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1. Introduction 

All graphs in this paper are understood to be finite, undirected, without loops 
or multiple edges. The graph G' = (V', E') is called an induced subgraph of 
G = (V, E) if V' ~ V and uv E E' if and only if {u, v} ~ V', uv E E. 

The following two problems about induced matchings have been formulated by 
Erdos and Nesetril at a seminar in Prague at the end of 1985: 

1. Determine f(k, d), the maximum number of edges in a graph which has 
maximum degree d and contains no induced (k + 1)-matching (an induced 
matching of k + 1 edges). Fork= 1 this was asked earlier by Bermond, Bond and 
Peyrat (see [1]). 

2. Let q*(G) denote the minimum integer t for which the edge set of G can be 
partitioned into t induced matchings of G. (We will call q*(G) the strong 
chromatic index of G.) As is done in Vizing's theorem, find the best upper bound 
of q * (G) when G has maximum degree d. 

It was shown in [1] that (for d even) /(1, d) d id2 and the extremal graph is 
unique (each vertex of a five cycle is multiplied by d/2). This result suggests that 
f(k, d) =id2k. Perhaps a stronger conjecture is also true, namely, that q*(G)::::; 
id2 when G has maximum degree d. 

In this paper the analogous extremal problem for bipartite graphs is con­
sidered. It is shown that bipartite graphs of maximum degree d without an 
induced (k + 1)-matching ha~e at most kd2 edges (Theorem 1). Extremal graphs 
for k > 1 are not unique but can be completely described (Theorem 2). It is also 
shown (Theorem 3) that when the extremal problem is restricted to connected 
bipartite graphs, the extremal number drops by at least d (if k > 2). We 
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conjecture that the connectivity restricts the extremal number to decrease to 
kd2

- ckd for some constant c > 0, if k and dare large. 
It i~ probably true that q*(G) ~ d 2 for all bipartite graphs of maximum degree 

d (a conjecture which is ()bviously stronger than our extremal result). It is clear 
that there is no loss of generality in considering only regular graphs in this 
conjecture. However, we are not able to prove the first non-trivial case: The 
strong chromatic index of any 3-r~gular bipartite graph is at most 9. 

2. Results 

Throughout this section G = (A, B) will denote a bipartite graph with vertex 
classes A and B. The edge set of G will be denoted by E(G). We use the notation 
T(x) (T(X)) for the set of vertices adjacent to x (some element of X). 

A bipartite graph G of maximum degree d with no isolated vertices and no 
induced (k + 1)-matching is called (k, d)-extremal if it has the maximum number 
of edges with respect to these conditions. 

Assume that G =(A, B) is (k, d)-extremal. Choose the smallest p such that 
X= {x1, x 2 , ••• , xp} ~A and T(X) =B. The choice of p shows that T(X­
{xJ) * B, 1 ~ i ~p, and so it follows that G has an induced p-matching. Since G 
has maximum degree d and p ~ k, we have 

(1) 

Observe that kKd,d has no induced (k + 1)-matching, has maximum degree d 
and contains no isolated vertices, so (1) gives the following result: 

Theorem 1. A (k, d)-extremal graph has kd2 edges. 

The next goal is to describe the structure of the (k, d)-extremal graphs. If G is 
(k, d)-extremal then all inequalities in (1) are in fact equalities. This implies that 
for all i, j (i * j, 1 ~ i ~p ), 

IT(xi)l = 0, r(x;) n r(xj) = 0, p = k. (2) 

Moreover, all vertices of B must be of degree d. Since the role of A and B can be 
interchanged in this argument, we have 

a (k, d)-extremal graph is d-regular. (3) 

It is appropriate to introduce some additional n<Jtation at this point. For 
i = 1, 2, ... , k set 

Ai ={xI X EA, r(x) = r(xi)}, 

Hi= {xI X E A- Ai, r(x) n r(xi) * 0}. 
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Notice that Ai =1- 0, since xi E A;, but the sets Hi can be empty. Since G has 
maximum degree d, Ai n Aj = 0 for i =1- j and Hi n Aj = 0. 

The set Hi is said to be matchable if the bipartite graph induced by Hi U T(xi) 
has an induced 2-matching. 

A C8-like graph is one obtained from the cycle C8 by expanding each of its 
eight vertices to independent sets of vertices, making two vertices in different sets 
adjacent if and only if the corr.esponding vertices are adjacent in C8 • 

The following lemma is needed. 

Lemma. Let G =(A, B) be a bipartite graph without induced (k +!)-matching, 
with maximum degree d and without isolated vertices. Assume moreover that (2) is 
true and H1 is matchable for some I, 1 ~ I ~ k. If G' is the component of G 
containing T(x1), then it is C8-like with V(G') n B = T(xi) U T(xt) for some t =1- I, 
l~t~k. 

Proof. Since H1 is matchable, there exist a, bE H1 and y, z E r(x1) such that 
{ay, bz} is an induced 2-matching in G. If for all t E {1, 2, ... , k}- {/} there 
exist Yt E r(x1) such that Yt ~ T(a) U T(b), then ay, bz and the edges XtYt gives an 
induced (k + 1)-matching in G, a contradiction. Therefore we can choose t =1- I 
such that 

r(a) u r(b) ;;2 r(xt)· (4} 

Set ¥; = T(a) n T(x1) and Z 1 = T(b) n T(x1). Clearly ¥; =1- 0, Z 1 =1- 0 and a, bE H1• 

Therefore from (4) and from the definition of H1, {a, b} is matchable to elements 
of r(x1). Applying the same argument with t playing the role of I, there exists an 
mE {1, 2, ... , k}- {t} such that 

r(a) u r(b);;;;? r(xm). (5) 

Set Ym = r( a) n T(xm) and Zm = T( b) n T(xm)· 
Since the maximum degree of G is d, and {a, b} is matchable to r(x1), (4) and 

(5) imply that I= m, and the sets Y;, Z1, l[, Z 1 are pairwise disjoint. 
Next it is shown that for any vertex, x E fl,1 U H0 either r(x) = T(a) or 

r(x) = r(b). One may suppose X* a, X* b, and X E H[, r(x) n Yi =1-0. 
If xz ~ E(G) for some z E Z 1 then {x, b} is matchable to r(x1) and the previous 

argument implies that r(x) u r(b) = r(x!) u r(xt), therefore r(x) = r(a) as 
desired. (By symmetry, r(x) n Z 1 =I= 0 would lead to T(x) = T(b ). ) 

The above observations imply that the component of G containing r(x1) is 
C8-like. The eight sets of independent vertices which replace the vertices of the 
C8 are 

and the following two sets: 

{xI X E Ht u Ho r(x) = r(a)} {xI x E Ht u Ht, r(x) = r(b)}. D 
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Let C~ denote a C8-like graph which is d-regular. The next theorem describes 
(k, d)-extremal graphs. 

Theorem 2. A bipartite graph G is (k, d)-extremal if and only if G = mC~ U nKd,d 
with 2m + n = k. 

Corollary. Each (k, d)-extremal .graph is disconnected for k ~ 3. For k = 1 the 
only extremal graph is Kd,d· For k = 2 the only disconnected extremal graph is 
2Kd,d and each connected extremal graph is a C~. 

Proof of Theorem 2. If G = mC~ U nKd,d with 2m + n = k then clearly G is 
(k, d)-extremal. Let C be the vertex-set of a component of a (k, d)-extremal 
graph G. There is an i (1 ~ i ~ k) such that T(xi) n C =I= 0. If Hi= 0 then C 
induces a complete bipartite graph in G and (3) implies that C is isomorphic to 

. Kd,d· 
If H; =I= 0 then we claim that Hi is matchable. If this is not the case, choose 

x E Hi such that t = IF(x) n r(xi)l is as large as possible. The definition of H; 
implies that t < d = IF(x;)l. 

Choose a y' E r(x;) such that xy' ft E(G). Since y' has degree d, there is an 
x' E T(y') n H;. The choice of x implies the existence of ayE r(x) such that xy, 
x'y' is an induced 2-matching, this proves the claim. The lemma implies that C 
induces a C8-like graph, and (3) implies that this subgraph is isomorphic to 
c~. o 

Theorem 3. If G is a connected (k, d)-extremal graph with k ~ 3, then IE(G)I ~ 
kd2 -d. 

Proof. If IL.Jf=l r(x;)l < kd then IE(G)I ~ (kd -1)d and the theorem is proved. 
Therefore it is assumed that (2) is satisfied. Moreover the connectivity of G 

implies that the hypergraph H with edge set {Hv H2 , • •• , Hk} is connected. If 
there exists a matchable H; for some i (1 ~ i ~ k) then, the lemma implies G has a 
component which is a C8-like graph. Since k ~ 3, that: component is not G, which 
contradicts the connectivity of G. Therefore, no H; is matchable. Also, since G is 
connected, no H; is empty. 

Since the hypergraph His connected there exist i, j E {1, 2, ... , k} such that 
i =/= j and H; n ~ =I= 0. Neither H; nor ~ are matchable, so that Ai = { T(x) n 
r(xi) I x E H;} and Aj = {r(x) n r(xj) I x E ~} are both nested non-empty sets. 
Select a'€ H; and b E ~ such that r( a) n r(xi) and r( b) n r(xj) are minimal 
elements of A; and Aj respectively. From the choice of a and b, any c E Hi n ~is 
adjacent to all vertices of T = (T(a) n T(x;)) U (T(b) n T(xj)). Since the degree 
of cis at most d, ITI ~d. 

It is next shown that each vertex y E (T(x;) U r(xj))- T has degree less than d 
in G. By symmetry, assume that y E r(x;)- (T(x;) n r(a)). Let x be an element 
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of T(y) and Yo E r(xi) n r(a). If X EAi, then from the definition of AiXYo E E(G), 
and if x E Hi then from the choice of a, xy0 E E(G). Therefore clearly IT(y0)1 ~ 
IT(y )I but the inequality is in fact strict, since y0a E E( G) and ya ft E( G), 
implying y has degree less than din G. Since I(T(xi) U T(xj))- Tl ~ d, there are 
at least d vertices in T(xi) u T(xj) of degree less than d. Therefore IE( G)~ 
I U!z=l T(xm)l · d- d = kd2 ~d. D 

Observe that Theorem 3 is sharp for some small values of k and d, for example 
when d = 2 and k = 3 or 4. However, it is probably true, for k and d sufficiently 
large, that a connected (k, d)-extremal graph has at most kd2

- ckd edges where c 
is a positive constant. 
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