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Given a graph G with n vertices and m edges, how many edges must be in the largest 
chordal subgraph of G? For m=n2/4+ 1, the answer is 3n/2 -1. For m= n2/3, it is 2n- 3. For 
m= n2/3 + 1, it is at least 7n/3- 6 and at most 8n/3- 4. Similar questions are studied, with less 
co~plete. results, for threshold graphs, interval graphs, and the stars on edges, triangles, and K4's. 

Introduction 

Let G* be the class of graphs with n vertices and m edges, and H* a class 
of graphs. Then there is a number f such that every member of G* contains a member 
of H* with at least f edges, and there is a member of G* containing no member of 
H* with more than f edges. In practice f may be hard to find and we bound it 
by finding a lower bound h (there must be a member of H* with at least h edges) 
and an upper bound j; (there need not be a member of H* with more than / 2 edges). 

The questions above are only interesting if the graphs contain sufficiently 
many edges. The complete bipartite graph Kn12,n12 , for example, has no triangles 
and thus contains no chordal graph larger than a tree (n-1 edges), no interval graph 
larger than an alternating path (n-1 edges) and no threshold graph larger than a· 
star (n/2 edges). Most of the paper is devoted to the study of graphs with n vertices 
and at least n2/4 + 1 edges, that is, graphs that must contain at least one triangle 
(dense graphs). The principal results we obtain in Section 4 may be loosely summari­
zed by (all graphs are assumed dense): 

Every graph has a threshold graph of size 
There is a graph with no threshold graph of size 
Every graph has a star on. an edge of size 
There is a graph with no star on an edge of size 
Every graph has an interval graph of size 
Every graph has a star on triangle of size 

>(1 +c)n/2. 
>(1 +5)nj2. 
=n. 
>n. 
>(1 +c)n. 
>(1 +c)n. 
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There is a graph with no star on a triangle of size>-(3/2-c)n. 
There is a graph with no interval graph of size > 3nj2- I. 
Every graph has a chordal graph of size =3nj2-l (n even). 
There is a graph with no chordal graph of size > 3nj2 -1. 

The various constants c, in the main, remain to be determined. Most of these bounds 
fall into a natural order. However, the numbers for interval graphs and stars on a 
triangle seem less well determined than the others, and it is by no means clear that 
the four related entries are in the correct order. (It might be possible to raise each 
lower bound or lower each upper bound.) 

In Section 5 we show that the lower and upper bounds for chordal subgraphs 
of graphs with n2/3 edges are both 2n-3 edges, and this is an upper bound for in­
terval graphs. In Section 6 we study graphs with n2j3 + 1 edges and find a lower 
bound of 1nj3-6 and an upper bound of 8nj3-4 for chordal graphs. 

This paper was motivated by two sources, [4] and [5]. Several of the authors 
were writing a paper [5] concerning coverings and partitions of graphs by chordal 
and threshold graphs. This required developing tools to find large chordal and 
threshold graphs in a general graph. One tool we used heavily was the paper [4] 
in which Erdos and Laskar seek the largest chordal graph in various graphs, in 
particular in a graph with n2/4+1 edges. We found the tools and examples they 
suggested extremely valuable; however, we found an error in one of their upper 
bounds and were able to improve a lower bound. (5] also contains some results 
related to those here, where the object is to find large graphs of some class (e.g. 
threshold graphs) within graphs of another class (e.g. chordal graphs). 

1. Definitions 

All graphs in this paper are finite undirected graphs without parallel edges. 
The size of a graph is the number of edges. For any definitions omitted here see 
Golumbic [6]. 

If {A, B, ... , K} is a set of vertices of G, this set of vertices and the set of all 
edges of G connecting any two of them is the subgraph induced by this set. 

A graph is chordal (or often triangulated; Chapter 4 of [6]) if every cycle of 
size greater than 3 has a chord (no set of more than 3 vertices induces a cycle). A 
graph is interval (Chapter 8 of[6l) if there is for each vertex A ofG an interval (a A, bA) 
of the real line, such that two vertices A and B of G are connected by an edge if and 
only if the corresponding intervals intersect in the real line. A graph G is threshold 
(Chapter 10 of [6], also [1] and [7]) if there exists a way of labelling each vertex A of 
G with a nonnegative integer f(A) and there is another nonnegative integer t (the 
threshold) such that a set of vertices of G induces at least one edge if and only if 
the sum of their labels exceeds t. 

In constructing threshold, interval and chordal graphs we will make use of 
well-known examples and add certain edges or stars. Thus it will be useful to discuss, 
as classes of graphs, the star on an edge and the star on a triangle. By the star of a 
vertex A we mean the set of all vertices joined to A by an edge together with A, 
and the edges from A to those other vertices. By the star on an edge AB we mean 
the union of the star of A and the star of B; we call a graph G an edge-star or e-star 
if there is in it an edge AB such that G is the starinG on the edge AB. Similarly, 
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the star on a triangle ABC (where AB, BC, and CA are edges of G) isthe union of 
the stars on A, B, and C; a graph G is a triangle-star or t-star if it can be so con­
structed. In Section 6 we will similarly use the star on a K4 , the completely 
connected graph on 4 vertices.· 

2. Routine Lemmas 

We need the following results which are well enough known or obvious 
enough not to require extensive proof. We prove two just to remind the reader of 
relevant techniques. 

Lemma 2.1. Every threshold graph is interval [7]. Every interval graph is chor­
dal [6]. I 
Lemma 2.2. An induced subgraph of a chordal (interval, threshold) graph is chordal 
(interval, threshold). I 
Lemma 2.3. If Kt is a clique (completely connected subgraph) in G, then the star 
on Kt is chordal. I 

Lemma 2.4. The star on any edge is interval. 

Proof. Let the edge be AB. Points in the star may be classified as A/s (adjacent only 
to A), B/s (adjacent only to B), or C/s (adjacent to both). Let the corresponding 
intervals be (0, 2) for A, (1, 3) forB, any disjoint subintervals of (0, 1) for the A/s, 
of (1, 2) for the C/s, and of (2, 3) for the B/s. This can easily be drawn as in 
Figure 1. I 

_. .. - _ .... c; s 

A! s 
--- ...,. I -------------8--------------

A ------ B's 
--~---I 

0 2 3 

Fig. I 

We need a clear understanding of Kcfree threshold graphs. Consider any 
one vertex of largest label in such a graph G; it is attached by an edge to every non­
isolated vertex of G. Call that vertex A and consider the subgraph H of G induced 
by all vertices other than A. His triangle-free (since if it had a triangle, that triangle 
and A would make a K4 in G). Pick any vertex B of largest label in H; all edges of 
H meet B (if there were an edge CD, then ABCD would be a K in G) and all edges 
of H have both ends connected to A by an edge. Thus every triangle in G has the 
edge AB and every edge of G is either (a) incident to A, or (b) incident to Band in 
a triangle with A and B as vertices. We shall call A the root vertex and AB the root 
edge of G. This proves 

Lemma 2.5. Let G be a threshold graph with no K4 but at least one K3 • Then there is 
an edge AB of G such that every edge ofG is either (a) incident to A, or (b) of form 
BG for some C such that ABC is a triangle of G. I 
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3. Counting Lemmas 

It is a well-known principle that, if a graph has average degree a, either there 
is a vertex of degree considerably higher than a or almost no vertices have degree 
much below a. It will help us below to make this more formal. 

Lemma 3.1. For every 1 >-e>-0 there is a d>-0 (depending only on e) such that if 
the graph G has n vertices and average degree a, then G either has a vertex of degree 
exceeding (1 +d) a or else G has at most en vertices of degree less than (1-e)a. 

Proof. Choose d<e2/(1-e). Suppose the conclusion is false. Then the en smallest 
vertices each have degree less than a(l-e) for a total under ena(l-e) and the 
remaining n(l-e) vertices each have degree less than a(1 +d) for a total under 
n(l-e)a(1 +d). Thus the grand total degree for the whole graph is under 
an(1 +d-e2-ed)<an contradicting the fact that the total degree of G is an. I 

In the rest of this paper, we will often use e=.1, d=.Ol as an example of 
values in the above lemma. 

Another commonly used calculation is that in the neighborhood of the 
largest-degree vertex of G there must be a vertex of "not too small" degree. Again, 
we state this more formally. 

Lemma 3.2. Let G have average degree exceeding n/2. Suppose the largest vertex of 
G has degree (1 +c )n/2. Then in its neighborhood there must be a vertex of degree 
at least 

(1-c+2c2/(1 +c)) n/2. 

Proof. If not, then each of the (1 +c)n/2 vertices in the neighborhood has degree 
less than that, while each of the (1-c)n/2 points not in that neighborhood has 
degree not exceeding (1 +c)n/2; again, the total degree of all vertices works out 
to no more than n2/2 and we are done. I 

Finally, it is a common technique to delete a vertex of "low" degree and 
thereby not lower the average degree of a graph. The following formulations will 
suffice for us : 

Lemma 3.3. Let G have n vertices and at least n2/4+ 1 edges. If a vertex of degree 
less than n/2 is deleted, the resulting graph G' has n -1 vertices and more than 
(n-1)2/4+ 1 edges. I 

Lemma 3.4. Let G have n vertices and at least n2/4 + 1 edges. If we delete from G two 
vertices connected by an edge and the total number of edges incident to them is not 
over n- 1, then the remaining graph G' has n' = n-2 vertices and at least ( n-2)2/4 + 1 
edges. I 

We will need the following theorems of C. S. Edwards. 

Theorem 3.5. ([2]). If G has n vertices and at least n2/4+ 1 edges, then there is an 
edge in G that is on n/6 triangles. I 

Theorem 3.6. ([3]). IfG has n vertices and m edges, with m~n2/3, then G has a triangle 
ABC such that the total degree deg (A)+deg (B)+deg (C)~6m/n. I 
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4. Results 

Theorem 4.1. Let graph G haven vertices and at least n2/4+1 edges. Then G con­
tains an e-star with at least n edges. 

Proof. The vertex of largest degree has (1 +c)n/2 edges, (for a small enough posi­
tive c, which may depend on n, since otherwise the total degree of the whole graph 
can't exceed n2/2). Then by Lemma 3.2 there is in its neighborhood a vertex with 
(1-c+2c2/(I +c))n/2 edges, that is, at least one more than (1-c)n/2. The edge 
between those two vertices has a star with at least n edges. I 

An (m+1)-regular graph on n=2m+1 vertices has more than n2/4+1 
edges but every e-star has n edges. 

Theorem 4.2. There is a constant c > 0 such that any graph with n vertices and at 
least n2/4+ 1 edges contains an interval graph with at least (1 +c)n edges. 

Proof. We will settle for a proof with c=.Ol. If there is a vertex A with (1 +c)n/2 
neighbors, choose a neighbor B with degree at least (1-c+2c2/(1 +c))n/2, which 
is possible by Lemma 3.2. The e-star on edge AB is an interval graph with at least 
(1 +c2/(1 +c))n edges, and we are done. Otherwise, by Lemma 3.1, we can assume 
there are fewer than .In vertices of degree less than .9nj2; delete them and find 
an edge AB in G' lying on at least n' j6 > = .15n triangles, which is possible by Theo­
rem 3.5. Pick a triangle in this set and call it ABC. The set consisting of these tri­
angles, the star on A, and the star on C, is an interval graph. To see that this 
interval graph is large enough, observe that the stars on A and C each contain at 
least .45n edges and the triangles incorporate at least .15n edges starting at B; 
n ( .45 + .45 + .15) = n ( 1 +. 05) which is more than is needed. This completes the 
proof. I 

Theorem 4.3. There is a constant c>O such that any graph with n vertices and at 
least n2/4 edges contains a threshold subgraph with at least (1 +c)n/2 edges. 

The proof is similar to that of Theorem 4.2 and will be omitted. I 

The following example is motivated directly by one in [4]. 

Example 4.4. There is a G which contains no threshold graph with as many as 
(n/2)(1 + lf2+e) edges, for any fixed e>O and n sufficiently large. (Hence, the c in 
the theorem above cannot hope to exceed 1/2.) 

Proof. Let A and B be sets of size (1 +c) n/2 and (1 -c) n/2 respectively and add all 
(1-c2)n2/4 edges from A to B, where c= 1/3. Now divide A into two equal parts 
A1 and A2 and add (cn)2/4+ 1 edges between those two parts, distributed as regularly 
as possible. The degree of a vertex in B is simply (1 +c)n/2, while each vertex in A1 

has (1-c)n/2 edges leading to B and at most just over ((cn)2/4)/((1 +c)n/4) = 
=nc2/(1 +c) edges leading to A 2 ; so no star can be big enough a threshold graph 
to disturb us. The graph is tripartite so has no K4 ; hence by Lemma 2.5 it has a root 
vertex and a root edge. We distinguish three cases: (i) root edge from A1 to A2 , 

root vertex at either end; (ii) root edge from B to A 1 , root vertex in B; (iii) root 
edge from B to A1 , root vertex in A1 • All other cases are equivalent to these. 
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(i) The root edge is from A 1 to A 2 and lies on at most (1-c)n/2 triangles 
(the other vertex must be in B); the root vertex has in addition about nc2j(I +c) 
~dges from A1 to A2 ; total size of this threshold graph is about (I-c)n+nc 2f(l+c) 
which (since c=1/3) is about (n/2)(1 +1/2). 

(ii) The root edge lies from B to A1 • It lies on about c2n/(1 +c) triangles, 
and the degree of the vertex at B is at most (1 +c)n/2 of which c2n/(1 +c) edges 
have already been counted. The total size of this graph is thus about (1 +c)n/2+ 
+c2n/(1 +c) which is about (n/2)(1 + 1/2). 

(iii) The root edge is from A1 to B again but we consider also the edges from 
the vertex in A1 to B, of which there are (1-c)n/2. The total ;size of the threshold 
graph is about 2nc2j(l +c)+(l-c)n/2 which is about n/2. I 

Theorem 4.2 holds with "interval graph" replaced by "t-star graph". In the 
first part of the proof, A and B have a common neighbor C and the star on ABC 
is large enough; in the second part, the star on ABC is large enough. It would be 
nice to do somewhat more, at least obtaining a larger constant c. However, thus 
far we have no better lower bound fort-star graphs. Similarly, the only upper bound 
we have for c for interval graphs is the one we have for chordal graphs. 

Example 4.5. There is a G with n vertices and n2/4+ 1 edges which contains no 
chordal graph exceeding (3/2)n -1 edges. Consider the complete bipartite graph 
Kn12,n;2 plus one edge. Delete a vertex of the one edge; the resulting induced sub­
graph is still chordal and is contained in a bipartite graph on n -1 vertices and 
thus must be a tree, with at most (n-1)-1 edges. Adding back in the star on the 
deleted point adds at most (n/2)+1 edges, for a total of at most (3j2)n-1 edges. 

Note added in proof: Since this paper was submitted, Genhua Fan has shown 
(Degree sums for a triangle in a graph, J. Graph Theory 12 (1988), 249-263) 
that in a graph with more than n2/4 edges, there must be a triangle with degree 
sum 2lnjl6, improving the result of [4]. 

The same upper bound argument applies to interval graphs and to t-star 
graphs, since both are chordal. We will give an example below which yields a smaller 
upper bound for t-star graphs. 

Example 4.6. In fact, there is a subgraph of the complete bipartite graph plus 
one edge which attains (3j2)n -1 edges and is both interval (hence chordal) 
and t-star: pick any one triangle containing the one added edge and take the star of 
that triangle. It is easy to see that the resulting graph has exactly (3/2)n -1 edges 
and is an interval graph. 

Example 4.7. There is a G which contains no t-star exceeding (3/2-e)n edges. 
e can be taken slightly larger than 1/32. This is essentially a restatement of an example 
of [4]. 

Proof. Consider the graph of Example 4.4. The graph is tripartite and any triangle 
has one point in each of B, A1 , and A 2 • The total degree of such a triangle is there­
fore just over n(3/2-cf2+2c2j(l +c)). Letting c=l/8 establishes that e can exceed 
1/32. Differentiating reveals the best result is obtained when c= -1 +2y3j3 and 
a minimum total degree of roughly n(3/2- .029). 1 
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Remark. [4] attempts to use this example to obtain an upper bound on the size of 
chordal graphs. But the graph may well contain a larger chordal graph than it does 
a t-star. Consider the star on a triangle with one vertex each in B, A1 , and A2 ; it 
includes the star on one edge from A1 to A 2 , which involves only about 2c2n/(1 +c) 
vertices of A1 and A2 • Thus, there will be many edges between A1 and A 2 not involving 
the points of that star; pick a forest from those edges. Adding this forest to the 
subgraph in the example does not destroy chordality, but may well enlarge it to 
exceed 3nj2 edges. ' 

In fact, there is in such cases a larger chordal graph than the largest star on 
a triangle. 

Theorem 4.8. Let G have n>3 vertices and n2/4+l edges, for n even. Then G con­
tains a chordal graph on at least 3nj2 -1 edges. 

Proof. The theorem is true for n =4. Suppose n =2m>4; we will prove it by 
induction on m. Let G be a graph with the smallest even order 2m for which the 
result fails. If G contains a triangle whose star has at least 3m-1 =3nj2-I edges, 
we 'are done since that star is chordal. Suppose not; pick any triangle ABC in G. 
Some edge of this triangle has a star with less than n edges (suppose the three vertices 
have degrees a, b, c with a largest; we are guaranteed that a+b+c-3<3n/2-2 
so b+c-1-<n-1/3 so edge BC has fewer than n edges in its star). Now using 
Lemma 3.4 on deleting an edge of lm::v degree, we obtain a smaller graph G' which 
has n-2 vertices and by the induction hypothesis has a chordal graph of size at 
least 3(n-2)j2-l. Add to this chordal graph in G' the triangle ABC in G. Since 
only A at most is in the chordal graph, no new cycles (except ABC itself) are created 
and the new sub graph is a chordal graph of size at least 3 (n- 2)/2-1 +3 =3n/2-1 
in G. I 

5. Graphs with n2/3 edges 

Having discussed at some length the case with n2/4+ 1 edges, we now present 
some results on larger size graphs. Throughout this section we suppose that the 
graph G has n vertices and exactly n2/3 edges. Again, we have the complete answer 
for chordal graphs. We also offer a few remarks about interval graphs. 

Example 5.1. Let G be the complete tripartite graph I(nf3,n13,n13 • Then G contains 
a chordal graph (the star on a triangle) with 2n-3 edges and contains no chordal 
graph with more than 2n-3 edges. 

Proof. Clearly G has no K4 and many triangles. Any triangle has degree sum 3 (2nj3) = 
=2n and its star has 2n-3 edges. To show that there is no larger chordal subgraph, 
suppose the three vertex sets of G are called H, I, and J and suppose L is a large 
chordal graph of G. The sub graph of L induced by its vertices in the sets H and I 
(one of the three "sides" of G) is chordal (since induced) and bipartite (since Hand 
I induce a bipartite graph) and thus a tree with at most 2nj3 -1 edges. Similarly 
the induced subgraphs of L in the other two "sides" of G, have at most 2n/3 -1 
edges. Thus L has in total at most 3(2n/3-1)=2n-3 edges. I 

The star on a triangle in the graph G above is not an interval graph; it con­
tains as an induced subgraph the non-interval subgraph of :figure 7. It is an instructive 
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and non-trivial exercise (which we do not reproduce here) to convince yourself that 
the star on a triangle in the complete tripartite graph contains no interval graph of 
size exceeding 5nj3-2 edges. Nevertheless, G does contain a large interval graph. 

Example 5.2. The complete tripartite graph G (above) contains an interval graph 
with 2n-3 edges. Number the vertices of G 1, 2, 3, ... , n in rotation (so part H of 
G contains vertices 1, 4, 7, ... , part I contains 2, 5, 8, ... , and so on). Connect vertex 
ito vertices i-2, i-1, i+l, i+2 for 3-<i<n-2. It is easy to check that this is an 
interval graph (vertex i corresponds to the interval (i, i+2.1) for each i) and that 
it has 2n-3 edges. 

Theorem 5.3. If G has n vertices and m ~ n2/3 edges, then it contains a chordal graph 
(the star on a triangle) containing at least 2n- 3 edges. 

Proof. This is a direct consequence of Edwards' theorem on triangles, Theorem 3.6. 
It states that G has a triangle with degree sum at least 6mjn ~ 2n, hence with a star 
with at least 2n-3 edges. I 

6. Graphs with at least n2/3 + 1 edges 

We learned above that graphs with n2/3 edges must have chordal graphs 
with 2n-3 edges and need not have larger ones. We here try to determine how 
much of a jump there must be when G has more than n2/3 edges, that is, has enough 
edges that it must contain a K4 • 

We conjecture that the correct size of the chordal graph in this case is Sn/3-4. 
We have this as an upper bound but our lower bound is at present only 7nj3-6. 
We will look at the upper bound first. 

Example 6.1. G =Kn13 ,n13 ,n13 + e (the complete tripartite graph on n points, with one 
edge added) contains a chordal graph (in fact, the star on a K4) which has Sn/3 -4 
edges, and contains no larger chordal graph. 

We have not found an easy way to construct an interval graph substantially 
larger than the one in Example 5.2 for this case. 

Theorem 6.2. If G has n vertices and m>-n2/3 edges, then G contains a chordal 
graph (in fact, a star on a K 4) with more than 7nj3-6 edges. 

Proof. By Theorem 3.6 again, there isinG a triangle with total degree at least 6m/n>­
>-2n. There must be a vertex D1 which with this triangle forms a K4 ; for if each of 
the other n- 3 vertices was attached to at most 2 of the vertices of the triangle, their 
total degree could not exceed 2(n-3)+6=2n. If the dgree of the vertex D1 is at 
least n/3, then the K4 has total degree exceeding 7n/3 and its star has more than 7nj3- 6 
edges. So we must consider the case when deg (D1)< n/3. 

Let us delete D1 from G, yielding a graph G1 with n1 =n-l vertices and 
m1 >-n2/3-n/3 edges. Again m1 >-ni/3 and 6m1/n1>-2n (we need, and have, 6m1/n1 

greater than 2n rather than just greater than 2n1). So there is a triangle in G1 with 
degree sum exceeding 2n and making a K4 with a vertex D2 • If D2 has degree at least 
n/3, we are done since the new K4 has a star with over 7nj3- 6 edges; if not, we 
delete the D'?, to make a graph G2 • 



THE SIZE OF CHORDAL SUBGRAPHS 253 

We can continue indefinitely. After the t-th deletion, the graph Gt has nt=n-t 
vertices and mt>-n2/3-tn/3 edges, so (as long as tis less than n) it is easy to check 
that mt>-n;/3 so Edwards' Theorem 3.6 applies and there is a triangle with degree 
sum at least 6mtfnt>-2n, the condition for continuing the induction. 

But we obviously cannot continue n-3 times: this would leave 3 vertices 
and at most 3 edges, violating mt>-n;/3 which held by induction. This contradiction 
shows that at some point before that Dt has degree exceeding n/3, completing the 
proof. I ' 
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