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If the edges of a finite complete graph K are colored with r colors then the vertex 
set of K can be covered by at most cr2 log r vertex disjoint monochromatic cycles. 
Several related problems are discussed. © 1991 Academic Press, Inc. 

1. INTRODUCTION 

Assume that K is a finite complete graph whose edges are colored with 
r colors (r ~ 2 ). How many monochromatic paths (or cycles) are needed to 
cover (or partition) the vertex set of K? Throughout the paper single 
vertices and edges are considered to be cycles. It is not obvious that these 
numbers depend only on r. The following conjecture is from [ 12]. 

If the edges of a (finite undirected) complete graph K are colored with 
r colors then, for some function f, the vertex set of K can be covered by at 
most f(r) vertex disjoint monochromatic paths. 

In this paper the conjecture is proved in a stronger form. Our main 
result is 

THEOREM 1. If the edges of a finite complete, graph K are colored with r 
colors then the vertex set of K can be covered 'by at most cr2 log r vertex 
disjoint monochromatic cycles. 

Theorem 1 makes it possible to define, as a function of r, the minimum 
number of monochromatic cycles (or paths or trees) needed ~0 cover (or 
partition) the vertex set of any r-colored complete graph. Problems and 
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results concerning these numbers are in Section 3. The strongest conjec­
tures say that the cycle partition number is r and the tree partition number 
is r- 1. The latter conjecture is proved for r = 3 (Theorem 2 ). 

2. PROOF OF THEOREM 1 

LEMMA 1. Assume that the edges of the complete bipartite graph (A, B) 
are colored with r colors. If IBI ~ IAI/r 3 then B can be covered by at most 
r2 vertex disjoint monochromatic cycles. 

Proof Clearly we can partition B into B1, B2 , •.• , Br so that for any i, 
1 ~ i ~ r, x E Bi is adjacent to at least lA 1/r vertices of A in color i. For x E B 
let Ni(x) denote the set of vertices in A adjacent toxin color i. Define the 
graph Gi on vertex set Bi for i = 1, 2, ... , r as follows. For x, y E Bi, xy is an 
edge of Gi if and only if INi(x) n Ni(y)i ~ IAI/r 3

• 

Claim. The maximum number of pairwise non-adjacent vertices in Gi is 
at most r for 1 ~ i ~ r. 

Assume that Xu x 2 , ... , X 0 xr+ 1 E Bi are pairwise non-adjacent. By the 
definition of Bi, INi(xj)l ~ IAI/r for any j, 1 ~ j ~ r + 1. Therefore 

lA I~ 1 1·~-r 1 
Ni(xj)l ~ (r + 1) IAI/r- I INi(xJ n Ni(xk)i 

I 1~j<k~r+l 

~ lA I (<r+ 1)/r- ('~ 1 )/r') > lA I 

This· contradiction proves the claim. By a theorem of P6sa [ 14] G i can be 
partitioned into at most r vertex disjoint cycles (edges and vertices). Using 
the definition .of Gi and the fact that INi(x) n Ni(Y)i ~ IAI/r 3 ~ IBI, it is 
easy to find at most r 2 monochromatic vertex disjoint cycles in (A, B) 
which cover B. I 

To prepare the proof of Theorem 1, we need a definition. A triangle cycle 
of length k, Tk, is a cycle a 1 , a2 , ... , ak of length k and k further vertices b1, 
b2 , .•. , bk such that bi is adjacent to ai and to ai+ 1 for i = 1, 2, ... , k 
(ak+ 1 =ad. The property of Tk important to us is that Tk has a 
Hamiltonian cycle after the deletion of any subset of {b 1, b2 , ••• , bd. We 
need the following lemma on the Ramsey number of a triangle cycle. 

LEMMA 2. If the edges of Kn are colored with r colors then there exists 
a monochromatic Tk with k ~ cnj(r(r! )3

). 

It is worth noting that k ~ n/f(r) follows from a theorem of Chvatal, 
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Rodl, Szemeredi, and Trotter (see in [4]). We give an explicit f(r) in 
Lemma 2 to provide an explicit f(r) in Theorem 1. 

Proof of Lemma 2. It is well known that Kr contains a monochromatic 
triangle in every r-coloring if t = 3r! (see, for example, [9, p. 127] ). This 
fact implies that in every r-coloring of the edges of Kn there exist at least 
(';)/(';=j) ~ cn 3/t 3 monochromatic triangles. We want a subcollection of 
these triangles such that any two triangles intersect in at most one vertex. 
We proceed by a greedy algorithm. If m triangles have been selected then 
at most 3m(n -- 3) further triangles are excluded since one triangle meets at 
most 3(n- 3) other triangles in two vertices. The procedure stops if 
m + 3m(n- 3) > cn 3 jt3

, showing that m > cn2/t 3 (the new c is one-third of 
the old c). Now we keep only those triangles which are colored with the 
color used most often, say red, we have at least cn 2j(rt3

) = s red triangles, 
any two of them meeting in at most one vertex. Remove successively 
vertices and their incident red triangles if there are less than sjn red 
triangles incident to the current vertex. It is easy to see that the average red 
degree does not decrease so we get a non-empty subset X of vertices of Kn 
such that the red triangles inside X have large minimum degree; i.e., at least 
sjn = cnj(rt3

) of them are incident to any vertex of X. Let us consider a 
maximal red triangle path· P (defined by analogy with a triangle cycle). If 
x is an endvertex of P then all the triangles incident to x contain at least 
one other vertex of P. Taking the nearest vertex from x (on P) for each 
triangle, we get at least cnj(rt3

) different vertices of P. If y is the one most 
distant from x (on P) then the red triangle containing x, y and the x- y 
"subpath" of P determine a red triangle cycle Tk with k ~ ( cnj(r(3r! )3

), 

where the new c is half of the previous c. I 
THEOREM 1. If the edges of Kn are colored with r colors then the vertex 

set of Kn can be covered by at most cr2 log r vertex disjoint monochromatic 
cycles. 

Proof Assume that Kn is r-colored. By Lemma 2 we can find a 
monochromatic, say red triangle cycle Tk with k ~ cnj(r(r! )3

). Let X denote 
the set { bu b2 , ••• , bk}· It is easy to see than dn r-colored Km contains a 
monochromatic cycle of length at least mjr (by using the most frequent 
color of Km and applying the Erdos-Gallai extremal theorem for cycles 
[5] ). Apply repeatedly this fact to the r-colored complete graph induced by 
Kn- Tk. This way choose s vertex disjoint monochromatic cycles in 
Kn- Tk. We wish to choose s such that the set Y of vertices in Kn- Tk 
uncovered by these s cycles has cardinality at most kjr3

. Since after s steps 
at most (n- 2k)(l-lfrY vertices of Kn- Tk are uncovered, we have to 
choose s to satisfy 

(n- 2k)(l-1/rY:::;; kjr 3
. 
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This inequality is certainly true if 

(n- 2k )( 1 - 1/r Y ~ cnj(r4 (rl )3
) 

which can be ensured by 

Elementary calculation shows that s = L cr2 log r J is a suitable choice for s 
with some constant c. 

Now apply Lemma 1 for the r-colored complete bipartite graph (X, Y). 
We get a covering of Y by the vertices of at most r2 vertex disjoint 
monochromatic cycles. The removal of the vertices of these cycles from 
Tk u Y leaves a red cycle by the definition of X. Thus the vertex set of K 11 

is partitioned into at most cr2 log r + r2 + 1 vertex disjoint monochromatic 
cycles. 

3. RELATED RESULTS AND OPEN PROBLEMS 

Define the cycle partition number of r-colored complete graphs as the 
minimum k such that the vertices of any r-colored complete graph can be 
partitioned into at most k monochromatic cycles. Theorem 1 implies that 
the cycle partition number depends only on r (and is less than cr2 log r ). 
Cycle cover, path partition, path cover, tree partition, tree cover numbers 
can be defined similarly. 

The following example shows that the path cover number is at least r. 
Consider pairwise disjoint sets A 1 , A 2 , ... , Ar and, for x E Ai, y E Aj, i ~ j, 
color the edge xy with color i. If the sequence IAi I grows fast enough then 
the vertex set of this r-colored complete graph cannot be covered by less 
than r monochromatic paths. Perhaps this example is best possible and 
Theorem 1 can be sharpened as 

Conjecture 1. The cycle partition number is r. 

This conjecture for r = 2 is due to J. Lehel. Some special cases for r = 2 
have been solved by Ayel [ 1]. The cycle cover and path partition numbers 
are both 2 for r = 2 [8, 11]. The path partition number of r-colored 
countable complete graphs is r if paths are understood to be finite or 
one-way infinite. This is a result of Rado [15]. 

The rest of this section is devoted to tree cover and tree partition 
numbers. It is obvious that the tree cover number is at most r since the 
monochromatic stars at any vertex give a good covering. The following 
example shows that the tree cover number is at least r -1. Consider a com..: 
plete graph with vertex set identified with the points of an affine plane of 
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order r - 1. Color the edge pq with color i ( 1 ~ i ~ r) if the line through p 
and q is in the ith parallel class. This example shows that the following 
conjecture, if true, is best possible. 

Conjecture 2. The tree partition number is r- 1. 

The case r = 2 in Conjecture 2 is equivalent with the fact that for any 
graph G, either G or its complement is connected, an old remark of Erdos 
and Rado. The case r = 3 is settled by 

THEOREM 2. For r = 3, the tree partition number is 2. 

Proof Assume that red, blue, and white are the colors of the edges of 
a complete graph K. A monochromatic connected component is called 
maximal if its vertex set is not properly contained in any other 
monochromatic connected component. Let W be a maximal component, 
assume that it is white. Set U = V(K)- W. Consider the complete bipartite 
graph B = ( W, U). The edges of B are red or blue. Let R be a 
monochromatic, say red component of B. Since W is maximal, A= R n W 
is a proper non-empty subset of W. If U n R is a proper subset of U then 
(A, U- ( U n R)) and ( W- A, U n R) are two complete blue bipartite 
graphs with spanning trees satisfying the requirements of the theorem. We 
may assume therefore that U n R = U. If for all x E A there exists y E U such 
that xy is blue then the graph of the blue edges spans a connected graph 
on V(K) and the theorem holds. We may assume therefore that 

C = { x E A: xy is red for all y E U} 

is a non-empty set. Since W is connected in white, we can write W = 
{x1 , x 2 , ••. , xm} with the property that W- {x1 , ... , xJ is connected in 
white for all i, i = 1, 2, ... , m- 1. Let t be the smallest number with the 
property that Xr E C u ( W- A). If xt E C then {x1, ... , xr} u U is connected 
in red, if x t E W- A then { x 1 , ... , x t} u U is connected in blue. Since 
W- { x 1 , ... , x t} is connected in white, the theorem is proved. I 

A weaker form of Conjecture 2 is that the tree cover number is r -1. 
This is equivalent to the following conjecture of Lovasz and Ryser: An 
r-partite intersecting hypergraph has a transversal (blocking set) of at most 
r- 1 elements. (This is proved by Tuza for r ~ 5 in [ 16].) Conjecture 2 
implies that an r-colored complete graph K contains a monochromatic tree 
of at least I V(K)I/(r- 1) vertices. This consequence is known to be true [2, 
6, 10]. Related problems are also in [3, 7]. 

The tree partition number seems to be more 'under control for infinite 
graphs. A. Hajnal proved [ 13] that the tree partition number is at most r 
for infinite r-colored complete graphs and [13] contains further results. 
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Zs. Nagy and Z. Szentmiklossy proved Theorem 2 for infinite graphs 
(personal communication). 

Partly as a tool to handle the problems formulated above, partly as a 
problem of its own, it seems interesting to study the case when complete 
graphs are replaced by complete bipartite graphs. Using Lemma 1, it is 
possible to show that the cycle cover and tree partition numbers of (an 
r-colored) Kn,n are both at most cr2

. However, we could not prove that the 
cycle partition number of (an r-colored) Kn,n depends only on r. 
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