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ABSTRACT.

Assume that I,,I;,I;,...,I, are closed intervals of the
real line. The greedy coloring assigns positive integers
sequentially to the intervals with thée rule that the
number assigned to I; is the smallest k such that 13 does
not intersect any interval already colored with k. A
conjecture of Woodall (rediscovered by Chrobak and Slusa-
rek) can be stated as follows: the greedy coloring
does not use more than constant times the optimal number
of colors. Here we prove a special case of this conjecture.
INTRODUCTION.

A family J of intervals is a finite collection of closed
intervals of the real line. The word collection is used to
indicate that J may contain the same interval with
arbitrary(finite) multiplicity. A proper coloring of a
family J of intervals is an assignment of positive

integers (colors) to the intervals of J so that two
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intervals with the same color do ﬁot intersect. The greedy
(or First-Fit) coloring is a propér coloring which colors
the intervals of J in some ordér, assigning the smallest
available color fo the interval to be colored next. The
density d( J') of a family J is the maximum number of
pairwise intersecting intervals in J . It is a well-known
result of Gallai that J has a proper coloring with d( J )
colors and this coloring is obviously optimal. The
vfollowing problem is e§uivalent to a problem of Woodall
({4]), rediscovered by Chrobak and Slusarek ([1]),[2]).
Does there exist an absolute constant ¢ such that the
greedy coloring uses at most ¢ d(J ) colors on any
family J of intervals under any ordering of J . Lower
bounds for c’are 4/(§I§ -3) (Woodall, personal communica-
tion), 4 ({2],[5]); 13/3 ([1] without proof), 22/5 (Slu-
sarek, personal commmunication). The obvious upper bound
da (D) is improved by Witsenhausen in [5] aﬁd the best
upper bound is due to W.Just who proved that the greedy
coloring uses at most cd(J)logd(J) colors. With his
kind permission, his proof is in [3], wﬁere greedy and
on-line algorithms are studied for several classes of
graphs. In this paper a special case of the conjecture
is proved. *

We introduce some notations at this point. Script
letters are used for families of intervals. If J is

properly colored then c(I) denotes the color of Ie J



From now on a coleoring always means proper coloring. A
t—coloring‘is a coloring using’calors 1,2,...,t. Assune
‘that a t-coloring of J is given.‘Thén

Nk) = (1&€TF: c(I)=k}, T (k1) = {T€T : k&c(I)&1).
For I€ 3 set

E

I (€T : an I 4 ¢ , c(I) > c(I) }

i

o

I

i

(JeY : InI #¢ , c@ L c(I) }.

Notice that by definitioh, a t-coloring of J is
equivalent to | r’

T = Qj? J (k) where J(k) contains pairwise

) digaaint intervals for k=1,2,..,%t.
It is easy to see that a greedy t-coloring of 7} is
equivalent to (1) and (2), where property (2) is defined
as follows. |
(2) If 14 md n%t and I’ € J(n) thenl"m"j(in)%é).
vWe may express (2) briefly by saying that in a greedy
coloringkeach interval (exceptithe intervals of ‘J (1))
has 1ower support. The reason for this is appéarent.if a
t-coloring of U is visualized by placing 7J(j) on the
horizontal line y=j. ‘Thenv a greedy t-coloring of
may be called a wall of height t. These terms have beén
introduced by Woodall, chrobék and Slusarek. Using this
representation, d(J), the density of the wall, 1is the
maximum number of intervals a vertical line can meet.

Let V¥ ( J ) denote the maximum number of pairwise

disjoint intervals in J . A greedy coloring of J is of



type i (i=1,2 or 3) if

}(4; Y(1t) £ 4 for all I €

In this paper we prove the following result.
THEOREM. A type 1 greedy coloring of 3 uses at most
24 A4(J ) colors.

The motiyation for the theorem is that all the known
"high" walls are of type 1. Moreover, a generalization for
type 3 walls would solve the general conjecture as the
following proposition shows.

PROPOSITION. If I has a greedy t-coloring then there
exists J' such that a(3') £ a(J ) and J' nas a greedy
t-coloring of type 3. |

PROOF. Assume that 3 has a : . greedy t-coloring and

I&’ . Select g pairwise disjoint intervals,Bi,BQ,..,B‘eI*

9
with g= Vy(I%). If g 3 4 then I is "broken up" by replacing
I with the following g-2 intervals: I F\conv(é,,Bh), IN By
»+.INBgy, and I N conv(Bq_',Bq). (The notation conv
stands for convex hull.) Repeatedly applying this
refinement ﬁo the intervals of I(t), J(t-1),,.., F()

in this order (and within a particular 7}(k) in any order)
‘a family I is obtained. It is easy to see that J'nas a
tYpe 3 greedy t-coloring. Adopting the notion of the
wall, one can argue that breaking up a particular

I, no interval of I can fall through the pieces replacing

I because of the definition of g. On the other hand, all



pieces replacing I support an i'dentical copy of the
piece or a subinterval of the piece and their lower
supports are lower supports for the pieces. Since the
density does not increase by this refinement, the
proposition 'is proved.

2. PROOF OF THE THECREM.

Some further notation is introduced at this point.
For a family 3 of intervals T () denotes the
cardinality of a ininimum transx}ersal of 3, i.e. the
‘minimum r such that there exists a set of points P with
Pl =r and with PnI +¢ for all T€ T . Assume that 3
is a t-colored family and & & J . Let c(#¢ ) denote
the set of colors used on the intervals of ﬂ- , i.e.

c( &)= {c(I): I--eu?' }. A section S of & is defined as
a set of }lc*(ﬂ' )] intervals of @& , such that the intervals
of‘ S have distinct colors. Finaily, we define

) =nin TSy,  V¥# ) =max V(S)
where the minimum and maximum is taken over i.all .
sections of \A’ . It is ’easy‘ to see that .T*(oﬁ}) £ ).)*(\;4—)
but equality doés not hold in general.

THEOREM. A type 1 greedy coloring of J  uses at most
24‘d('j) colors.

PROOF. The proof goes by induction on d(g ). For d( l )=1
a greedy coloring uses one color and the theorem is
trivially true. Assume that the theorem is true for all J

such that d('J)< s for some s 22.



Let J= Y u J@)uU ... U J(t) be a greedy
t-coloring of J and d(3)=s. |

Define the integers t,,ta,,.,ék € {1,2,..,t} and the
intervals Aian""Ak'Ml’M

v My recursively as

follows. Set t,=t and let A,=M, € J(t). Assume that t;,A;

and M;are defined for some i2 1. Let t;,, be the largest

meE (1,2,..,t,

1} such that

(5) | VAT -1 na)) = 3.
If there is no m satisfying (5) then set k=i and the
~definition is finished. Set

pl =1, and pj.=tﬂ‘"— tj for j=2,3,..,k.
Otherwise, t;,, is defined and we proceed to define ML

and A;,, . As a first step, set

BAom T e, t.-1) A AT .
The definition of t;,, implies that we can select three
pairwise disjoint interﬁlals; B';."H ,B;'.H ,B.:H from \)Q'b'_,,
‘indexed from left to right. Set

My, =By .
Since V¥ \A'L-“)=3 implies T &3}‘;“) £ 3, there exist a
set of at most three points which meets at least one
interval at each level of 04L+,.‘Consequently, one of these
points, say x, is contained in at leastI§L+‘/i=n
intervals of d4;+l . Let B denote this family of

—

»1nterva1s. Let a, 4 a, 4 ... L a, and b, 2 by 2 ...2b,

denote the left and right endpoints of the intervals



in 8 . Mark the intervals of D one by one in the order

a,,b, ,a_,z,baz ,...,an,b of the endpoints until only one or

h
two are unmarked. Define A;,, as an unmarked interval of 8.
It is easy to check that the density of each point of A;,,
in 5 is at least Yn/z]z ﬂ‘p,;ﬂ/?:‘i /2‘] 3{p£ﬂ/6—}. This
concludes the recursive definition.
Consider a fixed i, 2%itk. Let 5:; >denote the family

of those intervals of J (1,t;-1) w’hich lie inside (a,b),
where a is the right endpoint of B:' and b is the left
endpoint of B:f,'; . For ea;h m e {1,2,..,t;-1}, there exists
I.,.€ FI(m)n M: (property (2) is a@plied to J ). Since T is
of typé 1, 1,, C (a,b) and I, € @: follows. Therefore %
has at least one interval at levels 1,2,..,t-1. Moreover,
if 1€ Qn J(m) for some m such that 1{m £t,-1 and we
have an n satisfying 14n<m, then I is supported by an
interval J € "J (n). Since J is of type 1, JC(a,b) and
Jé?{; follows. = This argument shows that 9;-'~=5;EU{M } has |
a greedy t; -coloring. Moreover, since (a,b) © Aj.; and
the density of A(_, at each point is at least fp;_—q /6-] P
d(H{’) L s- \-p oo /61 < s follows. Therefore the
inductive hypothesis éan be applied to ?f‘.:l H

t; & 24 d(é‘{;')ézzl.(s-fp;-,/sh £ 245 - 4pg ., .

L
Since t=t; - 1 + Z_ p; , it follows that

J=1 ’.
L
t < 24s - 4p;., + jZ’ p; ., which concludes the
1= S
¥
inductive proof if 24s - 4p;_, + P p; & 24s. This
I=1 \
1=
condition is equivalent to Py < 4pi_, - > pd . We



may assume that the induction fails for all i such that

2 €i€ k, which means that

(6) P, > 4Pi. - g p; for all i, 2 £1i %< k.

It is easy to see (by induction, for example).that (6)

implies ' |

(7) j: p; & 2p,  for all i, 1 £ i % k.
I=1 '

The definition of t, implies that )ﬁ?f}{l,tk-léf\A; Y& 2,
therefore T %Y f}(l.,ﬂ;k—l)ﬂA;i)é.zv, implyin’g t -1 %2s.
similarly, p, & 3s follows from V¥ ‘3'(tk,tk_1—l)ﬂ AZ )=3.
Using these inequalities and (7) for i=k, we get
t=1t, -1 +> é P £ 2s + 2p, & 2s+65=8s

and the theorem is proved.
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* After the completion of this paper the authors have
learned that H.A.Kierstead proved Woodalls conjecture.
- His proof uses some ideas from preliminary versions of

this paper.





