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A graph is 2K2-free if it does not contain an independent pair of edges as an induced 
subgraph. We show that if G is 2K2-free and has maximum degree L1(G) = D, then G has at 
most 5D2/4 edges if Dis even. If Dis odd, this bound can be improved to (5D 2

- 2D + 1)/4. 
The extremal graphs are unique. 

1. Introduction 

We call a graph 2K2-free if it is connected and does not contain two 
independent edges as an induced subgraph. The assumption of connectedness in 
this definition only serves to eliminate isolated vertices. Wagon [6] proved that 
x(G) ~ w(G)[w(G) + 1]/2 if G is 2Krfree where x(G) and w(G) denote 
respectively the chromatic number and maximum clique size of G. Further 
properties of 2K2-free graphs have been studied in [1, 3, 4 and,5]. 

2K2-free graphs also arise in the theory of perfect graphs. For example, split 
graphs and threshold graphs are 2K2-free (see [2]). On the other hand, the strong 
perfect graph conjecture is open for the class of 2K2-free graphs. 

In this paper we solve the following extremal problem posed by Bermond et al. 
in [7] and also by Nesetril and Erdos: What is the maximum number of edges in a 
2K2-free graph with maximum degree D? Our principal result asserts that the 
extremal graph is unique for all D and can be obtained from .the five-cycle by 
multiplying its vertices. The extremal problem solved here is a special case of a 
more general conjecture of Erdos and Nesetfil which can be viewed as a variation 
on Vizing's Theorem: Two edges are said to be strongly independent if there is no 
edge incident to both edges. They conjecture that if L1( G) = D, the edge set of G 
can be partitioned into at most 5D2 I 4 color classes in such a way that any two 
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edges in the same color class are strongly independent. It is not difficult to see 
that 2D2 colors suffices. Our result in this paper provides a lower bound 
of 5D2/4 by showing certain graphs require 5D2/4 colors. 

The proof of our result is based on some structural properties of 2K2-free 
graphs. The most general of these properties are collected in Section 2. The 
special properties concerning 2K2-free graphs with clique size 3 or 4 are 
established as-·claims within the proof of the theorem in Section 3. Some of the 
proof techniques we employ are similar to those used in [5]. 

Throughout the paper, V(G) and E(G) denote the vertex set and edge set of 
the graph G. For a vertex x E V( G), N(x) is the set of neighbors of x. For disjoint 
subsets A, B of V(G) we let [A, B] denote the bipartite subgraph of G whose 
vertex ,set is A U B and whose edge set consists of those edges in G with one 
endpoint in A and the other in B. For a vertex x E V(G) and a positive integer n, 
we say H is obtained from G by multiplying x by n when H is formed by replacing 
the vertex x by a stable (independent) set of n vertices each having the same 
neighbors as x. 

2. Structural properties of 2K 2-free graphs 

We will first prove several structural properties of 2K2-free graphs which turn 
out to be very useful in the proof of the main theorem. 

Theorem 1. Let G be a 2K2-free graph, A be a stable set of G, and 
B = V(G)- A. There exist x E B such that N(x) meets all edges of [A, B]. 

Proof. Consider the bipartite graph G' determined by the edges of [A, B]. We 
choose x E B such that x has maximum degree in G'. Consider N(x) in G and set 
A'== N(x) nA, B' = N(x) n B. Assume that x does not satisfy the conclusion of 
our theorem, i.e. assume that N(x) n {p, q} = 0 for some pq E E( G), p E A, 
q E B. For any rEA;, rp fJ E(G) because A is stable, xp" xq fJ E(G) by the 
definition of A' and B'. Since G is 2K2-free, rq E E(G), and it follows in G' that 
the degree of q is larger than the degree of x in G ', contradicting the choice of 
X. D 

Corollary. If G is a bipartite 2K2-free graph then both color olasses of G contain 
vertices adjacent to all vertices of the other color class of G. 

Theorem 2. Assume that G is 2K2-free, w(G) = 2 and G is not bipartite. Then G 
can be obtained from a five-cycle by vertex multiplication. 

Proof. Since G is 2K2-free, minimum-length odd cycles of G must be of length 5. 
If x 11 x 2 , x 3 , x 4 , x 5 are the vertices of a five-cycle C of G, let A; denote the set of 
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vertices in G adjacent to X; and X;+ 2 for each i = 1, 2, ... , 5 (cyclically). Clearly 
the sets A; are stable and form a partition of V(G). From this, it follows easily 
that G can be obtained from C by multiplying x; by lA;!. 0 

For a subset X c V(G), we let Dom(X) denote the set of vertices dominated 
by X, i.e. Dom(X) =XU {y E V(G); there exists x EX such that xy E E(G)}. 
The set X is said to be dominating if Dom(X) = V(G). A dominating clique of a 
graph G is a dominating set which induces a complete subgraph in G. The 
following result is a variant of a theorem of El-Zahar and Erdos [1]. 

Theorem 3. If G is 2K2-free and w(G) ~ 3, then G has a dominating clique of size 
w(G). 

Proof. Let w( G) = p ~ 3. Among all the p-element cliques in G, choose one, say 
K = {x1 , x2, ... , xP} so that t = IV(G)- Dom(K)I is minimum. If t = 0, then K 
is dominating, so we may assume t > 0. Let Z = V( G)- Dom(K). Since p ~ 2, Z 
is a stable set. For each i = 1, 2, ... , p, let Y: = {y E Dom(K): yxj E E( G) if and 
only if i = j}. Since p ~ 3, each Y: is a stable set. 

Choose an arbitrary element z0 E Z and let y0 E Dom(K) be any neighbor of z0 . 

Since G is 2K2-free and p is maximal, there is a unique integer i ~ p so that 
y0xj E E(G) if and only if i =I= j. Therefore K' = (K- {xJ) U {y0} is a clique of size 
p. Furthermore, any vertex dominated by K is dominated by K' except possibly 
those vertices in the set Y; = {y E Y: :y0 y ft E(G)}. Since z0 E Dom(K'), the 
minimality of t requires that Y; =I= 0. Let y1 E Y;. Then the edges z0y0 and x;y1 

force z0y1 E E(G). Choose distinct j, k E {1, 2, ... , p}- {i}. Then z0y1 and xjxk 
are independent edges. The contradiction completes the proof. 0 

3. The extremal result 

The main result of this section is the determination of the maximum number of 
edges in a 2K2-free graph with a given maximum degree. It is convenient to 
introduce the notation C5(D) for the following graph. If D is even, then C5(D) 
denotes the graph obtained from the five cycle C5 by multplying each vertex of C5 

by D /2. If D is odd then C5(D) denotes the graph obtained from C5 by 
multiplying two consecutive vertices by (D + 1)/2 and the other three vertices by 
(D -1)/2. Let f(D) = IE(G)I denote the number of edges of C5(D). Obviously 
f(D) = 5D2/4 if Dis even and f(D) = (5D 2

- 2D + 1)/4 if Dis odd. 

Theorem 4. Let D ~ 2. If G is 2K2-free and the maximum degree of G is at most 
D, then IE(G)I ~f(D). Equality holds if and only if G is isomorphic to C5(D). 

Actually, we will prove a more technical result from which Theorem 4 is readily 
extracted. 
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Theorem 5. Let D;?!: 2 and suppose that G is a 2K2-free graph with maximum 
degree at most D. 

(i) If G is bipartite, then IE(G)I ~ D 2. Equality holds if and only if G is the 
complete bipartite graph Kv,D· 

(ii) If w(G) = 2 and G is not bipartite, then IE(G)I =!S.f(D). Equality holds if 
and only if G is isomorphic to C5(D). 

(iii) If w(G);?!: 5 then IE(G)I :!S. (5D 2- 5D- 20)/4 <f(D). 
(iv) If w(G) = 4 then IE( G) I :!S. (5D 2 - 3D -10)/4 <f(D). 
(v) If w(G) = 3 then IE(G)I <f(D). 

Proof of (i). The statement follows immediately from the Corollary to Theorem 
1. D 

Proof of (ii). From Theorem 2, we know that G is obtained from C5 by vertex 
multiplications. Assume that C5 contains vertices x1 , x 2, x 3 , x 4 , x 5 and G is 
obtained from C5 by multiplying each xi by ai. It is elementary to show that 
~T= 1 aiai+l =!S.f(D) under the condition ai + ai+2 :!S. D (subscript arithmetic is taken 
modulo 5) and that equality holds only for C5(D). D 

We will find it convenient to introduce some notation before proceeding with 
the proofs of the remaining parts. If w(G) = p;?!: 3, then we can choose a 
dominating clique K = {xv x 2, ... , xp} in G using Theorem 3. Then let 
Y = V(G)- K. If Sis a nonempty subset of {1, 2, ... , p }, we denote by A(S) 
the set of vertices defined by A(S) = {y E Y:yxi E E(G) if and only if i E S}. The 
family {A(S): S ~ {1, 2, ... , p }, S =F 0} is a partition of Y. For a set S = 

{i1 , i2, ... , ik} c {1, 2, ... , p}, we will also write A(iv i2, ... , ik) for A(S). 
When Yv y2 E Y and y1y2 E E (G), we define the weight of the edge y1y2, 

denoted w(yly2), as IN{yl) n Kl + IN{y2) n Kl. The following claim follows 
immediately from the fact that G is 2K2-free. 

Claim 0. If y1 , Y2 E Y and y1y2 E E(G), then w(y1y2);?!: p- 1. 

Proof of (iii). There are at most (~) + p(D- p + 1) edges incident to the vertices 
of K. Moreover, since every xi E V(K) has at most D- p + 1 neighbors in Y, for 
the edges contained in Y, we obtain 

2: w(e) ~p(D- p + 1)(D -1). (*) 
eeY 

By Claim 1, w(e);?!: p -1 for all e E Y, so that 

IE( G) I :!S. (p) + p(D- p + 1) + _E_ (D- p + 1)(D- 1) 
2 p-1 

= _1!.__ D2- _1!.__ D- p(p- 3). 
p-1 p-1 2 
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For p ;:;:=: 5, this upper bound on the. number of edges in G is a decreasing function 
of p, which completes the proof of (iii). 0 

Proof of (iv). If p = 4, inequality (*) above implies IE( G) I~ 4D- 6 + (D-
1)(D - 3) +! IE3I =! IE3I + d2

- 3 where E 3 is the set of edges e c Y having 
weight three. Let Aj denote the subset of Y constiting of those vertices with 
exactly j neighbors inK. Then if e is an edge in £ 3, then one end point of e is in 
A 1 and the other is in A 2. Furthermore the set A 1 is easily seen to be a stable set. 
By applying Theorem 1 to the sub graph of G induced by A 1 U A 2, there exists a 
vertex y E A 2 so that N(y) meets all edges in £ 3 =[A\ A 2

]. Now y has at most 
D- 2 neighbors in Y and each of these meets at most D -1 edges in £ 3. We 
conclud~ that IE3I ~ (D -1)(D- 2). Thus E(G) ~ (5D 2

- 3D -10)/4. 0 

Proof of (v). The proof for this case is somewhat complicated. The argument is 
by contradiction. We assume that IE(G)I ;:;:=: f(D). Then IV( G) I;:;:=: 2f(D)/ D. Since 
p=3, we know that Y=A(12)UA(13)UA(23)UA(1)UA(2)UA(3). We will 
establish a series of claims which yield the proof. 

Claim 1. IYI > (5D- 8)/2. 

Proof. Suppose not. If Dis even, then IYI ~ (5D- 8)/2 implies 

IE(G)I ~ IYI (D -1)/2 + 3 + 3(D- 2) ~ (5D- 8)(D -1)/4 +3D- 3 

= (5D 2
- D- 4)/4 < 5D2 /4 = f(D). 

If Dis odd, then IYI ~ (5D- 9)/2, so IE(G)I ~ (5D 2
- 2D- 3)/4 <f(D). 0 

Claim 2. IA(1)1 > IA(23)1 + D /2, IA(2)1 > IA(13)1 + D /2 and IA(3)1 > IA(12)1 + 
D/2. 

Proof. IYI = IN(x2) n Yl + IN(x3) n Yl + IA(1)1- IA(23)1 ~ 2(D- 2) + IIA(1)1-
IA(23)1. Since IYI > (5D- 8)/2, we conclude IA(1)1 > IA(23)1 + D/2. The other 
inequalities follow by symmetry. 0 

Let A.1 = IA(1)1 + IA(2)1 + IA(3)1 and A.2 = 1A(12)1 + IA(13)1 + IA(23)1. Then 
IYI = A1 + A2 and 3D- 6 ;:;:=: A1 + A2. 

Claim 3. A.2 < (D- 4)/2. 

Proof. Suppose A.2 ;:;:=: (D- 4)/2. Then 3D- 6 ;:;:=: A.1 + 2A.2 = A.1 + A.2 + A2 ;:;:=: IYI + 
(D- 4)/2. Thus IYI ~ (5D- 8)/2, contradicting Claim 1. 0 

Claim 4. A(1) U A(2) U A(3) is not a stable set. 
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Proof. If A(1) U A(2) U A(3) is a stable set, then IE(G)I:::;; 3D- 3 + A.2(D- 2) < 
3D - 3 + (D - 4)(D - 2)/2 ::=;f(D). 0 

Claim 5. A(1) U A(2), A(2) U A(3), and A(1) U A(3) are not stable sets. 

Proof. Suppose A(1) U A(2) is a stable set. By Claim 4, we know there is an edge 
in A(1) U A(2) U A(3), so we may assume there is an edge xz where x E A(1) and 
z E A(3). Now let y be an arbitrary vertex in A(2). The edges xz and x 2y show 
yz E E(G). Now let x' EA(1). Then the edges x'x1 and zy show x'z E E(G). Thus 
z is adjacent to every vertex in A(1) UA(2). This is impossible since IA(1) U 
A(2)1 > D by Claim 2. 0 

Claim 6. Let i, j be distinct integers from {1, 2, 3}. Then one of the following 
statements holds. 

(i) There exists x E A(i) with xy E E( G) for every y E A(i). 
(ii) There exists y E A(i) with xy ft E( G) for every x E A(i). 

Proof. Assume statement (ii) does not hold. Choose x E A(i) so that IN(x) n 
A(i)l is maximum. If x has a nonneighbor y E A(i), choose a neighbor x* of y 
from A(i). Then x* has more neighbors in A(i) then x. 0 

Let i, j be distinct elements of {1, 2, 3}. We say A(i) and A(i) are linked if 
there exists an element x E A(i) adjacent to all points in A(i) and an element 
y E A(i) adjacent to all points in A(i). 

Claim 7. There exist distinct integers i, j E {1, 2, 3} so that A(i) and A(i) are 
linked. 

Proof. If A(1) and A(2) are not linked, we may assume without loss of generality 
that there exists Yo E A(2) so that xy0 ft E( G) for every x E A(1 ). By Claim 5, there 
exists an edge x 0 z0 between A(1) and A(3). Thus z0y0 E E(G). Therefore 
z0xEE(G) for every xEA(1). By Claim 2 we can choose y1 EA(2) so that 
z0y1 ft E( G). Then y1x E E( G) for every x E A(1). If A(1) and A(3) are not linked, 
then there exists z1 EA(3) with z1x ft E(G) for every x EA(1). The edge x 0y1 

shows y1z1 E E(G). The edges y0 z0 and y1z1 require y0z1 E E(G). But this implies 
that y0z1 and x 1x 0 are independent. 0 

We are now ready to obtain the final contradiction. By Claim 7, we may 
assume that A(1) and A(2) are linked. We choose a0 E A(1), b0 E A(2) so that a0 b 
and ab0 are edges in G for every bE A(2) and every a E A(1). Now every vertex 
of Y is adjacent to either a0 or b0 except possibly those points in A(12). This 
implies that IYI:::;; 2(D -1) + IA(12)1. The inequality IYI > (SD- 8)/2 then re-
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quires IA(12)1 > (D - 4)/2. This contradicts Claim 3 since IA(12)1 ~ A.2 < (D -
4)/2. With this observation, the proof of our theorem is complete. D 

4. Concluding remarks 

The problem we dealt with here can be viewed as a variation of Turan's 
Theorem. Namely, for a given forbidden graph H, it is of interest to determine 
the maximum number of edges in a graph G on n vertices which does not contain 
H as an induced subgraph subject to certain degree constraints on G. Turan's 
Theorem considers the case of Has cliques. In this paper we investigate the case 
of Has 2K2 • To consider the corresponding problem for a general class of H, it is 
essential to establish a clear understanding of the structural properties for graphs 
which does not contain H as an induced subgraph. This is indeed a fundamental 
problem in graph theory where more research is needed. 

Another direction is along the line of the general conjecture of Erdos and 
Nesetfil of coloring the edges of a graph such that two monochromatic edges are 
strongly independent. Such an edge coloring will be called a strong edge coloring. 
Their conjecture that 5D2/4 color suffices for graphs of maximum degree D is an 
intriguing problem. Clearly more ideas are required to attack this problem 
successfully. The problem of strong edge-coloring for general graphs opens up a 
wide range of problems of edge coloring which we will not discuss here. 
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