = 1, so we assume the result for t - 1.

Let A denote the set of largest order covered by a t-1 vertex set of G and let B = V(G) - A. Choose δ such that $(N_{t-1} + \delta)n = |A|$ and $|B| = (1 - N_{t-1} - \delta)n$. Further choose the smallest l such that the degree $d^{(B)}(x)$ of each vertex x of G, relative to set B, is at most ln. Thus the maximum number N of edges in G (counting edges in A, from A to B, and in B) is at most

$$N = [(N_{t-1} + \delta)(\Delta - l)n^2]/2 + (N_{t-1} + \delta)ln^2 + [(1 - N_{t-1} - \delta)ln^2]/2.$$

Hence $cn^2/2 \leq N$ which is equivalent to $l \geq c - N_{t-1}\Delta - \delta\Delta$.

Since by assumption t - 1 vertices of G cover $(N_{t-1} + \delta)n$ vertices, t vertices cover $(\max\{\Delta, l+N_{t-1}+\delta\})n$ vertices of G, where $l \ge c - N_{t-1}\Delta - \delta\Delta$. Hence there exist t vertices of G which cover at least $(\max\{\Delta, l+N_{t-1}+\delta\})n \ge (\max\{\Delta, c+(1-\Delta)N_{t-1}+\delta(1-\Delta)\})n$ vertices of G. Since this last expression is minimum for $\delta = 0$, it follows that there exist t vertices of G which cover at least $(\max\{\Delta, N_t\})n$ vertices, where $N_t = c + (1-\Delta)N_{t-1}$.

The fact that $\max{\Delta, N_t} \ge \min{\{1 - (1 - c)^t, \sqrt{c}\}}$ follows from (3) and from the fact that the maximum degree of G is at least cn.

4. CONCLUDING REMARKS.

It would be nice to improve the result of Theorem 1 and show that if $E(K_n)$ is 3-colored, then there exist a 3-vertex set that monochromatically covers at least 2n/3 vertices. Some evidence for this possibility is provided by Theorem 2. Note that by Theorem 2 there exists 3 vertices which monochromatically covers at least $n/\sqrt{3}$ of the vertices. Also by Theorem 2 a 3-colored K_n with as many as $(4/9)(n^2/2)$ edges in one color has 2 vertices which monochromatically covers 2n/3 vertices. Thus it appears that Theorem 1 may hold for k = 3.

Also a theorem parallel to that of Theorem 1 could be considered for r colors, where $r \ge 4$. To consider this parallel problem we modify the definition of cover to say that A covers B in G if each vertex of B - A is adjacent to a vertex of A and each vertex of A is incident to an edge of G. The vertices in A can not be isolated. With this alternate definition, define f(r) as the largest real number such that for all n and all r-colorings of $E(K_n)$ at least f(r)n vertices can be monochromatically covered by some set $A \subseteq V(K_n)$.

In [2] this problem is considered in a different setting. It is shown there that f(r) satisfies the following tabular results.

r 2 3 4 5 6 7 8 9 10 11 12 13 f(r) 1 2/3 3/5 5/9 1/2 3/7 5/12 2/5 3/8 5/14 1/3 4/13 Thus, for example, if $E(K_n)$ is 4-colored, then does there exist a "small set" which monochromatically covers at least 3n/5 vertices?

An additional problem is to find the order of the smallest set which monochromatically covers f(r)n vertices in any r- coloring of $E(K_n)$. This order was shown in Theorem 1 to be at most 22 for r = 3 and conjectured to be 3 for r = 3.

REFERENCES

 P. Erdös, R. Faudree, A. Gyárfás, R. H. Schelp, Domination in Colored Complete Graphs, to appear in The Journal of Graph Theory. 2. W. H. Mills, Covering Designs I: Covering by a Small Number of Subsets, Ars Combinatorica 8, 199-315.

ŝ

;