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ABSTRACT

The principal résult of the paperis that any nonbzparnte 2—connected graph on n
vertices of niinimum degree >2ni(k +2){ k afixed odd integer and n large)
contains a k~c)’zcle or is isomorphic to the following graph ‘H. The graph H
~has n vertices ( thh n divisible by k + 2 ). and is obtained from the k + 2—
, cycle by replacmg each of its k+ 2 vertices by an mdependent set of order
ni(k + 2,

1. Results = = - T chene
Let ‘G be-a nonbipartite graph of order n and minimum degree 8. A natural
extremal question is the following: What is the smallest value of 3 such that G
contains a cycle Cx of fixed, odd length k? RN
To address this questlon first con81der two specml n—vertcx graphs H and L. Let
=Gji(A;, B), 1 <€ i <3, be three vertex disjoint copies of the complete bipartite
graph Kl nosyel[ (no3yre] where ‘Aj and B; denote the pamte sets of Gj. Take a
triangle C3 with vertices aj, ap,:a3 (the vertices of C3 dlSJOlnt from each Gy) and for
each 1 join vertex aj compleétely to the st of vemces ‘A; in Gj. Let L dendte the
graph that results. To ensure that L is an*n-vertex. graph one can assume that n—3 is
a multiple of 6. For n divisible by k+ 2 let H be the n—vertex graph obtained from
a Cky2 by replacmg each of its k +2 vemces by an independent set of order
nftlk+2). - . - Tl
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Since L has C3 as its only odd cycle and has minimum degree [(n-3)6]>
2n/(k +2) for k211 and n large, minimum degree & = 2n/(k +2) is not sufficient to
guarantee the existence of a Cx in G. If one insists that G be 2-connected as well as
nonbipartite, then H shows & > 2n/(k + 2). In fact under these conditions G contains
a Cx when 6 22n/(k +2) unless G is'isomorphic to H. This is the content of the
principal result in the paper and is stated as the first theorem.

Theorem I Let k 23 be a fixed odd positive integer. If G is a 2-connected
nonbipartite graph on- n vertices of minimum degree 2 2n/(k + 2), then for n large
(n2f{k)) either G contains the k—cycle Cy or is isomorphic to H.

What happens if G is regular? This lﬁés particular meaning when n is odd, since
then the graph G must be nonbipartite. Also in this case the 2-connected corjdition can
be dropped as is seen in the next theorem. '

Theorem 2 Let k >3 be afixed odd positive integer. If G is 2ni(k + 2)-regular
on n vertices with n odd, then for n largé (_ri > 8(k))G contains a Ck oris
isomorphic to H. ‘ ‘

As noted earlier the 2—connectedness of G ’assumeci in Theorem 1 is essential, at
least for k > 11. What happens if 3 <k <97 Theorem 3 shows for these cases that the
2—connectedness can be dropped.

Theorem 3  Let G be a nonbipartite graph on n vertices of minimum
degree 2 2ni(k + 2), where k is a fixed odd integer.v For n large (n 2l(k))G either is
isomorphic to H or contains a Cy for ke {3, 5, 7, 9}, but may fail to contain a Cy,
and also not be isomorphic to H when k >11.

| Clearly if the conditions of Theorem 1 hold, then for n large G contains all Cpyyy
for k <2t+ 1<d, d any fixed number larger than k. Also if G’ = Kan/(k+2),n—(2n/(k+2)
and G is obtained from G’ by adding an edge to its smaller part, then G contains
Co4q forall 3£2t+1<4n/(k + 2)—1 and no larger odd cycle. Thus it is reasonable
to inquire whether the condmons of Theorem 1 guarantee all odd cycles sz for k <
2t+1<4n/(k + 2) - 1. This is partially answered in Theorem 4.

Theoremd4 Let G be a 2-connected nonbipartite graph of order n and niihihzum
degree 2cn, 0 < c < - For each €, 1 > € > 0, there exist funcuons hy(c,€) and hz(c €)
such that for large n(n = hy(c,€))G contains the cycle Csz for h1(c e) <+ 1<
4(1 - g)cni3. ’ o
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From the discussion given above, letting ¢ = 2/(k + 2), it is clear that the upper
bound in the last result can at most be improved to 2(1 — €)cn. Although this is most
likely true the present proof does not seem to work beyond the bound given in the

_theorem. v ‘

It is easy to give examples which show that the degree condition of Theorem 1
cannot be replaced by a reasonable edge condition, even if the graph G contains a very
small odd cycle. For example take a cycle Ciso, and assume k is not too small, say k

“is'fixed and odd with k = 15. Mark four consecutive vertices of the cycle x;, X2, X3,
X4. Join a new vertex x to precisely x; and x;, and replace each of x3 and x4 by an
independent set of order (n — k — 1)/2. The resulting graph has n vertices,
approximately n%/4 edges,a C3, and no odd cycles strictly between 3 and k + 2.

- Throughout the paper notation Will, unless otherwise specified, follow that found in

standard texts. Before giving the proofs of the above results two well known extremal
theorems are stated. These two theorems are used frequently in the proof's that follow.

“:'Theorem A [1] (Erdos, Gallai) A graph G on n vertices with at least
 [n(k— 2)+1)/2 edges contains a path Py on k vertices. Furthermore, when n =
(k— 1)t the graph tKy_; (the union of t vertex disjoint copies of Ki_;) contains the
maximum number of edges in an n vertex graph with no Py and is the unique such
. graph.

The second extremal result deals with the well known problem of Zarankiewicz. Let
Z(n;t) denote the maximal size of a bipartite graph G(n,n) having both parts with n
vertices such that G(n,n) contains no K¢;. The bound given in the theorem belgw is an

_improvement by Zndm [3] of the bound proved by Kévdri, Sés, and Turdn [2]. .

Theorem B [3] (Problem of Zarankiewicz)
(1) If 2 <t < n, then Z(nt) < (-1 tn2-1t4 (¢ — 1)n/2. ,
(2) If agraph of order n does not contain a K, then its size is at most
((t — 1)Htn2=11t 4 (r— 1)121)/2.

2. Proofs
‘Before proving the main theorem several lemmas and propositions are needed.

Lemma 1 Let C; be a cycle of odd length in a graph G. If some vertex x not on
~ the cycle C; is adjacent to at least five vertices of C,, then G contains a cycle Cp of
odd length for some p,iis <p < t.

~ Proof Let Ci= (x3,X2,....X,X1) and assume x is adjacent to xj;,1 <i<5, where

jip <ji for 2<i<5. Set ji—jiog—1=aj1 for 2<i<5 and t+j;—js— 1= as.
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Therefore aj_; counts the number of vertices which are strictly between Xjig and Xj;
along the cycle from Xj;_y tO x_ii(2 <i<5) and a5 counts the number strictly between
Xjs and Xjq - Without loss of generality assume a; = rlr<1ias§{ai} so that a; = (t - 5)/5.
Consider the following possibilities: (1) a; iseven, (2) a; isodd and a3 or as is
even, (3) aj, ap, a5 are all odd and exactlsy one of a3 or a4 is even. Note that since

t=3 aj+35

i=1
and t is odd, one of the three possibilities occur. If (1) occurs let Cp =
(x,xj'l,xj'1 +1,...,xj2,x). If (2) occurs assume without loss of generality that ap is even
and let Cp'= (x,xj'l,xj1+1,...,xj3,x). If (3) occurs assume without loss of generality
that a4 is even and let Cp = (x’ij’ij-l""’xjl’le‘l""’ij’XjS‘l""’xj %) Itis easy

to see that Cp as defined is such that p isodd with ¢/S<p<t O

In each of the remaining lemmas and propositions that preceeds the proof of the main
theorem, similar assumptions are needed. Thus the following conditions are assumed
through the proof of Theorem 1. The graph G is of order n and minimal degree >
2n/(k + 2) where k is a fixed odd integer 2 3. Also G contains an odd length cycle
C1l > k, but contains no Cjp. Let C; = (X1,X3,....Xx5,X1), and for 1 <i<j </, let
Ajj= {ve V(G) - V(Cp | v is adjacent to both xj and xj}, Xj = {v€ Aj_1,i+1 | v has
precisely two adjacencies to C;}, and Yj = {ve V(G) - V(C) lv is adjacent to precisely
xj on C;}. For A and B disjoint subsets of V(G), [A,B] will denote the bipartite
subgraph of G with parts A and B that contains all edges of G between A and B.
Finally assume /< 5k for each of the lemmas and propositions in this section (but not in
the proof of the theorem).

Lemma 2  Let h(n) be any unbounded nonnegative function such that
lim h{n)in — 0. Forall 1 <i,j<l,i#j, |i—j[ #2,and n sufficiently large IAijl <
h(n) sothat |A;] = o(n).

Proof By assumption G contains a C; butno Cjp2,/ is odd, and dg-cy(x) 2
2n/(k +2) - for all xe V(G) — V(C)). Partition the vertices of Ajj into sets Bjj and
Cjj such that dAij(X) 2 n/(k + 2) - /2 for xe Bjj and Cjj= Ajj— Bjj. Note that
d[Aij,V(G)—(AijuV(Cz))](x) 2n/(k +2)—1/2 for xeCjj. Suppose | Ajj l > h(n). It will be
shown that this supposition leads to a contradiction. Two cases are considered.

Case 1: |Bij | >h(n)/2. Let m—1 be the distance from xj to x; along the cycle C.
It will be shown for n large that Aj; contains a pathon /—m-2 vertices. Connecting
the end vertices of this path in Ajj by disjoint edges to xj and x; gives the m vertex
pathon C; acycle C;_9, a contradiction. Thus the proof for this case is completed by



0dd Cycles in Graphs of Given Minimum Degree

411

showing that Ajj contains apathon S5k-~m—22/-m-2 vertices. Note that /—m~—
2>0,since /2k+2 implies I-m—221-((+1)/2)-22(1-5)/2=2(k-3)2>0.
The last inequality (k — 3)/2 > 0 follows since k=3,l=5,and m=(+1)/2=3
means |i- ] | = 2, contrary to the hypothesis of the lemma. But by definition of Bj;
each of its vertices are adjacent to at least n/(k +2)—//2 vertices of Ajj so that IE(<
Aij>) | > h@@/(k +2) - 2)/4 2 05k - m - 92 2 | A5 (Sk-m-4)2 for n
sufficiently large. Hence by Erdos-Gallai (Theorem A), Ajj contains a path Psg_m_2
on 5k—m-2 vertices.

Case 2: | Gjj I >h(n)/2. Observe that the number of vertices on the two paths from x;
to xj on C; have opposite parities. Thus choose the one with an even number, say m,
vertices. Since |i—j| #2, m</-3 which implies /—m—2 >0. This time an even
length path on /- m—2 vertices is found in [C;;,V(G) — (Ajj U V(C;))] with its end
vertices in Cjj. This path on /—m -2 vertices has its end vertices joined by disjoint
edgesto x; and xj sothata C;» results (using the m vertex path from x; to xj on
C)), a contradiction.

The proof is thus completed by showing [Cij,V(G) — (Ajj W V(Cp)] contains all
odd length paths of length at most Sk —m—2 with end vertices in [C;;,V(G) - (Ajj v
V(Cp)], i.e. contains a path of length 5k — m — 1. But |E([Cij,V(G) - (Ajj L
\Z(o)])] | > h(n)(n/(k + 2) - I/2)/2 2 n(Sk —m — 3)/2 for n sufficiently large. Hence
by Erdds-Gallai [C;j,V(G) ~ (Ajj U V(Cp)] contains the desired length path, so G
contains a C;p. O

Lemma3 Forall 1<i<l both ni(k +2)—o(n) < [X;| <ni(k +2) + o(n) and
[Y:] <o(n).

Proof By Lemma 2 IAij | =o(n) forall i#j, Ii— ] | # 2 so that each vertex x; on
C; is adjacent to at least 2n/(k + 2) — o(n) vertices of Xj.; U Xjt1 U Yj, i.e. for each
1<i<]

M) X | + 1 X | + 1Yil 2 20/ + 2) — o). This gives

{ 1
2|il=J1Xi| + |i91Yi| > I2n/(k + 2)) — o(n) = 2n — o(n), since [2k + 2.

! 112 . i
Then IiE{Xi| +§'il;|1Yi| > n - o(n), while |iglxi| +

llJ Y;i l <n
i=1

Hence
@ vl < IiéllYil = o(n) and liglxi| =1 - o(n).
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Suppose, for some fixed € >0 and n large, that there exists an i such that |Xi|
n/(k +2) +en. Then |Xisa| <n/(k +2)—€en(0 <€’ <e), otherwise | X;|+|Xis2|
2n/(k + 2) + (€ — €’)n, contrary to (1) and (2). Likewise lXi+2| <nf(k+2)-€n
implies | Xi+4| 2n/(k +2) + £”n for some 0<e” <¢". Henceif for n large IXi | >
n/(k + 2) + en, then there exists a 8,0 <8 <&, such that |Xissj] 2 n/(k +2) + 8n for
§=024,.21-2 and |Xjsgjl S +2)-8n for j=1,35,..20 - 1, where all
indices i+ 2j are taken modulo . Since these inequalities are incompatible, it follows
that |X;| <n/(k+2) +o(m) forall 1<i<I Applying (1) gives | X2l =n/(k +2)—
o(n) forall1<i<n. Q

2
2

Lemma 4 For n sufficiently large (n 2 f2(k)) each of the bipartite graphs
[Xi.X;4+11,1 £i <1, contain a path P; on lvertices.

Proof First observe, using Lemma 3, that dx;(x) <n/(k + 2) + o(n) for each xeXi.

Therefore since {< 5k and

| J_Ql Xi | =n- o), the degree AU 2 e +2) ~oln) forall xeX;
i
Partition- Xj into two parts, Z; and X;— Z;, where Z; are those vertices of Xj
adjacent to at least n/(2(k + 2)) vertices of Xj4i.

Let G” denote the graph [X;,Xj] when j=#i,i— Li+ 1, and let it denote the graph
induced by X; when j=i. Suppose |Xi-Zi| = |X;|/2 2 n/2k +2)) - o(n). By
the pigeonhole principle at least | X; | /2(1 - 2)) 2 n/2(I - 2)(k + 2)) — o(n) vertices in
X;j—2Z; are adjacent (for some j#i— 1,i+ 1) toatleast n/(2(/.— 2)(k + 2)) — o(n)
vertices of Xj Therefore G” contains at least n2/(8(I-2)%(k + 2)2) — o(n) edges. By
Erdos-Gallai G’ contains, for n large, a path of any fixed length. This means when
i=j that vertex Xj4+; (or xj_;) and a pathon /-3 <5k —3 vertices in G’ gives a
Ci.2, a contradiction. Also if i # j, then let the even length path from xj to xj on C
contain m vertices. Since j#i- 1,i+1,m </, the m vertex path from xj to xj on
C; can be joined to a pathin G’ on /-2 - m vertices with a pair of disjoint edges, one
from xj and another from x;. But this again gives a C;_, a contradiction. Hence the
supposition that IXi—Zi| 2 |Xi|/2 is false and IZi| 2 |Xi|/2.

Since |Zil 2 IXi|/2 and each vertex of Z; is adjacent to at least n/(2(k + 2))
vertices of Xj+1, the graph [X;,X;j4+1] contains at least (n/2k + 2)) -
o(m))(n/(2(k +2))) edges. Thus Erdos-Gallai again applies and [Xj,Xj;+1] contains a
P; for n sufficiently large.
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It is easy to check that in all of the usages above (and also those of Lemmas 2 and 3)
o(n) depends only on n and k. Thus n sufficiently large, used throughout this proof,
means there is an fp(k) such that n>fp(k). O

Proposition 1 For n sufficiently large (n 2fa(k)) the cycle C; has no diagonals.

Proof If C; has adiagonal, then G contain an odd length cycle Ci,t <, such that all
but one of the edges of C; are also edges of C;. Choose any edge xiXj;; common to
C; and C;. By Lemma 4 [X;,Xj;;] contains an even length path on /—t—2 vertices.
Join the vertices x;j and x;4) to the appropriate end vertices of this /—t—2 vertex
path. But then the C; cycle can be expanded toa C;_» by replacing edge xix;+; by the
l—t—2 vertex path, a contradiction. O

Proposition 2 For n sufficiently large (n 2f2(k}) eachvertex x of G noton the
cycle C) has at most two adjacencies to vertices of the cycle.

Proof Suppose there exists an xe V(G) — V(C;) which is adjacent to at least three
vertices of C;. Then it is clear that G contains an odd length cycle Cgt <I, such that
C; has atleast t—2>1 edges in common with C;. Let x;xj4; be any common edge.
In the same way as was done in the last proof, Lemma 4 implies the existence of an even
length path on /- t—2 vertices in [Xj,Xj+1] which can replace edge xixij;+i. This
gives a Cj_p, a contradiction.

Proof of Theorem 1

Since G is nonbipartite let C; be an odd length cycle in the graph. It will be shown
that /2 k. Suppose /< k and consider the graph Gp induced by A, where A =
V(G) - V(C)). This graph G has at least (n—D(B(G)—D/22 (n— D(n/k +2)—1/2)
edges. By Theorem B there exists a fj(k) such that for n > fij(k) Ga contains the
complete bipartite graph KI'ELI'H Since G is 2-connected, by Menger's Theorem there

2 2

exist two vertex disjoint paths Px and Py connecting C; to the graph qu kT Let
27

x(y) be the vertex common to the path Px and C;(Py and Cj). Note that x and y
are joined by two paths on Cj, one with an even number of vertices and the other with
an odd number of vertices. Thus using one of these two paths it is easy to see that G

contains an odd length cycle C; using all vertices of Px U Py and all but at most one of
the vertices of ka'l lEag Then t2k+ 1 so G contains a C; for some odd integer
7°7

1,12 k.
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For the remainder of this proof let / be the smallest odd positive integer /= k, such

that G contains a C; Since it is to be shown that / =k or G = H, assume throughout

that I=2k +2.

Suppose I> 5k. Since [ is the length of the smallest odd cycle > k, each vertex x
on C; is adjacent to at most 2(k —2) vertices of the cycle, the 2(k —2) vertices closest
to x. Thus each vertex of the cycle is adjacent to at least 2n/(k +2) — (2k — 4) vertices
of G- C;. By Lemma 1 no vertex of G — C; has as many as five adjacencies to C;.
Hence there are at least //(2n/(k + 2) — 2k — 4) edges from C; to G — C; and there are
at most 4(n — ) from G — C;. It follows that 4n = I(2n/(k + 2) — 2k + 8) 2
Sk(2n/(k +'2) - 2k_ + 8), which leads to a contradiction for n large (n = f3(k)). Thus
we may assume [ < 5k, giving k+2 </<5k.

The reader can check that G now satisfies all of the conditions assumed uniformly
throughout the proofs of Lemmas 2, 3, 4 and Propositions 1 and 2. First apply
Proposition 1 to C;. For n sufficiently large each vertex of C; has at least
2n/(k +2) - 2 adjacencies to vertices of G — C;. Also by Proposition 2 for n
sufficiently large each vertex of G — C; has at most two adjacencies to C;. Therefore
I2n/(k +2)—2) £2(n- ). Since [2k + 2, a contradiction occurs unless /=k + 2 and
k + 2 divides n. Assume [ =k + 2 so that each vertex of C; has precisely
2n/(k +2)— 2 adjacencies to vertices of G — Cj, and each vertex of G — C; has
precisely two adjacencies to C;. It is shown under these conditions that G =H.

Consider G- C;. Note that xe V(G) - V(C;) implies

Xe LjXJ
j=1

If this were not the case, then x has adjacencies x; and xj on C;, where
|m - i) | #2. This givesa C, t odd (t <), using edges xxm,Xx;j and the appropriate
t—2 edges of the C;. But as was done in the proofs of Propositions 1 and 2, some
edge xixij;1 common to C; and C; can be replaced by a path with an appropriate
number of vertices from [X;,X;+1] together with two edges joining its ends to x; and
Xij+1, Tespectively, to give a Cj2, a contradiction. Thus

V(G) - V(IC) = 'LéXj-

Next for each i consider dg_c;(xi) =2n/(kr+ 2)-2= X4 + | Xie3]. Thus
|Xi;| = |Xijs3| foreach i,1 <i<! (addition modulo I). But [ is odd, so that this
implies lXiI = |Xi+1] for each 1 and thus IXiI =nfk+2)-1.

Finally observe that no vertex of Xj is adjacent to a vertex of Xj for j#i—1,i+ 1.
If this were not the case, an odd cycle Ct </, is again obtained which can be
lengthened to a C;2 by Lemma 4, a contradiction. Thus all adjacencies of X are to
vertices of Xi_; U Xi+1 U {Xi_1,Xi+1). Since |Xi; U Xis1 U {xi_1.xis1} | =
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2n/(k +2) and d(x) = 2n/(k + 2) for xeXj, it follows that each xeXj is adjacent to
precisely X U Xj41 U {Xi-1,Xi+1} forall 1 i</ This gives G=H.
Throughout the proof there are places where n must be larger than each of
f1(k),f2(k), and f3(k). Thus setting f(k) = mz}g&[ fik)} the theorem holds for all
1=

n 2 f(k).
Proof of Theorem 2

Since n is odd and G is regular, G is nonbipartite. The reader will recall that in
the proof of Theorem 1 the 2-connectedness is only used to show that G contains an
odd cycle C; for some /2> k. Thus this proof becomes a corollary to the proof of
Theorem 1 once it is established that G contains a C; for some odd integer 1/ > k.

Without loss of generality assume G is connected, otherwise one can simply restrict
attention to a component of G. Further if G is not 2-connected, consider an end block
B of G.

Since B is an end block, it has at most one cut vertex x. Consider an internal
vertex y of B (a non-cut-vertex). Since d(y) = 2n/(k + 2), dg(y) = 2n/(k + 2) so that
the block B has at least 2n/(k +2) + 1 vertices.

Suppose B fails to contain an odd cycle. Let B be bipartite with partite sets R and
S and with cut vertex x in S. Let m=dg_g(x) andnote 1 <m<2n/(k +2)-2. Set
r= |R| and s=|S]. Counting edges from R to S and then from S to R, it
follows that IE(B) l =1(2n/(k + 2)) =s(2n/(k + 2)) —m. Hence m= (s —1)2n/(k + 2))
so that 2n/(k +2) divides m, a contradiction. Therefore B contains some odd length
cycle C. ;

Assume |C| <k. Now dp(y)=2n/(k +2) forall y in B — {x} so that there

exists 0>0 such that for n large enough B has at least & |B|2 edges. Hence for n
large it follows from Theorem B that B — C contains a Km i But then since B is
7°2

2-connected, by Menger's theorem there exist two vertex disjoint paths Px and P
connecting C to the ka'l [k} In the same fashion as argued in the proof of Theorem I,
72 '

the graph CUPx UPyU ka'! K] contains an odd cycle C; with/ 2k + 1. Hence G
2°7

contains the desired odd cycle, completing the proof. U

Proof of Theorem 3

The graph L given in the first section (prior to the statement of the theorem) shows
that G can be different from H and does not need to contain a Ci.k odd, when k 2
11. Thus in what follows k always has one of the values 3, 5, 7, or 9.
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As in the proof of Theorem 2 it is assumed that G is connected. If any block B of
G contains a non-cut-vertex, then I B [ 22n/(k +2) + 1 and the same type of argument
as given in the proof of Theorem 2 applies. This argument implies, when B contains an
odd length cycle and n is large, that it contains an odd length cycle C; for some [=k.
If B (and hence G) contains any such odd length cycle, then the proof of Theorem 1
shows for n large that G contains the desired cycle Cy oris isomorphic to H. Hence
assume for the remainder of this proof that each block B of G which contains an odd
cycle has no non-cut-vertices. But G is nonbipartite so some block B contains an odd
cycle with each of its vertices cut-vertices. This means B is in fact an odd cycle. It will
be shown that this assumption leads to a contradiction.

Thus assume G has block B = C; = (x1,X2,...,x;,X1),] odd, !/ < k, in which each
xj(1 <i <) is a cut-vertex common to both B and some connected subgraph G; of G.
Note that G; is only assumed connected and is not in general itself a block. Since
ke {3, 5, 7, 9} there are several possible values for [ all of which are handled
similarly. Hence in what follows only the case when k =9 and /=3 will be
considered. The reader can check that the remaining possible values for k and [ are
handled in the same way as this special case.

As described above B = C3 = (x1,X2,X3,x1) and each Gj(1 £i<3) is a connected
graph with x; a cut-vertex and the only vertex in common to both C3 and Gj. There
are two ways in which a lower bound on |Gi| is determined. First assume G;j is
bipartite with partite sets R; and S and with x;eS;. Since d(y) 22n/11 forall y in
G,dg;(y) 2 2n/11 for y in Gj— {xj} and dg;(xi) =2n/11-2. Thus |Si| > 2n/11,
IR;| =2n/11 -2 sothat |G;i| 24n/11-2 forall i where G is bipartite. Secondly
if Gj contains an odd cycle, let C = (y1,y2,....y5,y¥1) be one of longest odd length.
Note that dg;(yi) 2 20/11 for yj# xj and dg;(xi) 2 2n/11 - 2. Itis easy to see (since
Gj contains no [+ 2 cycle) that |Gi| =2n/11 + 2n/11 —2 —1) for each Gj that
contains an odd cycle. Hence in all cases G| > | G | +] G| + ‘G3 | >n for n
large, a contradiction.

It has been shown that no block can be an odd cycle. Since G is nonbipartite, the
block that contains an odd cycle has a non-cut-vertex and thus an odd éycle C; for some
I 2k or G isisomorphic to H. This completes the proof of the theorem. O

The proof of the final result (Theorem 4) will not be given in great detail. The
reasons are that a detailed proof would be very lengthy and that the result itself can most
likely be improved. Thus simply a sketch of the ideas of the proof will be given.
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Proof of Theorem 4 (A Sketch)

Since the graph G is nonbipartite let C; be a shortest odd cycle in G and consider
G - C;. It is possible to show that G — C; contains a subgraph Hj of order at least
2(1-¢€)cn or a pair of vertex disjoint subgraphs H; and Hp, each of order less than
2(1 - €)cn, such that the following conditions hold. Each Hj is 8n-connected (§ =
o(c,e)) and each H; has minimum degree 2 (1 — €)cn.

If G — C; contains the pair of vertex disjoint subgraphs H; and Hj, then connect
H; and Hp By a pair of vertex disjoint paths with end vertices xj, Xp and yy, y;, with
X1,X2€ V(H1),y1,y2€ V(H3). These vertex disjoint paths exist, since G is
2-connected, and each can be assumed to each have length independent of n, since the
minimum degree in G is 2 cn. But dp;(x) 2 (1 —-€)cn and ]Hi l < 2(1-¢€)en so that
both Hj's are panconnected. Hence both x3,x; in H; and y;,yp in Hy are
connected by paths of all possible lengths greater than are equal to the distance between
them in Hj. This shows that G contains all cycles of length at least hj(c,e) and at
most 2(1 - g)cn.

Thus the only case that remains is when G — C; contains the subgraph H; of order
at least 2(1 —g)cn described above. It can be shown by proper application of Theorem
B that Hj contains a subgraph H or order at least 4(1 - €)cn/3 which is the disjoint
union of copies of complete bipartite graphs. Each of these bipartite graphs is a Ky for
some t=c’lnn where ¢’ =c’(e,c). The idea is to order the Kiss of H such that
consecutive pairs can be joined by two vertex disjoint paths. Also C; is joined by two
vertex disjoint paths to the first K¢y in H under the given order. Further all the paths
linking the C; to a K and consecutive pairs of Kis are to be such that they are
vertex disjoint. This linking is possible by using the &n-connectivity of H and the fact
that the linking paths are each of bounded length independent of n.

Finally the linking is done so that at least some Kgvinn,aVinn in each Kig, o fixed
and small, has none of its vertices in a linking path (they are protected from the linking
paths). Observe that there are at most (4(1 — €)cn)/(6¢’Inn) complete bipartite graphs
Kt in H, so that there are at most 2(4(1 — €)cn)/(6¢’Inn) vertices in the linking paths
and there are at most (4(1 — €)cn/(6¢’Inn))(2Vnn) protected vertices in the Kis. But
for n large 2(4(1 — €)cn)/(6¢’Inn) + (4(1 — €)cn)(2VInn)/(6¢'Inn) < Sn, the connectivity
of H, so that the linking described is possible. It is now a matter of checking that the
linkage described from the Cjthrough all the Kiss in H give odd cycles of all lengths
from hj{c,e) to 4(1 —e)n/3. A
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