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On Graphs Of Irregularity Strength 2 

R. J. FAUDREE, 1 A. GYARFAS2 and R. H. SCHELP3 

1. Introduction 

We consider undirected graphs without loops or multiple edges. A weighting of a 
graph G is an assignment of a positive integer w( e) to each edge of G. For a vertex 
x€V(G), the (weighted) degree d(x) is the sum ofweights on the edges ofG incident 
to x. The irregularity strength s( G) of a graph G was introduced by Chartrand et 
al. in [1] a.s the minimum integer t such that G has a weighting with the following 
two properties: 

(i) w( e) ::; t for all e€E( G) 

(ii) d(x) =/: d(y) if x, y€V(G), x =/: y 

Since every graph has two vertices of the same degree, s(G) 2:: 2 for all graphs 
G. Some results and problems concerning the irregularity strength of graphs appear 
in [1] arid [2]. 

Assume that G is a graph with IV (G) I = n and s (c) = 2. We will determine 
the minimum and maximum number of edges in a graph of irregularity strength 2. 
We prove that IE(G)I2:: f(n2

- 1)/81 and establish this bound is sharp (Theorem 
1). Concerning the upper bound of IE(G)I, Jacobson and Lehel conjectured that . 
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IE( G) I~(~)- f(n), where f(n) tends to infinity with n. We prove this conjecture 
with f(n) = (n- 1)14 (Theorem 2). We also show that this upper bound is 
best possible in that there exist graphs with n vertices, (2) - r ( n - 1) 141 edges of 
irregularity strength 2. Perhaps unexpected, we show that all but one graph with n 
vertices, and with (2) - r ( n - 1) I 41 edges are of irregularity strength 2 (Corollary 
4). This is a corollary of the following more general result: Let m, n and a be 
positive integers such that 2m ~ n ~ 4a + 1 and let M be a fixed m-element subset 
of the vertex set of Kn. If G is a graph obtained from Kn by deleting a edges of 
the complete graph induced by M, then s(G) = 2 (Theorem 3). 

Another corollary of Theorem 3 is the following: if we delete a edges of Kn 
in such a way that the deleted edges form a connected graph and a ~ nl2- 1, 
then the resulting graph is of irregularity strength 2 (Corollary 5). Another special 
case of Theorem 3 occurs when the missing edges form a complete subgraph. In 
this case we get a necessary and sufficient condition for s(Kn - Km) = 2, namely 
s(Kn - Km) = 2 if and only if 2m- 1 :::; n :::; 2m2 -2m+ 1 (Corollary 6). This 
solves a problem which is also due to Jacobson and Lehel. 

2. Results 

Theorem 1. Let G bea graph such that s(G) = 2 and IV(G)I = n. Then, 
IE( G) I~ r(n2 -1)IB1, and for n = 3 {mod 4}, IE( G) I~ (n2 -1)l8+1. Furthermore 
there exist graphs for which equality holds. 

Proof. Assume that IV(G)I = n, s(G) = 2, and consider a weighting of G with 
1 and 2 such that all degrees of G are different. Set IE( G) I = e1 + e2 where 
ei denotes the number of edges in G with weight i (i = 1 or 2). Assume that 
G has p odd degrees so that p is even. The sum of the odd degrees of G is at 
least 1 + 3 + ... + 2p - 1 = p2 , and the sum of the even degrees of G is at least 
0 + 2 + ... + 2(n- p- 1) = (n- p)(n- p- 1). It is clear that at least one edge of 
weight 1 is incident to each vertex of odd degree, and therefore e1 ~ (pl2). Hence, 

p2 +(n-p)(n-p-1) ~ L d(x) = 2 L w(e) = 4IE(G)I-2el:::; 4IE(G)I-p, 
xEV(G) eEE(G) 

which implies 

(1) (p2 + (n- p)(n- p- 1) + p)l4 ~ IE( G) I 

The left hand side of (1) is minimum for p = (n- 1)12 and for this value of p 
inequality (1) reduces to 

(2) (n2
- 1)18 ~ IE(G)I. 
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Since p is even, inequality (2) is strict for n = 4m + 3. For this case (n2 
- 1)/8 

is an integer and (n2
- 1)/8 < IE(G)I. For all other cases f(n2 - 1)/81 ~ IE(G)I. 

This proves the first part of the theorem. 

To prove the second part of the theorem, we define the half complete graph 
H m on the vertex set { a0 , a1, ... , am} as follows. For 0 ~ i < j ~ m, ai and ai are 
adjacent if and only if i + j ~ m + 1. It is easy to check that d(ai), the degree of 
ai in a half complete H m satisfies 

{ 
i if 0 ~ i ~ l m/2 J 

d(ai)= i-1 if lm/2J~i~m (3) 

From (3) it follows that Hm has({';)+ lm/2J)/2 edg~s. We are now able 
to describe the graphs which show that equality can hold in Theorem 1. The 
construction varies slightly depending upon the remainder of n (mod 4). 

, Case1: n=4m. 

Take two disjoint copies of H2m-l, one with vertex set A= {ao, a1, ... , a2m-d 
and the other with vertex set B = {b0 , b11 ••• , b2m-1}· Add edges aibi form~ i ~ 
~ 2m- 1. Assign weight 2 to all edges of this graph. Using (3), the (weighted) 
degree sequence of this graph is 0, 0, 2, 2, 4, 4, ... , 4m-2, 4m- 2. Finally, add the 
edges a2ib2i+1 for i = 0, 1, ... , m- 1 and assign weight 1 to each of them. The 
degree sequence of the constructed graph is 0, 1, 2, ... , 4m- 2, 4m- 1, and it is 
easy to check that the graph has 2IE(H2m-dl +2m= (2~- 1) + (m- 1) +2m= 
=2m2 = f(n2 - 1)/81 edges. 

Case 2: n = 4m + 1 

Again take two disjoint copies of H2m_ 1, one with vertex set A and one 
with vertex set B. Add a new vertex c and make it adjacent to ai and to bi for 
m ~ i ~ 2m- 1. H all of these edges are of weight 2 and we add edges a2i b2i+ 1 for 
0 ~ i ~ m- 1 with weight 1, the derived graph is obtained. Simply observe that 
the weighted graph constructed has degree sequence O, 1, 2, ... , 4m- 1, 4m and the 
number of edges is 2IE(H2m-l)l +3m= 2m2 + m = (n2

- 1)/8. 

Case 9: n = 4m + 2 

Take two disjoint copies of H 2 m one with vertex set A and the other with 
vertex set B. Insert edges aibi for m + 1 ~ i ~ 2m and assign weight 2 to 
all edges of this graph. Next insert additional edges a2ib2i+b for i = 0, 1, ... , 
m- 2, and a2mb2m-1! a2mb2m-2 with each of these edges assigned weight 1. We 
have the desired graph, since the degrees are all distinct (the degree sequence is 
0, 1, 2, ... ,4m and 4m+2) and the number of edges is 2IE(H2m)l+m+(m-1)+2 = 
=2m2 + 2m+ 1 = f(n2 - 1)/81. 

Case 4: n = 4m + 3 

Take two half complete graphs with vertex sets A and B. Add all edges aibi 
for 1 ~ i ~ 2m - 1. Take three new vertices x, y and z and add the edge yz 
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and the edges ~z, biz for m ~ i ~ 2m- 1. Assign weight 2 to all edges of this 
graph. At this point d(x) = 0, d(a0 ) = d(bo) = 0, d(ai) = d(bi) = 2i + 2 for 
i = 1, 2, ... , 2m- 1, d(y) = 2, and d(z) = 4m + 2. Next, to the constructed graph 
add edges xy, xa0 , a2m-1Z and a2i+lb2i+2 with each of these assigned weight 1, 
(0 ~ i ~ m - 2). The graph which results has the following degrees: d(bo) = 
= O, d(ao) = 1, d(x) = 2, d(y) = 3 ,d(z) = 4m + 3, and b1, a1, a2, b2, ... , b2m-b 
a2m-l have degrees 4, 5, ... , 4m, 4m + 1. Therefore, all the degrees of the graph 
are distinct and the number of edges is 2IE(H2m-dl+2m-1+1+2m+3+m-1 = 
=2m2 + 3m+ 2 = (n2 

- 1)/8 + 1. B 

Theorem 2. Let G be a graph such that IV(G)I = n, and s(G) = 2. Then, 

IE(G)I ~ (~)- (n- 1)/4. 

Proof. Assume that G has a weighting with 1 and 2 such that all the (weighted) 
degrees of G are different. Let a= (;)~IE( G) I, the number of edges which need 
to be deleted from Kn to obtain the graph G. Set p = r n/21 and q = l n/2 J, and 
partition the vertices of G into two sets A and B such that IAI = p, IBI = q, and 
d(x) ~ d(y) for all xEA and yEB. Thus A contains the p vertices of smallest degree 
and B contains the q vertices of the largest degree. 

We first estimate the weighted edge sum 2:: w(x, y) = W(A, B). On one 
XEA,yEB 

hand, a vertex yEB contributes at least d(y) - 2(q- 1) to W(A, B), so that 

(4) W(A, B) ~ I)d(y)- 2(q- 1}) = L d(y)- 2q(q- 1) 
yEB 

On the other hand, a vertex xEA contributes at most d(x) - (p- 1 - dA (x)) to 
W(A, B), where dA (x) denotes the degree of x in the subgraph induced by A in G. 

Therefore 

w (A, B) ~ L ( d( X) - (p - 1 - d A (X)) = L d( X) - p(p - 1) + L d A (X) 

Since 2:: dA(x) is equal to twice the number of edges of Gin A, 2:: dA (x) ~ 2a, 
XEA XEA 

and 

(5) W(A, B)~ L d(x)- p(p- 1) + 2a. 
XEA 

Let t denote min d(y). Then since the vertices of G have distinct degrees, 
yEB 

2:: d(y) 2:: t + (t + 1) + ... + (t + q- 1) = q(2t + q- 1)/2. Similarly,' 2:: d(x) ~ 
yEB XEA 

~ (t - 1) + (t - 2) + ... + (t - p) = p(2t- p - 1)/2. Using these inequalities, 
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we obtain from (4) and (5) the inequality p(2t.- p - 1)/2 - p(p - 1) + 2a ~ 
q(2t + q- 1)/2 - 2q(q- 1). From this it follows that 

2a ~ (P- q)((3n- 1)/2- t) + q. (6) 

H n is even then p = q = n/2 and (6) gives 4a ~ n. H n is odd then 
p = (n + 1)/2, q = (n- 1)/2 and we have 2a ~ 2n- 1- t. Since the maximum 
degree of G is at most 2(n- 1), t ~ 2(n- 1) - ((n- 1)/2- 1) = 3(n- 1)/2 + 1. 
Therefore 2a ~ 2n- 1- t ~ (n- 1)/2, which implies in this case that 4a + 1 ~ n. 
Therefore ,in general, a ~ ( n - 1) /4, and the theorem is proved. • 

Theorem 3. Let m, n, and a be fixed positive integers with 2m ~ n ~ 4a + 1, 
and let M be a fixed m-element subset of the vertex set of Kn. If G is a graph 
obtained from Kn by deleting a edges of the complete subgraph induced by M, 
then s(G) = 2. 

Proof. Assume G is defined as described in the theorem. We shall prove that 
for even n, (2m ~ n ~ 4a) G has a weighting with 1 and 2 such that all the 
degrees are distinct and d(x) < 2(n- 1) for all x€V(G). From this the theorem 
follows. 

To see that this gives the result for n odd, simply delete a vertex x of maximum 
degree from G and assign the weighting of 1 and 2 to edges of G-x as just mentioned 
for even order graphs. Extend this weighting toG by assigning weight 2 to all edges 
incident to x. 

Assume that n is even, 2m ~ n ~ 4a, and set k = n/2. Assume that 
the vertex set of G is {a~, a2 , ••• , ak, b1 , b2 , ••• , bk}· We may also assume that 
M = {ak-m+l, ak-m+2, ... , ak}. Let H be the graph induced by the vertex set 
{a~, a2, ... , ak}· We may clearly assume that dH(cti) ~ dH(a3) fork- m + 1 ~ 
~ i < j ~ k. Since dH(ai) = k- 1 for 1 ~ i ~ k- m, k- 1 = dH(at) = ... 
= dH(ak-m) ~ dH(ak-m+d ~ ... ~ dH(ak)· 

We wish to assign labels 0, 1, 2, ... , k- 1 to the vertices a 1 , a2 , ••• , ak (with 
L(i) the label of ai) which satisfy the following properties: 

(i) L(i) "I- L(j) fori -:f. j, 
(ii) dH(ai) + L(i) "I- dH(ai) + L(i) fori -:f. j, and 

(iii) if L(i) = k- 1, then dH(ai) < k- 1. 

Before showing that such a labelling exists, we apply it to complete the proof of 
the theorem. Consider a bipartite graph B with color classes X= {x1, x2, ... , xk} 
and Y = {Yl, Y2, ... , Yk} which satisfies the following condition: · 

for i = 1, 2, . , .. 'k. 

Consider the following one-to-one mapping f from the vertices of B to the 
vertices of G. The vertex Xi of B is associated with the vertex a3 of G with label i-1, 



244. ON GRAPHS OF IRREGULARITY STRENGTH 2 

-i.e., f(xi) ~ ai if L(j) = i- 1. The vertex Yi of B corresponds to bi, i.e.f(yi) = bi. 
The required f exists by property (i). . 

We are now ready to define the weighting of G. All edges in the subgraph 
induced by {a1 , a2 , ••• ak} get weight 1. All edges in the complete subgraph induced 
by {b 1,b2 , ••• ;bk} get weight-2. An edge aib:i gets weight 2 if and only if aib:i is 
the image of an edge of B under f, otherwise, aib:i gets weight 1. 

We claim that all the (weighted) degrees of G .:U.e different under thisweighting. 
From the definition of the weighting 

(7) 

(8) 

d(ai) =dH(ai) + L(i) + k for ( ~ i ~ k, and 

d(bi) =i - 1 + k + 2(k- 1) for 1 ~ i ~ k 

-Since property (ii) holds for the labelling L, it follows from (7) that d( ai) =I d( ai) 
fori =I j. Clearly, from (8), d(bi) =I d(b:i) fori =I j. U d(ai) ~ d(bi ), then from (7) 
and (8) we have 

dH(ai) + L(i) + k = j- 1 + k + 2(k- 1); 

so.that 
dH(ai) + L(i) = j + 2k- 3. 

Sine~ 

dH(ai) ~ k- 1, L(i) ~ k- 1 andj 2:: 1, 

_ this equality can hold if and only if 

dH(ai) = k-1, L(i) = k-1. 

However, property (iii) excludes this possibility. 

Finally, we must verify the maximum degree of G is less than 2(n-1). Ob­
viously, the maximum degree of G is the degree of bk, and by (8), d(bk) = 
= k - 1 + k + 2(k - 1) = 4k - 3 = 2n - 3. Thus th'e theorem follows from the 
existence of the required labelling. 

The labelling we describe first assigns labels sequentially to the vertkes 
ak-m+t, ak-m+t+b.;., ak where t is the smalles't nonnegative integer such that 
dH(ak;,..m+t) < k- 1. This assignment is as follows: let L(k- m + t) = k- 1, and 
if L(k- m + l) has been defined fort ~ l ~ k- 1, then define L(k- m + l +'1) = 
= ·max{L(k- m + l) + dH(ak'-m+d- k + 1, m -l-1}. The remaining label(f,(i), 
for 1-.~ i ~ k- m + t- 1, can be assigned arbitrarily using each of the unused 
labels exactly once. 

We need to establish that the labelling just described satisfies properties 
(i) and _(ii), since property (iii) clearly holds. First observe that L(k - m + 
+l) + dH(ak-m+d - k + 1 < ·L(k- m + l) for t ~ l, and if for some j, :j. 2:: 
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2:: t + 1, L(k- m + j) = m- j, then L(k- m + i) = m- i for all j ~ i ~ m. Thus 
in particular we have L(k- m+t) = k-1 > L(k- m+t ~ 1) > ... > L(k) 2:: 0, so 
that property (i) holds and property (ii) holds when i, j ~ k- m + t- 1 or when 
k-m+t~i,j. 

It only remains to show that property (ii) holds when i ~ k- m + t- 1 < j. To 
do this note that in the labelling described L(k) = 0. H this were not the case, then 
max{L(k-m+l)+dH(ak-m+l)-k+1; m-l-1} = L(k-m+l)+dH(ak-m+d-k+1 
for all t ~ l ~ m - 1. From this it would follow that 

k-1 

L(k) = L dH(ai)- (m- t)(k- 1) 
i=k-m+t 

= (m- t + 1)(k- 1)- 2a- dH(ak)- (m- t)(k- 1) 

= (k- 1)- 2a- dH(ak) < O,since k ~ 2a, 

which is impossible. Further the recursive definition of L(i) for k- m + t ~ j, gives 
for 1 ~ i ~ k-m+t-1, L(i) I- L(j)+dH(a;)-(k-1) = L(i)+dH(a;)-dH(ai)· 
Thus property (ii) also holds for i ~ k- m + t- 1 and j 2:: k- m + t and the 
labelling satisfies all required conditions. • 

It is worth mentioning some special cases of Theorem 3. H we remove a = 

r ( n - 1) I 41 edges of Kn and the removed edges do not form a matching then 
the conditions of Theorem 3 are satisfied with m = 2a - 1. Therefore we have 

Corollary 4. If G has (;) - r(n- 1}141 edges and G is not a matching, then 
s(G) = 2. 

Concerning the case not covered by Corollary 4 we note without proof that 
s(Kn- M) = 2 for n = 0, 1, 3 (mod 4} but s(Kn - M) = 3 for n = 2 (mod 4). (M 
is a matching with r ( n - 1) 141 edges.) 

Notice that Theorem 2 and Corollary 4 together imply that r ( n - 1) I 41 is 
the minimum number of edges which need to be removed from Kn such that the 
resulting graph has strength 2. , 

Let G be a graph on n vertices with a "missing edges" such that r(n -1141 ~ 
::::; a ::::; nl2 - 1 and the missing edges determine a connected subgraph. Since the 
missing edges are incident to at most a+ 1 ::::; nl2 vertices, Theorem 3 gives the 
following. 

Corollary 5. If G is a graph obtained from Kn by deleting a edges, 
r(n- 1)141 ::::; a ~ nl2 - 1, such that the removed edges induce a connected 
graph, then s(G) = 2. 

Finally, consider the case when G = Kn- Km and 2m~ n ~2m2 - 2m+ 1. 
We can apply Theorem 3 with a = (~) to obtain the following result. 
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Corollary 6. H G = Kn- Km and 2m ~ n ~ 2m2
- 2m+ 1, then s(G) = 2. 

Remark: Theorem 2 implies that for n;:::: 2m2
- 2m+ 2, s(Kn- Km);:::: 3. In fact, 

it is easy to show that in this case that s(Kn -Km) = 3. It is also easy to show that 
s(Kn - Km) = 2 for n ~ 2m- 1 and that s(Kn - Km) ;:::: 3 for n ~ 2m-2. These 
remarks show that s(Kn- Km') = 2 if and only if 2m- 1 ~ n ~2m2 - 2m+ 1. 
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