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Abstract. The irregularity strength of K,. -mK2 is 3 unless n= 4m, n= 4m+ 1 
orn= 4m -1. 

An irregular weighting of a graph G is an assignment of positive integers to 
the edges of G so that the weighted degrees of G are all distinct. The irregular
ity strength, s( G), of G is the minimum integer s such that G has an irregular 
weighting with maximum weights. This concept has been introduced in [1], 
followed by several subsequent papers ([2], [3], [4], [5], [6]). 

This note answers a question raised in [4], to determine s(Kn - mK2), 
where Kn is the complete graph on n vertices and mK2 denotes m disjoint 
edges. The proof method applied here has been used earlier in [2] and in [5] to 
show that s( G) > 2 for certain graphs G. 

Theorem. s( K n - mK 2) = 3, unless n = 4 m, n = 4 m + 1, n = 4 m - 1 . 
In the exceptional cases, the irregularity strength is 2. 

Proof: Assume that we have an irregular weighting of Kn- mK 2 using weights 
1 or 2. The minimum (weighted) degree is at least n- 2 and the maximum 
degree is at most 2n- 2. Irregularity implies that the degrees are either n- 2, 
... , 2 n- 3 (lower segment) or n- 1 , ... , 2 n- 2 (upper segment). 

Case 1. n = 4 k + 2. This is impossible since the lower or upper segment 
would consist of 2 k + 1 odd numbers. 

Case 2. n = 4 k + 1. The lower segment is impossible (odd number of odd 
degrees). Assume we have the upper segment. Removing the vertex of degree 
8 k, we get an irregularly weighted graph to be considered at Case 4. 

Case 3. n = 4 k- 1. The upper segment is impos,sible (odd number of odd 
degrees). Assume that we have the lower segment. 'Adding a new vertex with 
weight 2 edges to all other vertices, we get an irregular weighting leading to 
Case4. 

Case 4. (Essential case) n = 4 k. Let A denote the set of vertices with the 
smallest 2 k degrees and let B denote the set of vertices with the largest 2 k 
degrees. Set 

W(A,B) = :Lw(x,y),, 

xEA 
'1/EB 
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where w( x, y) is the weight of the edge xy. It is obvious that 

W(A,B) ~ l:(d(y) -2(2k-1)) = l:d(y) -4k(2k-1) (1) 
yEB yEB 

with equality in (1) if and only if B induces a complete graph of weight 2 edges. 
Also, · 

W(A, B) ~ l:(d(x)- 2k + 2) = L d(x)- 2k(2k- 2) (2) 
xEA 

with equality in (2) if and only if A induces K2k- k K 2 of weight 1 edges. 
Combining (1) and (2) we have 

L:d(y) -4k(2k-1) ~2:d(x) -2k(2k-2) (3) 
yEB xEA 

Since (3) becomes equality by substituting either the lower or the upper seg
ment for the degrees, equality must hold in (1) and in (2). Therefore, n = 4 m. 

At this point it is proved that s( K n - mK 2 ) ~ 3 , except, possibly when 
n = 4 m, n = 4 m + 1, n = 4 m - 1. To finish the proof we have to show that 
irregular weighting with weights 1, 2 is possible in the exceptional cases and 
irregular weighting is possible with weights 1, 2, 3 in all other cases. These 
weightings have been given in [2] and in [ 4], respectively. To keep this note 
self contained, the required weightings are described below. 

LetX = {x1,X2,··· ,X2m}. y = {1/1,1/2,··· ,1/2m} and identify K4m

mK2 with the complete graph on vertices XUY from which the edges X2i-1X2i 
are missing fori= 1, 2, ... , m. Define the set E as 

E ={(xi, 1/j): i + j::; 2m+ 1}. 

Consider two weightings of the edges of K4m- mK2. In weighting A, assign 
weight 2 to E and to pairs of Y, all other edges get weight 1. In weighting 
B, the pairs of X and E get weight 1 and all ;other edges get weight 2. It is 
easy to check that both A and Bare irregular weightings, the weighted degree 
set under A is { 4 m - 1 , 4 m, ... , 8 m - 2} and under B is { 4 m - 2 , 4 m -
1, ... , 8m-3}. To get an irregular weighting for K4m-1 - mK2, use A on 
K4m- mK2 and delete 1/1· To get an irregular weighting for K4m+1- mK2, 
use Bon K4m- mK2 and add a new vertex adjacent to all other vertices with 
weight 2 edges. This argument shows that the irregularity strength is 2 in the 
exceptional cases. 

To show that s(Kn- mK2) ::; 3, define a weighting Con K4t- tK2 by 
modifying its weighting A by adding one to the weights of the edges within Y. 
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Assuming t > 1, d(x1) ~ d(y2t) - 3 under C. To get an irregular weighting 
for K4t- mK2. modify Cas follows. If m < t, add t- m edges x 1x2, 
x3 x4, ... , all with weight 1. If m > t, delete m- t edges Y2t-1 yu, Y2t-3 

Y2t-2, .... It is obvious that the weighting we get for K4t- mKz is irregular. 
It is straightforward to modify this construction for n ;t 0 (mod 4). This 
(and the case t = 1) is leftto,the reader. 
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