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Abstract. The following matrix l:obelling problem is considered: label the rows and columns 

of an m x n matrix with positive integers such that the largest positive integer is as small as 

possible and the entries of the matrix are all distinct. A solution is obtained when m = 3 (the 

3 x n case) by considering the independence of number of a difference graph. 

I. INTRODUCTION 

Several articles have been written involving the strength s(G) of a graph [1,2,3,4]. The 

strength s( G) is defined as the smallest positive integer N such that each edge of G can be 

given a positive integer label with value at most N with the resulting weighted (or labelled) 

graph having all its weighted degrees different. Similarly one can define the dual strength 

by assigning positive integer labels to vertices of G requiring that the resulting graph has 

all edges with different weights. Here the weight of an edge is the sum of the labels of its 

incident vertices. 

It is the dual strength of the complete bipartite graph Km,n, formulated as a matrix 

labelling problem, which is addressed in this paper. Within the paper the problem is 

reformulated in a difference graph setting and in this setting a partial solution is obtained. 

The Problem: Label the columns and rows of an m x n matrix with positive integers, 

assigning the sum of the labels given to the ith row and jth column to the ijth entry. Find 

the smallest positive integer N = N(m, n) such that all labels have value at most N and 

all matrix entries are distinct. 

Several observations should be made concerning the problem. First there is no loss of 

generality in assuming that both the row labels and columns labels include the smallest 

possible label, the positive integer 1, and both sets of labels~ are strictly increasing sequences 

on m and n positive integers respectively. Furthermore, since the m n entries are distinct 

with smallest entry 2, the largest of these entries must be at least m n + 1. Hence N 2': 

(mn + 1)/2. Equality need not hold and a value for N will be conjectured later which is 

always larger than ( m n + 1) /2 for n, m 2': 3, but of that order of magnitude. 

The problem can also be formulated in an alternate way. Assume the rows are given 

labels r1 < r2 < · · · < rm and the columns labels c1 < c2 < · · · < en. Form the sets of 
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differences R = {rj- rill~ i < j ~ m} and C = {cj- cil1 ~ i < j ~ n}. It is easy to see 

that all the entries of the matrix are distinct under this assignment if and only if R n C = rj>. 

It is this later formulation of the problem that suggests introduction of a difference 

graph. Let N be a fixed positive integer and let £1,£2, ... ,l!.m-1 be positive integers (not 

necessarily distinct). Define the difference graph GN(f.l,£2,···,1!.m-l) as one with vertex 

set V = { 1, 2, ... , N} and edge set E = { xyl y ~ x and y- x = 2::=t ~ for some t, k, 1 ~ t ~ 
k :::; m- 1}. Solving the problem then becomes equivalent to finding the smallest positive 

integer N for which there exist positive integers £1,£2, ... , l!.m-1 ( l:Z!:11 ~ :::; N- 1) such 

that the independence number (3 of G N( £1, £2, ... , R.m-1) is at least n. To see this is the 

case assume G N has { v1, v2, ... , vn} as an independent set. Under this assumption label 

the rows 1,£1 + 1,l:T=l ~ + 1, ... ,2:~1 1 ~ + 1 and the columns v1,v2, ... ,vn. Since each 

pair of row labels are adjacent as a pair of vertices in G N and each pair of column labels 

are nonadjacent, the difference sets R an C defined earlier satisfy R n C = rj>. 

Although the difference graph approach does not give a complete solution, it does lead 

to a solution when m = 3 and n is arbitrary. 

Before pursuing this approach consider a labelling which may give the correct value of 

N. Assume for the moment that n is even. Label the rows with the labels 1, i + 1, n + 

1, ... , (m-l)i+1 and the columns with labels 1, 2, ... , i, m(i)+l, m(~)+2, ... , (m+l)~, 

so that the largest label used is (m + 1)(j). With this labelling it is easy to check that 

the entries of the matrix are as small as possible, i.e., they include precisely the num

bers 2,3, ... ,mn+ 1. Likewise if m is even row labels of 1,2, ... ,.y,n("T) + 1,n(.Y) + 

2, ... , (n + 1)(T) and column labels of 1, T + 1, m + 1, ... , (n - 1)-T + 1 provide a la

belling with largest label ( n + 1) ( T). Adjusting this idea when both m and n are odd gives 

two natural labellings both of which gives largest label (m+l)~+m-l. They are (1) row 

labels 1, ~ + l,n + 2, ... , (m- 1)(~) + 1 and column labels 1,2, ... , np,m(np) + 

1 ( n+l) 2 (m+l)n+m-1 d (2) I b l 1 2 m+l (m+I) 1 (m+l) , m - 2- + , ... , 2 , an row a e s , , ... , - 2-, n - 2- + , n - 2- + 

2, ... (n+l)r;+n-l and columns labels 1, mil+ 1,m+ 2, ... ,(n -1)(mi1) + 1. It should 

be noted that the two labellings just described, when n and m are odd, do not yield 

as matrix entries all mn positive integers from 2 to mn + 1. Since the largest entry is 

mn + m (or mn + n), m- 1 (or n- 1) numbers are skipped between the smallest and largest 

values. Although that the given labelling may fail to ~be optimal when both m and n are 

odd, there are other indicators which suggest it is a best possible one. Thus these labellings 
suggest the following conjecture. 

Conjecture: 

{ 

(n + 1)m/2 form even, m:::; n, 

N = N(m, n) = (m + 1)nj2 for n even, m odd,m ~ n, 

[(m + 1)n + m- 1]/2 f6r m and n both odd. 
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II. RESULTS. 

At this point the principal results can be given and their relation to the given problem 

explored. The first of these results appears in the following theorem. 

Theorem 1. Let n 2: 3 be a positive integer, m = 3, and GN(R-1,£2) be as defined 

with N ~ 2n, and £1 +£2 ~ N- 1. Then the independence number f3(G N(f.b f.z)) ~ n 

with equality if and only if N = 2n, n is even and £1 = £2 = n/2. When equality occurs 

G N(n/2, n/2) = n/2(K4- e), n/2 disjoint copies of a K4 minus one edge e. 

This theorem has as an immediate corollary the conjectured value for N(3, n). Theorem 

1 gives that there is no labelling with distinct matrix entries unless N 2: 2n(N 2: 2n + 1) 

for n even (odd). In addition the labelling described earlier show these inequalities are 

equalities. These facts are summarized in the following corollary. 

Corollary 2. 

{ 

2n for n even,n > 3 
N(3,n) = 

2n + 1 for n odd,n 2: 3. 

When n is odd there are at least three different "good" labellings. Two of these were 

described earlier, prior to the conjecture. A third simply labels the rows 1, 2, ... , n and 

the columns 1, n + 1, 2n + 1. This last labelling is natural, but can't be extended in the 

obvious way when m > 3. It should also be observed that each of these three labellings 

have different largest sum which appears in its 3n entries. They are 3n + 3 and 4n for the 

two labellings given earlier and 3n + 1 for the one just given. This suggests a refinement 

of the problem to not only find the smallest value of N which gives a "good" labelling, but 

find the one which makes the largest of the mn entries in the matrix as small as possible. 

The problem is still unanswered in the general case (when m > 3). Although this ques

tion is not answered here, one can prove a result which gives credibility to the conjectured 

values of N. Consider the graph GN(£1,£z, ... ,f.m-d when £1 = £2 = ··· = R.m-1· For 

convenience denote this graph G N(£: m- 1) where£.= £1 = · · · = lm-1· Further assume 

N ~ (m+ 1)n/2 ([(m+ 1)n+ (m -1)]/2) for n even (odd) with m, n 2: 4 and (m -1)£ < N. 

Under these conditions one can prove the following result. 

Theorem 3 The clique covering number B( G N( £ : m - 1)) ~ n with equality if and only if 

{ 

n/2 for n even , 

f.= (n + 1)/2 for n odd.· 

When equality occurs 

{ 

£(Km+1 -e) for n even 
GN(£: m -1) = 

(£- 1)(Km+l- e) U Km for n odd, 

and fJ(G N(P.: m- 1)) = f3(G N(£: m- 1)). 

A consequence of this result is that if either the rows or the columns have labels which 
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form an arithmetic progression, then any good labelling needs its largest label to be as large 

as the conjectured value for N. The details of this interpretation will not be given, since 

this would focus too heavily on speciallabellings. The consequence itself is stated formally 

in the following corollary. 

Corollary 4. Restrict the labellings of the m x n matrix to ones where either the row 

labels or the column labels fo:r:m an arithmetic progression. Then the value of N = N(m,n) 

is as given in the conjecture. 

In the remainder of the paper only the proof of Theorem 1 will be given. There are two 

primary reasons for not including the proof of Theorem 3 and its corollary. They are that 

these results deal with special labellings away from the focus of the paper, and detailed 

proofs would require some tedious calculations. 

In order to prove Theorem 1 it is best to investigate some of the structure of G N = 

GN(£1,£2). This will be done in a sequence of four lemmas. Since theN vertices of GN 

are the first N positive integers, the vertex set of this graph will be assumed ordered (in 

its natural way). Also it will be assumed throughout the remainder of the paper that 

£1 ~ £2 ~ · · · ~ P.m-1 with I:b:;11 f.t ~ N - 1; in particular for m = 3,£1 ~ £2 and 

£1 + £2 ~ N- 1. 

Lemma 1. Let H be a subgraph of G N spanned by any set of £1 + £2 consecutive vertices 

of GN. Then H = (P.l£2)C(l1 +l2 )/(l1 ,e
2

), i.e. H consists of (1~1,£2) disjoint cycles on (£1 + 

£2)/(£1,£2) vertices where (£1.£2) is the GCD of £1 and £2. 

PROOF: Without loss of generality we can assume that the vertices of Hare 1, 2, ... , £1 +£2. 

Each vertex i has precisely two of the four adjacencies, i + £1, i + £2, i- £1, i- £2, so that H 

is 2-regular. Furthermore if i + £1 > £1 + £2, then 1 ~ i- £2 < i,. and i- £2 = i + £1 (mod 

"-1 + £2). Likewise if i - "-1 < 1, then i < i + "-2 ~ £1 + £2 and i - £1 = i + £2 (mod £1 + £2). 

Hence one can describe H in an equivalent way by assuming its vertex set is Zt
1
+lz (the 

integers modulo £1 + £2) with two vertices adjacent when their difference is £1 (or £2.) For 

such a graph H it is well known that it is the union of cycles as described. • 

The result of Lemma 1, that each interval of:£1+ £2 vertices in G N is a union of cycles, 

is not surprising. The reader should not mistakenly assume that this makes G N easy to 

visualize. Remember for N large with respect of £1 + £2, most vertices are of degree six, 

and each pair of vertices with difference £1 + £2 are adjacent. 

There are two additional subgraphs in G N which are used in the proof of Theorem 

1. For convenience these subgraphs will be given special names. The first of these, 

a sunflower graph, will consist of a cycle ( v1, v2, ... , Vr) together with a set of indepen

dent vertices W = {WI, w2, ... , Wt} such that 

(1) the adjacencies of each wi in W consist of three consecutive vertices 

vk,, vk,+I, vk.:+2 of the cycle, and 
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(2) if vki, vki+1 vki+2 and vk;, vkJ-+1, vk;+2 are the respective adjacencies of 

Wi -=f. wj,wi,wjEW, then vki+1 ¢:. {vk;,vk;+1,vk;+2} (and thus Vki+l ¢:. {vki' 

vki+l' vki+2}) 

The second subgraph, a fan graph, consists of a cycle together with two vertices x and 

y off the cycle such that (1) xis adjacent toy, and (2) there exist three consecutive vertices 

Vi, vi+b Vi+2 on the cycle such that the remaining adjacencies of x are Vi and vi+1 and the 

remaining adjacencies of y are vi+1 and vi+2· 

Lemma 2. Let 1::; t::; £1::; £2. Consider a set L = {vt,v2, ... ,vl1+lz,wl,w2, ... ,wt} of 

ordered vertices in G N where the first £1 + £2 are consecutive and where each wk satisfies 

1 :S wk - Vt1 +lz ::; £1. Then the subgraph spanned by L is a disjoint union of cycles and a 

nonempty collection of sunflower graphs. 

PROOF: The first £1 +fz vertices of L form a disjoint union of cycles by Lemma 1. Consider 

the set {WI, w2, ... , wt} of remaining vertices of L. Clearly no wi is adjacent to Wj since 

lwi- wjl < £1. Also the adjacencies of wi in the set of given vertices are wi- £1, wi- £1-

£2, wi- £2 and these form a two edge path on one of the cycles of the first £1 + £2 vertices. 

Thus condition (1) of the definition of a sunflower graphs holds. Suppose condition (2) of 

this definition fails to hold. Then there exists a Wi I- Wj such that wi - £1 - £2 is equal 

to one of w; - ill w; - £1 - lz or wj - lz. This gives lwi - w;l = £1 or £2 , contrary to 

iwk - Vt1 +lzl ::; £1 for all 1 ::; k ::; t. Hence the vertices of L span a disjoint union of 

sunflower subgraphs of G N and cycles. 

Lemma 3. Consider a set L= {v1,v2, ... ,vl1+lz,vl1+lz+1,vl1+lz+2} ofordered vertices 

in GN where the first £1 + £2 are consecutive, Vt1 +lz+2 - Vt1+lz+1 = £1, and Vt1+lz+2 -

Vt1 +lz ::; £2. Then the subgraph spanned by L is a disjoint union of cycles and a fan graph. 

PROOF: The first £1 + £2 vertices of L span a disjoint union of cycles. Vertices vlt+lz+2 

and Vt1 +lz+l are adjacent to each other and commonly adjacent to vl1 +lz+2- £1-£2. Also 

vlt+lz+2 is adjacent to vlt+lz+2 - £2 and vl1 +lz+1 is adjacent to vl1+lz+1 - £1- lz. Since 

Vt1+lz+1- £1- fz, Vt1+lz+2- £1-£2, Vt1+lz+2- £2 is a two edge path on one of the cycles, 

the subgraph spanned by Lis as described. 

Lemma 4. Let H be either a sunflower sub graph or a fan sub graph of G N. Then the 

independence number f'(H) < IHI/2. 

PROOF: Note that both graphs are Hamiltonian so the result follows if !HI is odd. There

fore assume JHI is even. In case H is a sunflower subgraph let z be any of the t vertices 

off the cycle with vll v2, v3 its adjacencies on the cycle. In case H is a fan subgraph let z 

and v3 be its adjacent pair off the cycle, v2 their common adjacency on the cycle and v1 

the remaining adjacency of z on the cycle. For both cases consider the graph H- {vz,z}. 

This graph is a Hamiltonian path from v1 to v3 on an eve~ number of vertices. Thus if A 

is a largest independent set in H then !An (V(H- {~z,z}))J::; (JHI- 2)/2, and A does 
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not contain both v1 and va. Further if it contains either v1 or va, then A does not contain 

either z or v2. Hence jAj ~ (jHj- 2)/2 < jHj/2. 

Proof of Theorem 1. The proof is divided into two cases. 

Case I. £1 = £2 

For this case partition the vertex set into £1 classes A1, A2, .. . , Ae1 as follows: for each 

i, 1 ~ i ~ £1, let Ai = {xjx is a vertex (positive integer) such that £1 divides xi} Thus if 

N = q£1 + r with 0 ~ r < .e, Aj contains the q vertices i, i + £1, ... , i + (q- 1)£1 and (when 

i ~ r) the additional vertex i + q£1. 

Assume the elements (vertices) in each Ai are in their natural order. Then from the 

definition ofGN = GN{£1,£2) any three consecutive elements in Ai form aKa (a triangle) 

and any four consecutive ones form a K4 - e. Since N ;::: 2£1 + 1 the vertices of G N 

are covered by a disjoint union of edges and traingles. Furthermore this covering can be 

assumed to include at least one triangle, unless N = 4£1, in which case G N is covered by 

£1 disjoint copies of K4 - e. But N ~ 2n so this covering implies (3( G N) ~ n with equality 

occurring precisely when n is even, N = 2n, and £1 = n/2. 

Case II. £1 _=f. £2. 

First set N = q(£1 +i2)+r where 1 ~ r ~ £1 +£2 and partition theN vertices ofGN = 
G N(£1, £2) into q+1 classes Bb B2, ... , Bq+1 as follows: let Bi = {xj(i-1) (£1 +£2)+1 ~ x ~ 

i( £1 + l2)} for i = 1, 2 ... , q and let Bq+ 1 = { q( £1 + £2) + 1, q( £1 + £2) + 2 ... , q( £1 + £2) + r}. 

Since £1 + £2 ~ N - 1, it follows that q ;::: 1 so that there are at least two classes in this 

partition. 

Set r = s£1 +u where 0 ~ u < £1. Next partition the r elements of class Bq+l differently 

depending on whether u =f. 0 with s even, u =f. 0 with s odd, u = 0 with s odd , or u = 0 

with 8 even. Each of these possibilities is considered as one of four separate subcases. 

Similarities between the individual subcases will be used to shorten the argument. Each 

Bi is always assumed ordered in the natural way. 

Subcase 1. u =f. 0 and 8 is even. 

Split Bq+1 into two sets B~ and B~ as follows: place the first u elements in B~ and 

the remainder in B~. Since jB~j = s£1 with seven, the elements of B~ can be covered by 

(8/2)ll disjoint edges matching its vertices by adjacent pairs ofthe type x,x+£1. Also by 

Lemma 1 the subgraph L spanned by Bi{1 ~ i ~ q r- 1) is a union of cycles. Hence the 

subgraph 
q-1 

< U B-uB"> t u 

i=l 

spanned by these Bi and B~ satisfies 

q-1 q-1 

[3(< u Bi u B~ >)~I u l:!i u B~l/2. 
i=l i=1 
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In addition by Lemma 2 H =< Bq U B~ > consists of a union of cycles and a nonempty 

collection of sunflower graphs. Hence by Lemma 4 f3(H) < IHI/2 implying 

q-1 

f3(GN) <(I UBi U B~l + IHI)/2 :'S N/2 :'S n. 
i=1 

Subcase 2. u =f. 0 and 8 is odd. 

In this case split Bq+I into fo~r sets C1. B~, C2, and B~, placing the first u elements of 

Bq+1 in C1, the next £1 - u into B~, followed by the next u into C2. Place the remaining 

(8- 1)£1 into B~. Note that each vertex x in C1 can be matched with the vertex x + £1 in 

C2, so that < C1 u C2 > can be covered by u disjoint edges. Also, as in Subcase 1, (since 

8- 1 is even) 

q-1 q-1 

!3( < u Bi u B~ >) :-:; I u Bi u B~l/2. 
i=1 i=1 

Thus letting H =< Bq U B~ > it follows similar to Subcase 1 that 

q-1 

f3(GN) :'S /3(< UBi U B~ >) + /3(< C1 U C2 >) + f3(H) < N/2 :'S n. 

i=1 

Subcase 3. u = 0 and 8 is odd. 

Again split Bq+1 into two sets B~ and B~, the first £1 elements placed in B~ and the 

remaining ones in B~. Then IB~I = (8- 1)£1 so that the elements of B~ can be covered 

by [(8- 1)/2]£1 disjoint edges as was done in Subcase 1. The rest of the argument for this 

subcase parallels that of Subcase 1. The graph H =< Bq U B~ > satisfies f3(H) < IHI/2 
by Lemma 2 and 

q-1 q-1 

!3(< U BiuB~ >):-:;I U BiuB~I/2 
i=1 

so that f3(GN) < N/2 :'S n. 

Subcase 4. u = 0 and 8 is even. 

i=1 

In ths case split Bq+l into sets B~ and B~ letting B~ = { v, u + £1}, where v is the first 

element in Bq+1 1 and B~ = Bq+l- B~. Clearly B~ has an even number of elements which 

can be paired, pairing adjacent vertices of the type x, x + £1. Hence /3( < B~ >) :-:; IB~I/2. 

Also H = < Bq U B~ > satisfies the conditions of Lemma 3 so that it is the disjoint union 

of cycles and a fan subgraph. Hence by Lemma 4, f3(H) < IHI/2. Thus 

q-1 

f3(GN) :'S /3(< UBi U B~ >) + f3(H) < N/2 :-:; n 

i=1 

completing the proof. 
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