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ABSTRACT. 

Assume that I 1 ,I~,I 1 , ••• ,In are closed intervals of the 

real line. The greedy coloring assigns positive integers 

sequentially to the intervals with the rule that the 

number assigned to I; is the smallest k such that Ij does 

not intersect any interval already colored with k. A 

conjecture of Woodall (rediscovered by Chrobak and Slusa-

rek) can be stated as follows: the greedy coloring 

does not use more than constant times the optimal number 

of colors. Here we prove a special case of this conjecture. 

INTRODUCTION. 

A family ~ of intervals is a finite collection of closed 

intervals of the real line. The word collection is used to 

indicate that :J may contain the same interval with 

arbitrary(finite} multiplicity. A proper coloring of a 

family ~ of intervals is an assignment of positive 

integers (colors) to the intervals of 'J so that two 
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intervals with the same color do not intersect. The greedy 

(or First-Fit) coloring is a proper coloring which colors 

the intervals of 'J in some order, assigning the smallest 

available color to the interval to be colored next. The 

density d( J ·) of a family !J is the maximum number of 

pairwise intersecting intervals in j . It is a well-known 

result of Gallai that J has a proper coloring with d( J 

colors and this coloring is obviously optimal. The 

following problem is equivalent to a problem of Woodall 

([4]), rediscovered by Chrobak and Slusarek ([1]) ,,[2]). 

Does there exist an absolute constant c such that the 

greedy coloring uses at most c d( :::1 ) colors on any 

family ~ of int,ervals under any ordering of :J . Lower 

bounds for c are 4/ (-'{I7 --3) (Woodall, personal communica

tion), 4 ([2],[5]), 13/3 ([1] without proof), 22/5 (Slu

sarek, personal commmunication) . The obvious upper bound 

d ~ ( :) ) is improved by Wi tsenhausen in [ 5] and the best 

upper bound is due to W.Just who proved that the greedy 

coloring uses at most cd ( :J ) logd ( :J ) colors. With his 

kind permission,, his proof is in [3], where greedy and 

on-line algorithms are studied for several classes of 

graphs. In this paper a special case of the conjecture 

is proved. * 

We introduce some notations at this point. Script 

letters are used for families of intervals. If J is 

properly colored then c(I) denotes the color of IE~ 
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From now on a coloring always means proper coloring. A 

t-coloring is a coloring using colors 1,2, ... ,t. Assume 

that a t-coloring of :J is :given. Then 

J(k) = {I~.~: c(I)=k} ., J (k,l) = {IE3 k ?::.c (I) f: 1 } . 

For I ·E:. lJ set 

r+ = {J ·e.·~ : Jf'\ I + ¢ c(J) ) c:(I) } 1 

I- = {J ·E. 'J J n I -1= .</:> ., c(J) < c(I) } . 
Notice that by definition, a t-coloring of :r is 

equivalent to 
i 

J = U J (k) where J (k) contains pairwise 
(1) k=l 

disjoint intervals for k=1,2, .. ,t. 

It is easy to see that a greedy t-coloring of ~ is 

equivalent to (1) and (2)~ where property (2) is defined 

as follows. 

(2) If 1 f: m ( n ~ t and I E :J (n) then I- rt fJ{m)f¢. 

We may express {2) briefly by saying that in a greedy 

coloring each interval (except the intervals of r:] ( 1)) 

has lower support. The reason for this is appearent if a 

t-coloring of J is visualized by placing ':.1 (j) on the 

horizontal line y=j. Then a greedy t-coloring of 

may be called a wall of height t. These terms have been 

introduced by Woodall, Chrobak and Slusarek. Using this 

representation, d( 'J), the density of the wall, is the 

maximum number of intervals a vertical line can meet. 

Let y ( :1 ) denote the maximum number of pairwise 

disjoint intervals in ':1 . A greedy coloring of :J is of 
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type i (i=1,2 or 3) if 

{ 4 ) y ( r+) !::. ·i for a 11 I E J 

In this paper we prove the following result. 

THEOREM. A type 1 greedy coloring of <J uses at most 

2 4 d ( J ) co 1 or s . 

The motivation for the theorem is that all the known 

"high" walls are of type 1. Moreover 1 a generalization for 

type 3 walls would solve the general conjecture as the 

following proposition shows. 

PROPOSITION. If ~ has a greedy t-coloring then there 

exists J' such that d( :J' ) L... d( 'J ) and 1' has a greedy 

t-coloring of type 3. 

PROOF. Assume that 'J has a ·greedy t-coloring and 

I~ f'j • Select q pairwise disjoint intervals B1 1 B ~, .. 1 B<t·E--IT 

with q= V (I-r). If q ~ 4 then I is "broken up" by replacing 

I with the followinq q-2 intervals: I r\ conv(B11 B~) 1 Ill B3 

••• InBGf-A. and I rt conv(Bq_
1 1 Bq). (The notation conv 

stands for convex hull.) Repeatedly applying this 

refinement to the intervals of <](t) 1 'J(t-1),, .. , J(l) 

in this order (and within a particular J(k) in any order) 

a family ~~ is obtained. It is easy to see that J'has a 

type 3 greedy t-coloring. Adopting the notion of the 

wall, one can argue that breaking up a particular 

I, no interval of r+ can fall through the pieces replacing 

I because of the definition of q. On the other hand, all 
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pieces replacing I support an identical copy of the 

piece or a subinterval of the piece and their lower 

supports are lower supports for the pieces. Since the 

density does not increase by this refinement, the 

proposition ·is proved~ 

2. PROOF OF THE THEOREM. 

Some fu.rther notation is introduced at this point. 

For a family 'J of intervals 't' ( ·r.::1) denotes the 

cardinality of a minimum transversal of j i.e. the 

minimum r such that there exists a set of points P with 

\Pt =r and with P f'\ I =4= ¢ for all I t. 'J Assume that J 

is a t-colored family and A ~ J . Let c ( ~ ) denote 

the set of colors used on the intervals of If. , i.e. 

c( ··u4- )= {c(I): IE v} } . A section S of ~ is defined as 

a set of lc ( .J:}- ) f intervals of u'). , such that the intervals 

of S have distinct colors. Finally, we define 

1'~ ( 4 ) = min ~ ( S ) , )} ~ ( ~ ) == max .Y ( S ) 
where the minimum and maximum is taken over' all 

sections of * . It is easy to see that 7:*( ~ ) ~ V-*( u4-) 

but equality does not hold in general. 

THEOREM. A type 1 greedy coloring of c::1 uses at most 

24 d ( c:1) colors. 

PROOF. The proof goes by induction on d ( fJ ) • For d ( ~ ) =1 

a greedy coloring uses one color and the theorem is 

trivially true. Assume that the theorem is true for all ~ 

such that d ( J ) < s for some s ~ 2 . 

5 



Let :J = ') ( 1 ) u 'J ( 2 ) LJ ••• · u ) ( t) be a greedy 

t-color ing of J and d ( J ) =s. 

Define the integers t, ,t2 , .. ,tk E {1,2, .. ,t} and the 

intervals A1 ,A~, .. ,A.J(,M 1 ,Mea, .. ,M.k recursively as 

follows. Set t 1 =t and let A, =M
1 

·E <J (t) .. Assume that ti,..,Ai, 

and M~ are defined for some i e 1. Let ti-+·t be the largest 

m € { 1 , 2 , ... , ti. -1 } such that 

( 5) V JC- ( ') ( m, tL -1) () Ai ) = 3 . 

If there is no m satisfying (5) then set k=i and the 

definition is finished. Set 

for j =2, 3, .. , k. 

Otherwise, tL+t is defined and we proceed to define ML+& 

and Ai+l • As a first step, set 

') (t;+·l ,t.-1) A A7 • 
"' !l. (., 

The definition of ti+t implies that we can select three 

.i.+t ~-t t 
pairwise disjoint intervals, B 1 ,B~ 

indexed from left to right. Set 

·~f"l 
M i.+t =B).. ,. 

Since v*( Jt.Lt•l) =3 implies 1::'~ tfti.,. 4) ~ 3 I there exist a 

set of at most three points whicb meets at least one 

interval at each level of Jl. i+;l • Consequently, one of these 

points, say x, is contained in at least fp ~+t /~=n 

intervals of tA-~+l . Let J) denote this family of 

intervals. Let a 1 ~ a..2. ~ . . . f ah and b 1 ~ b~ .> ••• ~b,.., 

denote the left and right endpoints of the intervals 
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in S . Mark the intervals of· j) one by one in the order 

a 1 , b 1 , a..rz., b..l. , ... , an , b
11 

of the endpoints until only one or 

two are unmarked. Define Ai"'~-l as an unmarked interval of $. 

It is easy to check that the density of each point of Ai~J 

in £ is at least r n/21 = r f Pi-tl /31 /2l ~ f p t-r 1 /61. This 

concludes the recursive definition. 
~ 

Consider· a fixed i, 2 ·~if. k. Let ~~ denote the family 

of those intervals of J (l,ti,-1) which lie inside (a,b), 

'·"" where a is the right endpoint of B1 and b is the left . 
endpoint of B~ . For each mE {1,2, .. ,ti-l}, there exists 

Im t ·c:J {m) n M Z (property (2) is applied to 'J ) . Since r:.J is 

of type 1, I 111 C (a, b) and I rn E. ~ follows. Therefore ~ 

has at least one interval at levels 1,2, •. ,t-l. Moreover, 

if I E ~" ~ (m) for some m such that 1 ( m !: t;... -1 and we 

have an n satisfying 1 f n .( m, then I is supported by an 

interval J € 'J (n) . Since ~ is of type 1, J C (a, b) and 
' , 

J E ~ follows. This argument shows that ~ = ~ u {M } has 

a greedy ti. -coloring. Moreover, since (a,b) c. A.L-·t and 

the density of Ai-J at each point is at least 

d ( lfi') b. s..,. f p ;__ - 1 /61 < s follows. Therefore 

r Pi.-• ;6l, 

the 
I 

~· . .... . ' inductive hypothesis can be applied to 

d < .3=2 ' ) f. 2 4 .< s- r p i. - .• 16, ) .~· 2 4 s - 4 p ~ _, . 
\, 

Since t=t i - 1 + ?:::~ Pj '. it follows that 
L 

t < 24s - 4P~- 1 + 1: Pi 
:1=1 

which concludes the 

inductive proof if 24s - 4Pi-t + L.. 24s. This 
i.-1 

condition is equivalent to P . _L.. 4p. -l. ,_, 2: p .. 
:f=• j 

We 
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may assume that the induction fails for all i such that 

2 f: i!: k, which means that 

(6) for all i, 2 .if: i ·~ k. 

It is easy to see (by induction, for example) that (6) 

implies 

(7) 
L. 

.L: p :i f:. 2pi 
j::.J 

for all i, 1 L. i L. k . 

The definition of tk implies that )}*( ¥J ( l, tk -1) l\ Ak ~ 2, 

therefore t:«-( :1 ( 1, ~ -1) ()A~ ) .?. 2, implying tk -1 f: 2s. 

Similarly, pk -6 3s follows from V*( ··~ (t'<, ~k-l-l)t'\ A,k-_
1 

) =3. 

Using these inequalities and (7) for i=k, we get 

}!. L_.. 2s + 2P·.,, L_. t = t.k -1 + ~ P:J.· ~ 2s+6s=8s 
; J::.l 

and the theorem is proved. 
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* After the completion of this paper the authors have 

learned that H.A.Kierstead proved Woodalls conjecture. 

His proof uses some ideas from preliminary versions of 

this paper. 
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