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On Graphs Of Irregularity Strength 2

R. J. FAUDREE,'! A. GYARFAS? and R. H. SCHELP?

1. Introduction

We consider undirected graphs without loops or multiple edges. A weighting of a
graph G is an assignment of a positive integer w(e) to each edge of G. For a vertex
zeV (G), the (weighted) degree d(z) is the sum of weights on the edges of G incident
to z. The irregularity strength s(G) of a graph G was introduced by Chartrand et
al. in [1] as the minimum integer ¢ such that G has a weighting with the following
two properties: '

(1) w(e) <t for all ecE(G)

(i) d(e) # d(y) if 2,46V (G), = # y

Since every graph has two vertices of the same degree, s(G) > 2 for all graphs.
G. Some results and problems concerning the irregularity strength of graphs appear
in [1] and [2]. L

Assume that G is a graph with [V (G)| = n and s(G) = 2. We will determine
the minimum and maximum number of edges in a graph of irregularity strength 2.
We prove that |E(G)| > [(n? — 1)/8] and establish this bound is sharp (Theorem
1). Concerning the upper bound of |E(G)|, Jacobson and Lehel conjectured that.
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|E(G)| < (8) — f(n), where f(n) tends to infinity with n. We prove this conjecture
with f(n) = (n — 1)/4 (Theorem 2). We also show that this upper bound is
best possible in that there exist graphs with n vertices, (3) — [(n — 1)/4] edges of
irregularity strength 2. Perhaps unexpected, we show that all but one graph with n
vertices, and with (3) — [(n — 1)/4] edges are of irregularity strength 2 (Corollary
4). This is a corollary of the following more general result: Let m,n and o be
positive integers such that 2m < n < 4a+1 and let M be a fixed m-element subset
of the vertex set of K,,. If G is a graph obtained from K, by deleting o edges of
the complete graph induced by M, then s(G) = 2 (Theorem 3).

Another corollary of Theorem 3 is the following: if we delete o edges of K,,
in such a way that the deleted edges form a connected graph and a < n/2 — 1,
then the resulting graph is of irregularity strength 2 (Corollary 5). Another special
case of Theorem 3 occurs when the missing edges form a complete subgraph. In
this case we get a necessary and sufficient condition for s(K, — Kn,) = 2, namely
s(K, — Ky») =2 if and only if 2m — 1 < n < 2m? — 2m + 1 (Corollary 6). This
solves a problem which is also due to Jacobson and Lehel.

2. Results

Theorem 1. Let G be a graph such that s(G) = 2 and |V(G)| = n. Then,
|E(G)| > [(n®>—1)/8], and for n = 3 (mod 4), |E(G)| > (n?—1)/8+1. Furthermore
there exist graphs for which equality holds.

Proof. Assume that |V(G)| = n,s(G) = 2, and consider a weighting of G with
1 and 2 such that all degrees of G are different. Set |E(G)| = e; + ez where
e; denotes the number of edges in G with weight ¢ (i = lor 2). Assume that
G has p odd degrees so that p is even. The sum of the odd degrees of G is at
least 1+ 3 + ...+ 2p — 1 = p?, and the sum of the even degrees of G is at least
0+2+...+2(n—p—1)=(n—p)(n—p—1). It is clear that at least one edge of
weight 1 is incident to each vertex of odd degree, and therefore e; > (p/2). Hence,

PPHn—p)ln-p-1)< Y d(z)=2 Y w(e)=4|E(G)|~2¢: < 4|E(G)|-p,
z€V(G) €€E(G)

which implies
(1) (p* + (n —p)(n—p—1) +p)/4 < |E(G)|

The left hand side of (1) is minimum for p = (n — 1)/2 and for this value of p
inequality (1) reduces to

(2) (n* —1)/8 <|E(G)].
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Since p is even, inequality (2) is strict for n = 4m + 3. For this case (n® — 1)/8
is an integer and (n? — 1)/8 < |E(G)|. For all other cases [(n? — 1)/8] < |E(G)]|.
This proves the first part of the theorem.

To prove the second part of the theorem, we define the half complete graph
H,, on the vertex set {ag,ay,...,a,,} as follows. For 0 <¢ < j < m, a; and a; are
adjacent if and only if ¢ + 7 > m + 1. It is easy to check that d(a;), the degree of
a; in a half complete H,, satisfies

7 if 0<2<|m/2
d(“‘)={¢-1 if [m/zjéi/sjm (3)

From (8) it follows that H,, has ((77) + [m/2])/2 edges. We are now able
to describe the graphs which show that equality can hold in Theorem 1. The
construction varies slightly depending upon the remainder of n (mod 4).

Case 1: n = 4m.

Take two disjoint copies of Ha,,—1, one with vertex set A = {ao,a1,...,a2m-1}
and the other with vertex set B = {bg, by,...,b2m—1}. Add edges a;b; for m < ¢ <
< 2m — 1. Assign weight 2 to all edges of this graph. Using (3), the (weighted)
degree sequence of this graph is 0,0,2,2,4,4,...,4m — 2,4m — 2. Finally, add the
edges ag;bg;41 for 2 = 0,1,...,m — 1 and assign weight 1 to each of them. The
degree sequence of the constructed graph is 0,1,2,...,4m — 2,4m — 1, and it is
easy to check that the graph has 2|E(Hzm-1)| +2m = (> 1) + (m—1) + 2m =
= 2m? = [(n? — 1)/8] edges.

Case 2: n=4m+1

Again take two disjoint copies of Hj,,_1, one with vertex set A and one
with vertex set B. Add a new vertex ¢ and make it adjacent to a; and to b; for
m <1< 2m— 1. If all of these edges are of weight 2 and we add edges ag;b2;41 for
0 €1 £ m— 1 with weight 1, the derived graph is obtained. Simply observe that
the weighted graph constructed has degree sequence 0,1,2,...,4m—1,4m and the
number of edges is 2|E(Ham—1)| + 3m = 2m? + m = (n® — 1)/8.

Case 8: n=4m+ 2

Take two disjoint copies of Hy,, one with vertex set A and the other with
vertex set B. Insert edges a;b; for m + 1 < ¢ < 2m and assign weight 2 to
all edges of this graph. Next insert additional edges ag;bgiy1, for 1 = 0,1,...,
m — 2, and azmbam—1, G2mbam—2 with each of these edges assigned weight 1. We
have the desired graph, since the degrees are all distinct (the degree sequence is
0,1,2,...,4m and 4m-+2) and the number of edges is 2| E(Hzpm )|+ m+(m—1)+2 =
=2m? +2m+ 1= [(n? —1)/8].

Case 4: n=4m+3

Take two half complete graphs with vertex sets A and B. Add all edges a;b;
for 1 < ¢ < 2m — 1. Take three new vertices z,y and z and add the edge y=z
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and the edges a;z, b;z for m <1 < 2m — 1. Assign weight 2 to all edges of this
graph. At this point d(z) = 0,d(a,) = d(b,) = 0,d(a;) = d(b;) = 2¢ + 2 for
i=1,2,...,2m — 1,d(y) = 2, and d(z) = 4m + 2. Next, to the constructed graph
add edges zy, £Go,a2m—12 and agit1bz;42 with each of these assigned weight 1,
(0 < ¢ < m —2). The graph which results has the following degrees: d(bo) =
= 0,d(ao) = 1,d(z) = 2,d(y) = 3 ,d(2) = 4m + 3, and by, ay,a2,b2,...,b2m—1,
@2m—1 have degrees 4,5,...,4m,4m + 1. Therefore, all the degrees of the graph
are distinct and the number of edges is 2| E(Hzpm—1)|+2m—1+1+2m+34+m—1=
=2m?+3m+2=(n?-1)/8+1. B

Theorem 2. Let G be a graph such that |V(G)| = n, and s(G) = 2. Then,
|B(G)| < () — (n = 1)/4.

Proof. Assume that G has a weighting with 1 and 2 such that all the (weighted)
degrees of G are different. Let a = (3) — |E(G)|, the number of edges which need
to be deleted from K,, to obtain the graph G. Set p = [n/2] and ¢ = |n/2], and
partition the vertices of G into two sets A and B such that |A| = p,|B| = ¢, and
d(z) < d(y) for all zeA and yeB. Thus A contains the p vertices of smallest degree
and B contains the g vertices of the largest degree.

We first estimate the weighted edge sum ) w(z,y) = W(4, B). On one

zeA,yeB
hand, a vertex yeB contributes at least d(y) — 2(¢ — 1) to W (4, B), so that

(4) W(A,B) 2 (d(y) —2(¢— 1)) = ) _d(y) —2¢(a— 1)

yeB yeB

On the other hand, a vertex zeA contributes at most d(z) — (p — 1 — da(z)) to
W (A, B), where d4(z) denotes the degree of x in the subgraph induced by A in G.

Therefore

W(4,B) < Y (d(e) - (p— 1~ da(=)) = Y d(=) — plp— 1) + 3 du(2)

zeA zeA zcA

Since Y da(z) is equal to twice the number of edges of G in A, 3" d4(z) < 2a,
zeA zeA
and

(5) W(A,B) < Z d(z) — p(p — 1) + 20
zeA

Let t denote mifr} d(y). Then since the vertices of G have distinct degrees,
ye

Sdly) 2t+(t+1)+...+(t+g—1) = g(2t + g~ 1)/2. Similarly, } d(z) <
yeB zeA

<@t-1)+(t-2)+...+(t—p) = p(2t — p—1)/2. Using these inequalities,
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we obtain from (4) and (5) the inequality p(2t —p — 1)/2 —p(p — 1) + 22 >
q(2t + ¢ — 1)/2 — 2¢(g — 1). From this it follows that

20> (p—g)((3n - 1)/2-t) +q. (6)

If n is even then p = ¢ = n/2 and (6) gives 4o > n. If n is odd then
p=(n+1)/2,¢ = (n— 1)/2 and we have 2a > 2n — 1 —¢t. Since the maximum
degree of G is at most 2(n—1), t < 2(n—1) - ((n—1)/2-1) =3(n—1)/2+ L
Therefore 2a > 2n — 1—t > (n — 1)/2, which implies in this case that 4a+1 > n.
Therefore,in general, o > (n — 1)/4, and the theorem is proved. ®

Theorem 3. Let m,n, and o be fixed positive integers with 2m < n < 4o+ 1,
and let M be a fixed m-element subset of the vertex set of K,,. If G is a graph
obtained from K, by deleting o edges of the complete subgraph induced by M,
then s(G) = 2.

Proof. Assume G is defined as described in the theorem. We shall prove that
for even n, (2m < n < 4a) G has a weighting with 1 and 2 such that all the
degrees are distinct and d(z) < 2(n — 1) for all zeV(G). From this the theorem
follows.

To see that this gives the result for n odd, simply delete a vertex x of maximum
degree from G and assign the weighting of 1 and 2 to edges of G—z as just mentioned
for even order graphs. Extend this weighting to G by assigning weight 2 to all edges
incident to x.

Assume that n is even, 2m < n < 4o, and set k = n/2. Assume that
the vertex set of G is {a1,a2,...,ak,b1,b2,...,bx}. We may also assume that
M = {ak-m+1,%k—m+2,---,0x}. Let H be the graph induced by the vertex set
{a1,a2,...,ax}. We may clearly assume that dy(a;) > dy(a;) for k—m+1 <
<t <y <k Sincedy(a;)) =k—1for1<i<k-m, k—1=dg(a) =...
= dg(ak-m) 2 du(ak-m+1) = ... > dy(ak).

We wish to assign labels 0,1,2,...,k — 1 to the vertices ay,az,...,ax (with
L(2) the label of a;) which satisfy the following properties:

(i) L6) # L(j) for i # 5,
(1) dy(a;) + L(2) # du(aj) + L(j) for i # 7, and
(iii) if L(z) = k — 1, then dg(a;) < k — 1. ~
Before showing that such a labelling exists, we apply it to complete the proof of

the theorem. Consider a bipartite graph B with color classes X = {z1, 23 ..., zx}
and Y = {y1,¥2 ..., yx} which satisfies the following condition: -

d(z;) =d(y;) =2 -1 for 1=1,2,.,.,k

Consider the following one-to-one mapping f from the vertices of B to the
vertices of G. The vertex z; of B is associated with the vertex a; of G with label i—1,
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'1 e., f(z:) = a; if L(§) = i — 1. The vertex y; of B corresponds to b‘,z e. f(y,) = b
The reqmred f exists by property (2 ( ).

. We aré now ready to define the weighting of G. All edges in the ‘subgraph
induced by {a;, az,...ax} get weight 1. All edges in the complete subgraph induced
- by {b1,bz,...;bx} get weight 2. An edge a;b; gets weight 2 if and only if a;b; is
the image of an edge of B under f, otherwise, a‘b, gets weight 1.

We claim that all the (weighted) degrees of G are different under this weighting.

From the definition of the welghtmg

(M d(a;) =dH(a,-) +L(t)+ kforl <i<k, and
® Cd(b) =i—1+k+2(k—1)forl <i<k

-Since property (ii) holds for the labelling L, it follows from (7) that d(a;) # d(a;-)’
for 1 # j. Clearly, from (8), d(b;) # d(b;) for ¢ 5 5. If d(a;) = d(b;), then from (7)
and (8) we have ,

du(a) + L) +k=7—1+k+2(k—1),

so:tha.t
’ dg(a;)+ L(z) =5+ 2k - 3.

Since ‘
dg(a;) <k—-1, L(?) <k—1landj>1,

_this equality can hold if and only if
dH(a,-) #kﬁl, L('I.) = k—1.

However, property (iii) excludes this possibility. ;

Finally, we must verify the maximum degree of G is less than 2(n-1). Ob-
* viously, the maximum degree of G is the degree of b, and by (8), d(bx) =
=k—1+4k+2(k—1) = 4k — 3 = 2n — 3. Thus the theorem follows from the
existence of the required labelling.

The labelling we describe first assigns labels sequentially to the vertices
Qk—mm+t, Gk—m+t+1,-:-,0r Where t is the smallest nonnegatlve integer such that
du(ak—myt) < k— 1 Thli assignment is as follows: let L(k—m+t)=k—1,and
if L(k — m + 1) has been defined for ¢t <! < k — 1, then define L(k —m +1 +'1)' =
=max{L(k—m+1) + di(ak—m+i) — k+1,m — I —1}. The remaining labels L(z),
for1 <1< k—m+t—1, can be assigned arbitrarily using each of the unused
labels exactly once.

We need to establish that the labelling just described satisfies properties
. (5) and (42), since property (44%) clearly holds. First observe that L(k — m +
+l) +'dp(ak—m+1) —k+1 < L(k —m+1) for t < I, and if for some j, 7.>
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>t+1, L(k—m+7J)=m—j, then L(k—m+1) =m—1 for allj <t < m. Thus
in particular we have L(k—m+t) =k—1> L(k—m+t—1)>...> L(k) >0, so0
that property (¢) holds and property (42) holds when ¢,5 < k —m+t — 1 or when
k—m+t<zs,7.

It only remains to show that property (ii) holds when: < k—m+t—1 < j. To
do this note that in the labelling described L(k) = 0. If this were not the case, then
max{L(k—m+1)+dg (ax_m41)—k+1;m—I-1} = L(k—m+{)+dp (agp—m+1)—k+1
for all t <1< m — 1. From this it would follow that

L= 3 dula) - (m—t)-1)
i=k—m-+t
=(m—t+1)(k—1)—2a—dg(ax) — (m—t)(k—1)
= (k—1) — 2a — dg(ax) < 0,since k < 2a,

which is impossible. Further the recursive definition of L{j) for k—m+t < 3, gives
for1 <t <k—-m+4t—1, L(z) # L(j)+du(a;) — (k—1) = L(7) +du(a;) — da(ai).
Thus property (ii) also holds fori < k—m+¢t—1and j > k— m+¢ and the
labelling satisfies all required conditions. M

It is worth mentioning some special cases of Theorem 3. If we remove oo =
= [(n — 1)/4] edges of K,, and the removed edges do not form a matching then
the conditions of Theorem 3 are satisfied with m = 2a — 1. Therefore we have

Corollary 4. If G has ('2‘) — [(n — 1)/4] edges and G is not a matching, then
3(G) = 2.

Concerning the case not covered by Corollary 4 we note without proof that
s(Kn— M) =2for n=0,1,3 (mod 4) but s(K, — M) =3 for n =2 (mod 4). (M
is a matching with [(n — 1)/4] edges.)

Notice that Theorem 2 and Corollary 4 together imply that [(n — 1)/4] is
the minimum number of edges which need to be removed from K, such that the
resulting graph has strength 2.

Let G be a graph on n vertices with o “missing edges” such that [(n—1/4] <
< a < n/2—1 and the missing edges determine a connected subgraph. Since the
missing edges are incident to at most a + 1 < n/2 vertices, Theorem 3 gives the

following.

Corollary 5. If G is a graph obtained from K, by deleting o edges,
[(n—1)/4] < o < n/2—1, such that the removed edges induce a connected
graph, then s(G) = 2.

Finally, consider the case when G = K,, — K,,, and 2m < n < 2m? — 2m + 1.
We can apply Theorem 3 with o = (') to obtain the following result.
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Corollary 8. If G = K,, — K,,, and 2m < n < 2m? — 2m + 1, then s(G) = 2.

Remark: Theorem 2 implies that for n > 2m? — 2m+ 2, s(K,, — K,) > 3. In fact,
it is easy to show that in this case that s(K, — K,,) = 3. It is also easy to show that
$(Kn—Kp)=2forn = 2m — 1 and that s(Kn — K,n) > 3 for n < 2m — 2. These
remarks show that s(K, — K,,;) =2ifand only if 2m — 1< n < 2m? - 2m+ 1.
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