Discrete Mathematics 85 (1990) 103–104 North-Holland

NOTE

A SIMPLE LOWER BOUND ON EDGE COVERINGS BY CLIQUES

A. GYÁRFÁS

Computer and Automation Institute of the Hungarian Academy of Sciences, Budapest, Hungary

Received 21 January 1987 Revised 7 October 1988

Assume that G = G(V, E) is an undirected graph with vertex set V and edge set E. A clique of G is a complete subgraph. An edge clique-covering is a family of cliques of G which cover all edges of G. The edge clique-cover number, $\theta_e(G)$, is the minimum number of cliques in an edge clique-cover of G. For results and applications of the edge clique-cover number see [1-4].

Observe that $\theta_{e}(G)$ does not change if isolated vertices are removed from G. We give another obvious operation on G which does not effect $\theta_{e}(G)$. Call vertices x, y equivalent if $xy \in E$ and for all vertices z different from x and y, $zx \in E$ if and only if $zy \in E$. If x and y are equivalent vertices of G and xy is not an isolated edge then $\theta_{e}(G) = \theta_{e}(G')$, where G' denotes the graph we get from G by identifying x and y. Due to these observations it is enough to determine or estimate $\theta_{e}(G)$ for graphs without isolated or equivalent vertices.

Theorem. If a graph G has n vertices and G contains neither isolated vertices nor equivalent vertices then $\theta_e(G) \ge \log_2(n+1)$.

Proof. Assume that A_1, A_2, \ldots, A_m is an edge clique-cover of G. Let I(x) denote the index-set of the A's covering the edges incident to x. Since G has no isolated vertices, I(x) is non-empty for all $x \in V$. We claim that $I(x) \neq I(y)$ if $x, y \in V$ and $x \neq y$. If $xy \notin E$ then the claim is true since I(x) and I(y) are disjoint sets. If $xy \in E$ then the non-equivalence of x and y implies that there exists a vertex $z \in V$ adjacent to exactly one of the vertices x, y. We may clearly assume that $zx \in E$ and $zy \notin E$. Let A_i be a clique covering xz, then $i \in I(x)$ but $i \notin I(y)$ and the claim is proved. We conclude that the sets I(x) are distinct non-empty subsets of $\{1, 2, \ldots, m\}$. Thus $|V(G)| \leq 2^m - 1$ and the theorem is proved. \Box

For certain graphs G the lower bound in the theorem assimptotically gives $\theta_e(G)$. For instance, if G is the complement of a factor (cocktail party graph) or if G is the complement of a cycle, $\theta_e(G) = \log_2(n) + o(\log_2(n))$ as shown in [3] and [2]. It is also true that the theorem is sharp for infinitely many n. Assume that $n = 2^k$ and let K be a complete graph on n vertices. It is easy to define subsets A_1, A_2, \ldots, A_k of V(K) separating V(K), i.e. for all vertex pairs x, y of V(K),

0012-365X/90/\$03.50 (C) 1990 - Elsevier Science Publishers B.V. (North-Holland)

A. Gyárfás

there exists A_i such that $|A_i \cap \{x, y\}| = 1$. (Let V(K) be the set of 0–1 sequences of length k. For i = 1, 2, ..., k, let A_i contain the elements of V(K) having 0 in the *i*th position). Define the graph G by adding new vertices $v_1, v_2, ..., v_k$ to V(K) and making v_i to be adjacent to all vertices of A_i for i = 1, 2, ..., k. The graph G has neither isolated vertices nor equivalent vertices and

$$|V(G)| = 2^k + k, \qquad \theta_{e}(G) \le k + 1 = \lfloor \log_2(2^k + k + 1) \rfloor.$$

References

- N. Alon, Covering graphs by the minimum number of equivalence relations, Combinatorica 6 (3) (1986) 201-206.
- [2] D. de Caen, D.A. Gregory and N.J. Pullman, Clique coverings of complements of paths and cycles, Ann. Discrete Math. 27 (1985) 257-268.
- [3] D.A. Gregroy and N.J. Pullman, On a clique covering problem of Orlin, Discrete Math. 41 (1982) 97–99.
- [4] F.S. Roberts, Applications of edge coverings by cliques, Discrete Appl. Math. 10 (1985) 93-109.

,