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ABSTRACT 

The principal result of the paper.is that any iionbipar#te 2-connectedgraph on n 

vertices ofrriinimum degree 2:.2ni(k+..2r{ k afixedodd integer and n large) 

contains· a k-cycle or is isomorphic to the following g.raph H. The graph H 

has n vertices· ( with n divisible by k + 2 ) , and is obtained from the k + 2-

cycle by_ r_~placing each of its k + 2 vertices by. an independent set of order 

nl(k + 2;." 
.,/ 

1. Results 
Let ·o be' a nonbipartite ·graph of order n and minimum degree o. A natural 

extremal question is the··following: What is the smallest· value of o such that G 

contains a cycle ck offixed, odd length k? ·· .... , 

To address this question frrst·considertwo.spetiaFn-veltex ~~phs H and L. Let 

Gi = GiCAi, Bi), 1 ~ i ~ .· 3,.be three vert~x disjoint copies ·of the complete bipartite 

graph Kr(n-3)/6l[(n-3)161 where _:Ai and ·Bi ~enote th~ parti~e sets of Gi. Take a 

triangle C3 with vertices at, a2,·a:3 (~e vertices qf C3 ~~joint .from. each Gi) and for 

each 'i join vertex ai compietely to· the set ofve~ices ~AI- in Gi. Let L denote the 

graph that results. To ensure that· L. is an·"n-vertex. gr3:ph ~me can assume that n- 3 is 

a multiple of· 6~ For' n divisible by k. + 2 let H_ "·be the n-vertex graph obtained from 

a Ck+2 by replacing· each of its k + 2 vertices by an independent set of order 

n/(k + 2). 
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Since L has C3 as its only odd cycle and has minimum degree f (n - 3)/61 > 
2n/(k + 2) for k ~ 11 and n large, minimum degree 8 = 2n/(k + 2) is not sufficient to 

guarantee the existence of a Ck in G. If one insists that G be 2-connected as well as 

nonbipartite, then H shows 8 > 2n/(k + 2). In fact under these conditions G contains 

a Ck when 8 ~ 2n/(k + 2) unless G is·isomorphic to H. This is the.content of the 

principal result in the paper and is stated as the first theorem. 

Theorem 1 Let k ~ 3 be a fzxed odd posi~ive integer. If G is a 2-connected 

nonbipartite graph on n vertices of minimum degree~ 2nl(k + 2), then for n large 

(n ~f(k)) either G contains the k-cycle Ck or is isorrwrphic to H. 

What happens if G is regular? This has particular meaning when n is odd, since 

then the graph G must be nonbipartite. Also in. t~s case the 2-Connected condition ccan 

be dropped as is seen in the next theorem. 

Theorem 2 Let k ~ 3 be afzxed odd positive integer. If G is 2nl(k + 2)-regular 

on n vertices with n odd, then for n large (n ~ g(k))G contains a Ck or is 

isomorphic to H. 

As noted earlier the 2-connectedness of G assumed in Theorem 1 is essential, at 

least for k ~ 11. What happens if 3 ~ k ~ 9? Theorem 3 shows for these cases that the 

2-connectedness can be dropped. 

Theorem 3 Let G be a nonbipartite graph on n vertices of minimum 

degree~ 2nl(k + 2), where k is afzxed odd.integer. For n large (rz ~ l(k))G either is 

isomorphic to H or contains a Ck for kE {3, 5, 7, 9 }, but may fail to contain a Ck 

and also not be isomorphic to H when k ~ 11. 

Clearly if the conditions of Theorem 1 hold, then for n large G contains all C2t+ 1 

for k < 2t + 1 $; d, d any fixed number larger than k. Also if G' = K2n/(k+2),n-{2n/{ic+2)) 

and G is obtained from G' by adding an edge to its smaller part,,then G contains 

C2t+l for all 3 $; 2t + 1 ~ 4n/(k + 2)- 1 and no larger odd cycle. Thus it is reasonable 

to inquire whether the condition~ of Theorem 1 guarantee all odd cycles C2t;l·, for~k < 

2t + 1 $; 4n/(k + 2) -1. This is partially answered in Theorem 4. 

Theorem 4 Let G be a 2-connected nonbipartite graph of order n and ~{nimum 
degree ~en, 0 < c <f. For each e, 1 > e > 0, there exist functions hJ( C,e) and h2( C,e) 

such that for large n(n ~ h2( c,e))G contains the cycle C2t+1 for h1( c,e) ~ 2t + 1 ~ 

4(1- e)cn/3. '' · 
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From the discussion given above, letting c = 2/(k + 2), it is clear that the upper 

bound in the last result can at most be improved to 2(1- e)cn. Although this is most 

likely true the present proof does not seem to work beyond the bound given in the 

theorem. 

It is easy to give examples which .. show that the degree condition of Theorem 1 

cannot be replaced by a reasonable edge condition, even if the graph G contains a very 

small odd cycle. For example take a cycle Ck+2· and assume k is not too small, say k 

is fixed and odd with k ~ 15. Mark four consecutive vertices of the cycle x1, x2, X3, 

JC4. Join a new vertex x to precisely x1. and x2, and replace each of x3 and X4 by an 

independent set of order (n - k -· 1)/2. . The resulting graph has n vertices, 

approximately n2J4 edges, a C3, and no odd cycles strictly between 3 and k + 2. 

Throughout the paper notation will, unless otherwise specified, follow that found in 

standard texts. Before giving the proofs of the above results two well known extremal 

theorems are stated. These two theorems are used frequently in the proofs that follow. 

Theorem A [1] (Erdos, Gallai) A graph G on n vertices with at least 

[n(k- 2)+1]12 edges contains a path Pk on k vertices. Furthermore, when n = 
(k -1 )t the graph tKk-1 (the union of t vertex disjoint copies of Kk-J) contains the 

maximum number of edges in an n vertex graph with no Pk and is the unique such 

,:·graph. 

The second extremal result deals with the well known problem of Zarankiewicz. Let 

Z(n;t) denote the maximal size of a bipartite graph G(n,n) having both parts with n 

vertices such that G(n,n) contains no Kt,t· The bound given in the theorem bel?w is an 

improvement by Zmim [3] of the bound proved by Kovari, S6s, and Turan [2]. 

Theorem B [3] (Problem of Zarankiewicz) 

(1) If 2 :;r < n, then Z(n;t) < (t-1)11tn2-llt+ (t-1)n/2. 

(2) If a graph of order n does not contain a Kt,t then its size is at most 

((t -1)11tn2-llt + (t -1)t2n)t2. 

2. Proofs 

Before proving the main theorem several lemmas and propositions are needed. 

Lemma 1 Let Ct be a cycle of odd length in a graph G. If some vertex x not on 

the cycle C1 is. adjacent to at least five vertices of C1, then G contains a cycle Cp of 

odd lengthfor some p,t!S,~p < t. 

Proof Let Ct = (Xt.Xz, ... ,Xt.Xl) and assume x is adjacent to Xji,l ~ i ~ 5, where 

ji-1 < ji for 2 ~ i ~ 5. Set ji- ji-1 -- 1 =ai-l for 2 ~ i ~ 5 and t + j1 - j5- 1 =as. 
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Therefore ai-l counts the number of vertices which are strictly between Xji-l and Xji 

along the cycle from Xji-l to Xji(2 ~ i ~ 5) and as counts the number strictly between 
Xjs and Xj1. Without loss of generality assume a1 = max{ai) so that a1 ~ (t- 5)/5. 

~~~5 

Consider the following possibilities: (1) a1 is even, (2) a1 is odd and a2 or as is 

even, (3) ab a2, as are all odd and exactly one of a3 or ~ is even. Note that since 
5 

t= L ai+5 
i=l 

and t is odd, one of the three possibilities occur. If (1) occurs let Cp = 
(X,Xjl'Xh+l' ... ,xh,x). If (2) occurs assume without loss of generality that a2 is even 

and let Cp'= (x,xh,xh+b···,xh,x). If (3) occurs assume without loss of generality 

that ~ is even and let Cp = (X,Xj2,xh-l , ... ,xh ,xh-J, ... ,Xjs,Xjs-b····Xj4,x). It is easy 

to see that Cp as defined is such that p is odd with t/5 ~ p < t 0 

In each of the remaining lemmas and propositions that preceeds the proof of the main 

theorem, similar assumptions are needed. Thus the following conditions are assumed 

through the proof of Theorem 1. The graph G is of order n and minimal degree ~ 

2n/(k + 2) where k is a fixed odd integer~ 3. Also G contains an odd length cycle 

C[,l > k, but contains no cl-2· Let Ci = (XJ,X2, ... ,XJ,Xl), and for 1 ~ i < j ~ l, let 

Aij = {ve V(G)- V(Cz) I v is adjacent to both Xi and Xj}, Xi= {ve Ai-hi+l I v has 

precisely two adjacencies to CJ), and Yi = {veV(G)- V(Cz) I v is adjacent to precisely 

Xi on Cz}. For A and B disjoint subsets of V(G), [A,B] will denote the bipartite 

subgraph of G with parts A and B that contains all edges of G between A and B. 

Finally assume l ~ 5k for each of the lemmas and propositions in this section (but not in 

the proof of the theorem). 

Lemma 2 Let h(n) be any unbounded nonnegative function such that 

lim h(n)ln ~ 0. For all 1 ~ i, j ~I, i ¢ j, I i- j I ¢2, and n sufficiently large I Aij I ~ 
h(n) so that IAij I = o(n). 

Proof By assumption G contains a C1 but no C/-2, l is odd, and da-c1(x) ~ 

2n/(k + 2) -l for all xe V(G)- V(C/). Partition the vertices of Aij Into sets Bij and 

Cij such that dAi/x) ~ n/(k + 2) - l/2 for xe Bij and Cij = Aij- Bij- Note that 

d[Aij.V(G)-(AijUV(Cz))](x) ~ n/(k + 2) -l/2 for xe Cij- Suppose I Aij I > h(n). It will be 

shown that this supposition leads to a contradiction. Two cases are considered. 

Case 1: I Bij I > h(n)/2. Let m - 1 be the distance from Xi to Xj along the cycle C1. 

It will be shown for n large that Aij contains a path on l- m- 2 vertices. Connecting 

the end vertices of this path in Aij by disjoint edges to Xi and Xj gives the m vertex 

path on Cz a cycle Cz-2, a contradiction. Thus the proof for this case is completed by 
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showing that Aij contains a path on 5k- m- 2 ~1-m-2 vertices. Note that 1-m-

2 > 0, since 1 ~ k + 2 implies 1-m-2~ 1- ((1 + 1)/2)- 2 ~ (1- 5)/2 ~ (k- 3)/2 > 0. 

The last inequality (k- 3)/2 > 0 follows since k = 3, 1 = 5, and m = (1 + 1)/2 = 3 

means I i- j I = 2, contrary to the hypothesis of the lemma. But by definition of Bij 

each of its vertices are adjacent to at least n/(k + 2) -1/2 vertices of Aij so that IE(< 

Aij >)I > h(n)(n/(k + 2) - 1/2)/4 ~ n(Sk- m- 4)/2 ~ I Aij I (Sk- m- 4)/2 for n 

sufficiently large. Hence by Erdos-Gallai (Theorem A), Aij contains a path Psk-m-2 

on Sk- m - 2 vertices. 

Case 2: I Cij I > h(n)/2. Ob~erve that the number of vertices on the two paths from Xi 

to Xj on Ct have opposite parities. Thus choose the one with an even number, say m, 

vertices. Since I i - j I -::1: 2, m ~ 1- 3 which implies 1- m - 2 > 0. This time an even 

length path on 1-m-2 vertices is found in [Cij,V(G)- (Aij u V(Cz))] with its end 

vertices in Cij- This path on 1 - m - 2 vertices has its end vertices joined by disjoint 

edges to Xi and Xj so that a Cz-2 results (using the m vertex path from Xi to Xj on 

C1), a contradiction. 

The proof is thus completed by showing [Cij,V(G)- (Aij u V(Cz))] contains all 

odd length paths of length at most Sk- m- 2 with end vertices in [Cij,V(G)- (Aij u 

V(C/))], i.e. contains a path of length Sk- m- 1. But I E([Cij,V(G) - (Aij u 

V(CL))]) I > h(n)(n/(k + 2) -l/2)/2 ~ n(Sk- m- 3)/2 for n sufficiently large. Hence 

by Erdos-Gallai [Cij,V(G) - (Aij u V(Cz))] contains the desired length path, so G 

contains a c/-2· 0 

Lemma 3 For all 1 ~ i ~ l both nl(k + 2) - o(n) ~ /Xi/ ~ nl(k + 2) + o(~) and 

/Yi / ~ o(n). 

Proof By Lemma 2 I Aij I = o(n) for all i -:F j, I i- j I -::1:2 so that each vertex Xi on 

Cr is adjacent to at least 2n/(k + 2)- o(n) vertices of Xi-1 u Xi+1 u Yi, i.e. for each 

1 ~ i ~ 1 

(1) I Xi-11 + I Xi+11 + I Yi I ~ 2n/(k + 2)- o(n). This gives 

21 i~1Xi I + I i~1 Yi I ~ /(2n/(k + 2))- o(n) ~ 2n- o(n), since l ~ k + 2. 

Then j_Oxi I +-2
1 

j_UYi I ~ n-o(n), while j_uxi I + j_OYi I ~ n. 
~1 ~1 ~1 ~1 

Hence 

(2) I Yi I ~ I i~Yi I = o(n) and I i~1Xi I = n- o(n). 
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Suppose, for some fixed E > 0 and n large, that there exists an i such that I Xi I ~ 
n/(k + 2) +En. Then I Xi+21 S n/(k + 2)- E'n(O < E' <E), otherwise I Xi I+ I Xi+21 ~ 
2n/(k + 2) + (E- E')n, contrary to (1) and (2). Likewise I Xi+21 S n/(k + 2) - e'n 

implies I Xi+41 ~ n/(k + 2) + E"n for some 0 < E" < E'. Hence if for n large I Xi I ~ 
n/(k + 2) + En, then there exists a o, 0 < 0 < £, such that I Xi+2j I ~ n/(k + 2) + On for 

j = 0,2,4, ... ,21- 2 and I Xi+2j I S n/(k + 2)- on for j = 1,3,5, ... ,21- 1, where all 

indices i + 2j are taken modulo I. Since these inequalities are incompatible, it follows 

that I Xi I S n/(k + 2) + o(n) for all 1 SiS I. Applying (1) gives I Xi+21 ~ n/(k + 2)

o(n) for ~1 1 S i S n. D 

Lemma 4 For n sufficiently large (n ~ f2(k)) each of the bipartite graphs 

[Xi,Xi+J],l $ i ~I, contain a path Pt on I vertices. 

Proof First observe, using Lemma 3, that dxi(x) S n/(k + 2) + o(n) for each xe Xi. 

Therefore since I S 5k and 

I J·~ Xi I = n- o(n), the degree d~?'i(x) ~ n/(k + 2) - o(n) for all xe Xi. 
J;tl-1 

Partition Xi into two parts, Zi and Xi - Zi, where Zi are those vertices of Xi 

adjacent to at least n/(2(k + 2)) vertices of Xi+l· 

Let G' denote the graph [Xi,Xj] when j -:~:: i,i - 1,i + 1, and let it denote the graph 

induced by Xi when j = i. Suppose I Xi- Zi I ~ I Xi l12 ~ n/(2(k + 2))- o(n). By 

the pigeonhole principle at least I Xi 11(2(1- 2)) ~ n/(2(1- 2)(k + 2))- o(n) vertices in 

Xi- Zi are adjacent (for some j -:~:: i- 1,i + 1) to at least n/(2(1~- 2)(k + 2))- o(n) 

vertices of Xj. Therefore G' contains at least n2f(8(1- 2)2(k + 2)2)- o(n) edges. By 

Erdos-Gallai G' contains, for n large, a path of any fixed length. This means when 

i = j that vertex Xi+l (or Xi-1) and a path on 1- 3 S 5k- 3 vertices in G' gives a 

Ct-2. a contradiction. Also if i -:~:: j, then let the even length path from Xi to Xj on Cz 

contain m vertices. Since j -:~:: i - 1 ,i + 1 ,m < l, the m vertex path from Xi to Xj on 

Ct can be joined to a path in G' on 1- 2 - m vertices with a pair of disjoint edges, one 

from Xi and another from Xj- But this again gives a Ct-2. a contradiction. Hence the 

supposition that I Xi- Zi I ~ I Xi 112 is false and I Zi I ~ I Xi l/2. 

Since I Zi I ~ I Xi l12 and each vertex of Zi is adj~cent to at least n/(2(k + 2)) 

vertices of Xi+ I, the graph [Xi,Xi+d contains at least (n/(2{k + 2)) -

o(n))(n/(2(k + 2))) edges. Thus Erdos-Gallai again applies and [Xi,Xi+t] contains a 

Pt for n sufficiently large. 



Odd Cycles in Graphs of Given Minimum Degree 

It is easy to check that in all of the usages above (and also those of Lemmas 2 and 3) 

o(n) depends only on n and k. Thus n sufficiently large, used throughout this proof, 

means there is an f2(k) such that n ~ f2(k). 0 

Proposition 1 For n sufficiently large (n ~f2(k)) the cycle Cz has no diagonals. 

Proof If Cz has a diagonal, then G contain an odd length cycle Cbt <I, such that all 

but one of the edges of Ct are also edges of c,. Choose any edge XiXi+ 1 common to 

Ct and Cz. By Lemma 4 [Xi,Xi+l] contains an even length path on I-t- 2 vertices. 

Join the vertices Xi a1,1d Xi+l to the appropriate end vertices of this I-t- 2 vertex 

path. But then the Ct cycle can be expanded to a Cz-2 by replacing edge XiXi+ 1 by the 

I- t - 2 vertex path, a contradiction. 0 

Proposition 2 For n sufficiently large (n ~f2(k)) each vertex x of G not on the 

cycle Cz has at most two adjacencies to vertices of the cycle. 

Proof Suppose there exists an xe V(G)- V(Cz) which is adjacent to at least three 

vertices of Cz. Then it is clear that G contains an odd length cycle Ct,t <I, such that 

Ct has at least t - 2 ~ 1 edges in common with Cz. Let XiXi+ 1 be any common edge. 

In the same way as was done in the last proof, Lemma 4 implies the existence of an even 

length path on I-t- 2 vertices in [Xi,Xi+ll which can replace edge XiXi+l· This 

gives a Cz-2, a contradiction. 0 

Proof of Theorem 1 

Since G is nonbipartite let Cz be an odd length cycle in the graph. It will be: shown 

that I~ k. Suppose I< k and consider the graph GA induced by A, where A= 

V(G)- V(Cz). This graph GA has at least (n -l)(o(G) -1)/2 ~ (n -l)(n/(k + 2) -1/2) 

edges. By Theorem B there exists a f 1 (k) such that for n ~ f 1 (k) G A contains the 
complete bipartite graph ~lJ~l Since G is 2-connected, by Menger's Theorem there 

2 2 
exist two vertex disjoint paths Px and Py connecting Cz to the graph Kr-~1.~· Let 

2 2 

x(y) be the vertex common to the path Px and Cz (Py and Cz). Note that x and y 

are joined by two paths on Cz, one with an even number of vertices and the other with 

an odd number of vertices. Thus using one of these two paths it is easy to see that G 

contains an odd length cycle Ct using all vertices of Px u Py and all but at most one of 
the vertices of ~lJ~l· Then t ~ k + 1 so G contains a Cz for some odd integer 

2 2 

1,1 ~ k. 
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For the remainder of this proof let l be the smallest odd positive integer l ~ k, such 

that G contains a C1. Since it is to be shown that l = k or G = H, assume throughout 

that l ~ k + 2. 

Suppose l > 5k. Since l is the length of the smallest odd cycle ~ k, each vertex x 

on Ct is adjacent to at most 2(k- 2) vertices of the cycle, the 2(k- 2) vertices closest 

to x. Thus each vertex of the cycle is adjacent to at least 2n/(k + 2) - (2k- 4) ver~ices 

of G- C1. By Lemma 1 no vertex of G- Cz has as many as five adjacencies to Cz. 

Hence there are at least l/(2n/(k + 2)- 2k- 4) edges from Cz to G- Cz and there are 

at most 4(n- l) from G- C1. It follows that 4n ~ l(2n/(k + 2) - 2k + 8) ~ 

5k(2n/(k + 2)- 2k + 8), which leads to a contradiction for n large (n ~ f3(k)). Thus 

we may assume l ~ 5k, giving k + 2 ~ l ~ 5k. 

The reader can check that G now satisfies all of the conditions assumed uniformly 

throughout the proofs of Lemmas 2, 3, 4 and Propositions 1 and 2. First apply 

Proposition 1 to Cz. For n sufficiently large each vertex of Cz has at least 

2n/(k + 2)- 2 adjacencies to vertices of G - Cz. Also by Proposition 2 for n 

sufficiently large each vertex of G - Cz has at most two adjacencies to C1. Therefore 

l(2n/(k + 2)- 2) ~ 2(n -1). Since l ~ k + 2, a contradiction occurs unless l = k + 2 and 

k + 2 divides n. Assume l = k + 2 so that each vertex of Cz has precisely 

2n/(k + 2)- 2 adjacencies to vertices of G- C1, and each vertex of G- Cz has 

precisely two adjacencies to C1. It is shown under these conditions that G =H. 

Consider G- Cz. Note that xe V(G)- V(C/) implies 
I 

XE UXj· 
j=l 

If this were not the case, then x has adjacencies Xm and Kj on C1, where 

I m- j I -:;.: 2. This gives a Cb t odd (t < l), using edges xxm,XXj and the appropriate 

t- 2 edges of the C1. But as was done in the proofs of Propositions 1 and 2, some 

edge Xi Xi+ 1 common to Ct and Cz can be replaced by a path with an appropriate 

number of vertices from [Xi,Xi+1l together with two edges joining its ends to Xi and 

Xi+ 1, respectively, to give a Cz-2, a contradiction. Thus 
l 

V(G)- V(CJ) == UXj· 
j=l 

Next for each i consider do-c1(xi) = 2n/(k + 2)- 2 = I Xi-1 I + I Xi+31. Thus 

I Xi-ll = I Xi+31 for each i,1 ~ i ~ l (addition modulo l ). But l is odd, so that this 

implies I Xi I = I Xi+ll for each i and thus I Xi I == n/(k + 2)- 1. 

Finally observe that no vertex of Xi is adjacent to a vertex of Xj for j-:~-= i- 1,i + 1. 

If this were not the case, an odd cycle Ct,t < l, is again obtained which can be 

lengthened to a Cz-2 by Lemma 4, a contradiction. Thus all adjacencies of Xi are to 

vertices of Xi-1 u Xi+1 u {xi-l,Xi+d· Since I Xi-1 u Xi+l u {xi-1,Xi+d I = 
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2n/(k + 2) and d(x) ~ 2n/(k + 2) for xe Xi, it follows that each xe Xi is adjacent to 

precisely Xi-1 u Xi+ I u (Xi-hXi+l} for alll ~ i ~ l. This gives G =H. 

Throughout the proof there are places where n must be larger than each of 
ft(k),f2(k), and f3(k). Thus setting f(k) = ~ax(fi(k)} the theorem holds for all 

t=\3 

n ~ f(k). 

Proof of Theorem 2 

Since n is odd and G is regular, G is nonbipartite. The reader will recall that in 

the proof of Theorem 1 the 2-connectedness is only used to show that G contains an 

odd cycle Ct for some 1 ~ k. Thus this proof becomes a corollary to the proof of 

The9rem 1 once it is established that G contains a. Ct for some odd integer 1,1 ~ k. 

Without loss of generality assume G is connected, otherwise one can simply restrict 

attention to a component of G. Further if G is not 2-connected, consider an end block 

B of G. 

Since B is an end block, it has at most one cut vertex x. Consider an internal 

vertex y of B (a non-cut-vertex). Since d(y) ~ 2n/(k + 2), dB(Y) ~ 2n/(k + 2) so that 

the block B has at least 2n/(k + 2) + 1 vertices. 

Suppose B fails to contain an odd cycle. Let B be bipartite with partite sets R and 

S and with cut vertex x in S. Let m = dc-B(x) and note 1 ~ m ~ 2n/(k + 2) - 2. Set 

r = I R I and s = I S I . Counting edges from R to S and then from S to R, it 

follows that l E(B) l = r(2n/(k + 2)) = s(2n/(k + 2))- m. Hence m = (s- r)(2n/(k + 2)) 

so that 2n/(k + 2) divides m, a contradiction. Therefore B contains some odd length 

cycle C. ; 

Assume l C I < k. Now dB(Y) ~ 2n/(k + 2) for all y in B- (x} so that there 

exists o > 0 such that for n large enough B has at least o I B 12 edges. Hence for n 
large it follows from Theorem B that B - C contains a ~lJ~l· But then since B is 

2 2 

2-connected, by Menger's theorem there exist two vertex disjoint paths Px and PJ' 
connecting C to the Kr"~lJ~T In the same fashion as argued in the proof of Theorem l, 

2 2 . 

the graph C u Px u Py u ~lJ~l contains an odd cycle C1 with 1 ~ k + 1. Hence G 
2 2 

contains the desired odd cycle, completing the proof. 0 

Proof of Theorem 3 

The graph L given in the first section (prior to the statement of the theorem) shows 

that G can be different from H and does not need to contain a Ck,k odd, when k ~ 

11. Thus in what follows k always has one of the values 3, 5, 7, or 9. 
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As in the proof of Theorem 2 it is assumed that G is connected. If any block B of 

G contains a non-cut-vertex, then I B I ~ 2n/(k + 2) + 1 and the same type of argument 

as given in the proof of Theorem 2 applies. This argument implies, when B contains an 

odd length cycle and n is large, that it contains an odd length cycle C1 for some l ~ k. 

If B (and hence G) contains any such odd length cycle, then the proof of Theorem 1 

shows for n large that G contains the desired cycle Ck or is isomorphic to H. Hence 

assume for the remainder of this proof that each block B of G which contains an odd 

cycle has no non-cut-vertices. But G is nonbipartite so some block B contains an odd 

cycle with each of its vertices cut-vertices. This means B is in fact an odd cycle. It will 

be shown that this assumption leads to a contradiction. 

Thus assume G has block B::::: C1 = (xbx2, ... ,xz,xl),l odd, 1 < k, in which each 

Xi(l ~ i ~ l) is a cut-vertex common to both B and some connected sub graph Gi of G. 

Note that Gi is only assumed connected and is not in general itself a block. Since 

ke {3, 5, 7, 9} there are several possible values for 1 all of which are handled 

similarly. Hence in what follows only the case when k = 9 and 1 = 3 will be 

considered. The reader can check that the remaining possible values for k and 1 are 

handled in the same way as this special case. 

As described above B::::: C3 = (xhx2,x3,x1) and each Gi(l :::;; i:::;; 3) is a connected 

graph with Xi a cut-vertex and the only vertex in common to both C3 and Gi. There 

are two ways in which a lower bound on I Gi I is determined. First assume Gi is 

bipartite with partite sets Ri and Si and with XiE Si. Since d(y) ~ 2n/11 for all y in 

G,dGi(y) ~ 2n/ll for y in Gi- {xi} and doi(Xi) ~ 2n/ll- 2. Thus I sd ~ 2n/ll, 

I Ri I ~ 2n/11 - 2 so that I Gi I ~ 4n/11 - 2 for all i where Gi is bipartite. Secondly 

if Gi contains an odd cycle, let C = (YI,Y2,····Y1·YI) be one of lbngest odd length. 
Note that dai(Yi) ~ 2n/11 for Yi '::!= Xi and doi(xi) ~ 2n/11 - 2. It is easy to see (since 

Gi contains no 1 + 2 cycle) that I Gi I ~ 2n/11 + (2n/11- 2 -1) for each Gi that 

contains an odd cycle. Hence in all cases I G I ~ I G1l + I G2l + I G3l > n for n 

large, a contradiction. 

It has been shown that no block can be an odd cycle. Since G is nonbipartite, the 

block that contains an odd cycle has a non-cut-vertex and thus an odd cycle Cz for some 

1 ~ k or G is isomorphic to H. This completes the proof of the theorem. 0 

The proof of the final result (Theorem 4) will not be given in great detail. The 

reasons are that a detailed proof would be very lengthy and that the result itself can most 

likely be improved. Thus simply a sketch of the ideas of the proof will be given. 



Odd Cycles in Graphs of Given Minimum Degree 

Proof of Theorem 4 (A Sketch) 

Since the graph G is nonbipartite let Ct be a shortest odd cycle in G and consider 

G- Ct. It is possible to show that G- Ct contains a subgraph H1 of order at least 

2(1- £)en or a pair of vertex disjoint subgraphs Ht and H2, each of order less than 

2(1- e)cn, such that the following conditions hold. Each Hi is on-connected (o = 
o(c,£)) and each Hi has minimum degree~ (1 - e)cn. 

If G- Ct contains the pair of vertex disjoint sub graphs H1 and H2, then connect 

Ht and H2 by a pair of vertex disjoint paths with end vertices xh x2 and y17 Y2· with 

x1,x2e V(Hl)·YbY2E V(H2). These vertex disjoint paths exist, since G is 

2-connected, and each can be assumed to each have length independent of n, since the 
minimum degree in G is~ en. But dHi(x) ~ (1- e)cn and I Hi I < 2(1- E)cn so that 

both Hi's are panconnected. Hence both x17x2 in H1 and Yt.Y2 in H2 are 

connected by paths of all possible lengths greater than are equal to the distance between 

them in Hi. This shows that G contains all cycles of length at least ht(c,£) and at 

most 2( 1 - £)en. 

Thus the only case that remains is when G- Ct contains the subgraph H1 of order 
at least 2(1 -£)en described above. It can be shown by proper application of Theorem 

B that Ht contains a subgraph H or order at least 4(1- E)cn/3 which is the disjoint 

union of copies of complete bipartite graphs. Each of these bipartite graphs is a Kt,t for 

some t ~ c'/nn where c' = c'(e,c). The idea is to order the Kf.ts of H such that 

consecutive pairs can be joined by two vertex disjoint paths. Also Cz is joined by two 

vertex disjoint paths to the first Kt,t in H under the given order. Further all the paths 

linking the Cz to a Kt,t and consecutive pairs of Kl,ts are to be such that :they are 

vertex disjoint. This linking is possible by using the on-connectivity of H and the fact 

that the linking paths are each of bounded length independent of n. 

Finally the linking is done so that at least some Ka-.["fu;,a...["fu;; in each Kt,h a. fixed 

and small, has none of its vertices in a linking path (they are protected from the linking 

paths). Observe that there are at most (4(1- E)cn)/(6c'Inn) complete bipartite graphs 

Kt,t in H, so that there are at most 2(4(1- £)cn)/(6c'/nn) vertices in the linking paths 

and there are at most (4(1 - £)cn/(6c'/nn))(2...JTrffi) protected vertices in the Kf.ts. But 

for n large 2(4(1- e)cn)/(6c'Inn) + (4(1- £)cn)(2..J7lln)/(6c'Znn) <on, the connectivity 

of H, so that the linking described is possible. It is now a matter of checking that the 

linkage described from the Ct through all the Kf.ts in H give odd cycles of all lengths 

from ht(c,E) to 4(1- e)n/3. 0 
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