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1. Introduction 

H positive integer weights are assigned to the edges of a graph G, then the degree 
of a vertex is the sum of the weights of the edges that are incident to the vertex. 
A graph G with weighted edges is said to be irregular if the degrees of the vertices 
are distinct, and the irregularity strength of the graph G is the smallest s such that 
the edges can be weighted with {1, 2, ... , s} and be irregular. These notions are 
defined in [ 1]. 

No graph can have irregularity strength 1, since it is not possible for all of 
the degrees to be distinct in a simple (no weights on the edges) graph. Several 
measures can be used to determine how close a graph is to being irregular. For 
example, the number of duplicated degrees, the sum of the duplicated degrees, or 
even the location of the duplicated degrees in the degree sequence are possibilities. 
Also, the number, sum, or location of distinct (or not duplicated) degrees could be 
considered. We will consider various combinations of these measures and determine 
(or give bounds) for their extremal values. 
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2. Notation 

Let G be a graph of order n with degree sequence 

We will always assume that { u1, u2, ... , Vn} is the vertex set with degrees in 
the increasing order just given unless explicitly stated otherwise. For any such 
degree sequence the index set {1, 2, ... , n} is partitioned into two sets D = D(G) 
(duplicated degrees) and S = S(G) (single degrees). Thus 

D = { i : di = di for some i f. j}, 

and S is the remaining set of indices that are associated with degrees that appear 
precisely once in the sequence. Each index in Dis associated with some duplicated 
degree, and if we choose the first index associated with each duplicated degree, we 
obtain a proper subset D' = _DI (G) of D. Also, related to the degree sequence is 
the set M = M(G) (missing degrees), which is 

M = {i : 0 ~ i ~ n- 1 and i f. di for any i}. 

Note that the set M is not a subset of the index set, but a collection of possible 
values of degrees on the index set. From this point on we will identify with each 
graph G the sets D, D', M and S (not identifying the graph G unless it is necessary 
to avoid confusion). Also, by ED, EY and ES we will mean the sum of the 
degrees indexed by each of the sets, and by EM the sum of the elements in M. 

Let Hn denote the graph of order n with vertex set V(Hn) and edge set E(Hn) 
given by: 

V(Hn) = { U1 1 U2 1 ... 1 Un} and 

E(Hn) = { ViVj : i + j > nand if. j}. 

This graph, called the half graph, has degree sequence 

dt. = { ~ ~ ~ n/2, 
~- 1 t > n/2, 

and will be used to construct several examples of graphs that have extremal 
degree sequences. Note that for the graph Hn, M = {0}, D' = {l n/2 J}, 
D = {ln/2J, ln/2J + 1} with the one duplicated degree being ln/2J, S = 
= {1, 2, ... , n}- D, and ED= 2ln/2J. 

For every graph G the set D is nonempty, since there are only n possible 
degrees for vertices of a graph of order n, and it is not possible for 0 and n - 1 to 
be simultaneously in a degree sequence. For the half graph H n 1 D has precisely two 
elements and M has 1 element. In each case these are clearly the minimal possible, 
so some of the extremal problems are trivial. However, not all of the extremal 
problems are so simple. 
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One of the results that will be useful is a classical condition of Erdos and Gallai 
which gives a characterization of graphical degree sequences. 

Theorem 1. [2] A sequence. of positive integers d1 ~ d2 ~ ... ~ dn is graphical if 
and only if E?= 1 di is even, and for each k(1 ~ k ~ n- 1), 

k n-k 

L dn-i+1- k(k- 1} ~ L min{k, di}· 
i=1 i=1 

The left hand side of the previous inequality is a lower bound on the number 
of edges between the k vertices of highest degree and the remaining vertices of the 
graph, and the right hand side is an upper bound on this number of edges. It is this 
comparison on the count of the number of edges that will be used most frequently. 
In fact, generally we will not use the statement of Theorem 1 explicitly, but we use 
th~ argument that verifies· the only if part of the Theorem. 

Another well known useful result concerning graphical degree sequences is due 
to Havel [4) and Hakimi [3]. 

Theorem 2. ([3],[4]) A sequence d1 ~ d2 ~ ••• ~ dn =f 0 is graphical if and only if 
the (rearranged) sequence dt, d2 , ••• , dn-d,.-b dn-d,. -1, ... , dn-1 -1 is graphical. 

3. Location of duplicated degrees 

In the half graph H n the indices in D are in the middle of the degree sequence. 
Is it possible in a degree sequence that all of the indices in D are small (or large), 
and if so, how small (or large)? The following example indicates that in a graph of 
order n all of the duplicated degrees can be in the first approximately fo terms of 
the degree sequence. 

Let m be a fixed positive integer, and n an integer satisfying 

m2
- m + 0 < n ~ m~ + m + o,~ 

where 8 = 0 for n even, and o = 1 for n odd. Let { v2, v3, ... , vn} be the vertices 
of the half graph Hn-1, and add to this graph an isolated vertex 111 to form the 
graph H~. Let A= { VlJ v2, •.. , vm}· Form a new graph Ln from H~ by adding for 
each i ~ (n + 1)/2 an edge between Vi and a vertex in A in such a way that the 
new degrees of the vertices in A differ by at most 1 (in fact are either m- 1 or m). 
This can be done, since if B is the sum of the degrees in Ln of the vertices in A, 
then 

m(m -1) < B = (~) + ln/2J::; m2
• 
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The graph Ln has degree sequence 

d· = {m -1 or m 
J i- 1 

i~ m 
i > m. 

Therefore, all degrees are distinct except for the first m + 1 terms, and 

(V4(n- 6) + 1 + 1)/2 ~ m + 1 < (V4(n- 6) + 1 + 3)/2. 

Thus, all indices of D are in the first approximately fo terms of the degree 
sequence. This example indicates that the following theorem is the best possible. 

Theorem 3. Let G be a graph of order n with degree sequence d1 ~ d2 ~ ... ~ dn. 

H di E S for all i > k, then 

k ~ (V4(n- 6) + 1 + 1)/2, 

where 6 = 0 for n even, and 6 = 1 for n odd. 

Proof. First consider the case when n = 2p is even. We will assume that 
D ~ {1,2, ... , k}, and show that k satisfies the inequality in the statement of 
the theorem. Let A be the vertices associated with the first p terms in the degree 
sequence of G, and B the remaining vertices. We will count the number of edges 
between A and B using the proof technique of Theorem 1 to obtain the inequality 
fork. 

Lett= dp+l ~ p. By assumption dp+l < dp+2 < ... < d2p, so dp+i ~ t+i -1. 
Hence, for i > p - t, Vp+i is adjacent to at least t - p + i vertices of A. This 
implies that there are at least 1 + 2 + ... + t = C~ 1) edges between B and A. 

On the other hand, the degree sequence of the vertices in A are all distinct 
except for possibly the first k terms, and the largest degree is at most t - 1. Thus 
the sum of the degrees of the vertices in A is at most 

(t- 1) + (t- 2) + ... + (t- p + k) + k(t- p + k- 1) = p(2t- p- 1)/2 + (~), 

which gives an upper bound on the number of edges between A and B. The 
following inequality results: 

G) ~ (t: 
1
) - p(2t- p- 1)/2. 

Considering the right hand side of the above inequality as a function of t it is easy 
to verify that its minimum integer value is p and occurs when t = p. Thus, we have 
the inequality, 

k 2
- k ~ 2p = n, 
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which is immediately the desired result for n even. 

For n = 2p + 1 odd, the same argument used in the even case yields the 
inequality k2 - k ~ 2p = n- 1. This gives the desired inequality and completes the 
proof of Theorem 3. • 

Remark. The complement of the graph Ln is one that has its D contained in the 
last approximately ...jn terms of the degree sequence. Also, this is the best possible 
by the argument just given. 

4. Sums of duplicated and missing degrees 

Before stating any results in this section some specialized notation will be given and 
families of graphs with special degree sequences will be described. For nonnegative 
integers p ::s; q ::s; r and positive integer k, consider the sequence of n = r- p + k 
numbers 

(p, P + 1 I • • • I q - 1 I q I q I • • • q I q + 1 I q + 2 I • • • I r) 

with the term q occurring k times in the sequence. The family of graphs of order 
n with this degree sequence will be denoted by )I (p, q, r, k). In particular, the half 
graph H n is in )I ( 1, l n /2 J, n - 1, 2), and at the other extreme a q-regular graph is 
in Jl(q, q, q, n). 

There are families of graphs related to the half graph H n that can be derived 
from lin- We will describe two such families that will be used to show the sharpness 
of the bounds in the theorems that will follow. The first will be described here, 
and the second later in this section. 

For the first family, let k ~ 2 be a fixed integer and m be an integer divisible 
by k - 1. Consider the half graph H 2m with vertices { v1, v2, ... , v2m}. The vertex 
Vm is adjacent to the m vertices T = { Vm+ 1 , Vm+2, ... , v2 m}. A graph of order 
n = 2m+ k- 1 can be obtained from H2 m by adding k- 1 independent vertices 
{u1Ju2, ... ,Uk-1} such that each Ui is adjacent to m/(k -1) vertices ofT, each 
vertex of T is adjacent to just one of the u/s, and the degrees of the remaining 
vertices of H2m are left unchanged. Since this graph has k vertices of degree 
m/(k- 1) = (n- k + 1)/(2k- 2), it is in J/(1, (n- k + 1)/(2k- 2), n- k + 1, k), 
so we will denote it by 

H(l, (n- k + 1)/(2k- 2), n- k + 1, k). 
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Clearly for this graph 

ED'= (n- k + 1)/(2k- 2) and 

ED= k(n- k + 1)/(2k- 2). 

Note that if k = 2, then the half graph Hn is obtained and ED' = (n- 1)/2 and 
ED= n- 1. At the other extreme, if m = k- 1 (i.e. n = 3k- 3), then ED' = 1 
and ED = k = (n + 3)/3 for the graph Hn(1, 1, 2n/3, (n + 3)/3). This is, in fact, 
the smallest possible value of ED, as the following result indicates. 

Theorem 4. If G is a graph of order n without isolated vertices, then ED' ~ 1 
and ED 2:: (n + 3)/3. In addition, both bounds are sharp. 

Proof. The graph Hn(1, 1, 2n/3, (n + 3)/3) just described verifies that each 
inequality could not be improved. Also, clearly ED' 2:: 1, since any degree sequence 
must have a duplication. 

For the second inequality consider the degree sequence d1 ~ d2 ~ ... ~ dn of 
G and assume that ED< (n + 3)/3. Select the largest index i such that di < n/3. 
Such an index exists, in fact, with j < 2n/3; for if not, then there would be 
i + 1 - n/3 2:: (n + 3)/3 duplicated degrees preceding di. Also, i 2:: n/3, for if 
not, there would be duplicated degrees after di which are greater than n/3. Let 
A= { VlJ v2 ... , vi} and B = { vi+ll vi+2, ... , vn}. 

Select the integer t such that t < n/3, but t + 1 2:: n/3. Observe that di ~ t, 
and also di+l < di+2 < ... < dn, di+l 2:: t + i fori 2:: 1, and vi+l is adjacent to at 
least t- n + i + j + 1 vertices of A. In particular, Vn is adjacent to at least t + 1 
vertices of A, and so there are at least 1 + 2 + ... + ( t + 1) edges from B and A. 
However, the number of edges from A to B is no more than the sum of the degrees 
of the vertices in A, and so is at most ED+ 2 + 3 + ... + t (which can be the case 
when 1 is the only duplicated degree.). Therefore, ED 2:: t + 2 2:: (n + 3)/3. This 
contradiction completes the proof of Theorem 4. • 

H a bound is placed on the number of duplicated degrees or the minimum de­
gree in the degree sequence, then more can be said about the sum of the duplicated 
degrees. The following two theorems are examples of this type of result. 

Theorem 5. Let k be a fixed positive integer. If G is a graph of sufficiently large 
order n with no isolated vertices such that the number of duplicated degrees is k 
(i.e., IDI = k), then 

ED' 2:: (n- 2k + 2)/(2k- 2), and 

ED 2:: k(n- 2k + 2)/(2k- 2). 

Proof. For ease of calculation we will consider the case n = 2m. However, the 
argument for the case n odd is the same, but the calculations are slightly more 
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involved. We give an indirect argument and suppose that at least one of the 
inequalities in the conclusion of the theorem fails to hold. Let A = { th, v2 , ••. , Vm}, 

B = { Vm+l' Vm+21 ••• 'V2m}, and t = d( Vm+d· 

Since D has at most.k indices, t ~ m-k+2. Thus, the fact that the conclusion 
of the theorem is not true implies that each of the degrees d( Vm+i) for 1 :::; i :::; m 
are distinct for n sufficiently large. Hence, d(vm+i) ~ t+i -1 and Vm+i is adjacent 
to at least t + i- m vertices of A for' each i ~ 1. Th.erefore, the number of edges 
from B to A is at least 1 + 2 + ... + t. On the other hand, the number of edges 
from A to B is bounded above by the sum of the degrees of the vertices in A. 
For each i ED', let ri be the number of times the degree d; is duplicated. Thus, 
2:: r i = k. With this notation, we have the following inequality: 

iED' 

m 

L d( vi) :::; l + 2 + ... + ( t - 1) + L ( r i - 1) d;. 
i=l iED' 

Comparing these estimates on the number of edges between A and B gives 

1 + 2 + ... + (t- 1) + L (ri- 1)di ~ 1 + 2 + ... + t. 
iED' 

H r = max{ri : i ED'}, then (since r:::; k), 

(r- 1)ED' ~ L (ri- 1)di, and 
iED' 

ED' ~ t/(r- 1) ~ (n/2- k + 2)/(r- 1) > (n- 2k + 2)/(2k- 2). 

Also, for n sufficiently large 

ED= L r;d; ~ t +ED' ~ k(n- 2k + 2)/(2k- 2). 
jED' 

The last two inequalities give contradictions which complete the proof of Theo­
rem 5. • 

The bounds on ED and ED' given in Theorem 5 are close to the 
best possible. This is established by the graph previously denoted as 
H(1, (n- k + 2)/(2k- 2), n- k + 1, k). 
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Theorem 6. Let k ~ 1 be a fixed integer, and G be a graph of sufficiently large 
order n and minimal degree k. Then, 

~D' ~ k, and 

ED~ k(n + k2 )/(2k + 1). 

Proof. The first inequality is trivial, since any graph must have duplicated degrees 
and k is the minimal degree. One cannot improve on this, since 'ED' = k for a 
k-regular graph. 

Let G be a graph which does not satisfy the second inequality. Since G 
has minimal degree k, the number, say t, of duplicated degrees is less than 
(n + k2 )/(2k + 1). Select the smallest integer r such that dr ~ n- r + 1. Note that 
such an r exists; in particular, dn ~ 1. For any j, di ~ j + k- t, since the number 
of duplicated degrees is t. Thus, if d3· ~ n- J·, it follows that j ~ (n + t- k)/2. 
This implies r ~ (n + t- k + 2)/2. 

Let A = { v1, v2 , ... , Vr-l}, and let B the remaining vertices of G. For n 
sufficiently large the degrees of the vertices in B are distinct, since the sum of just 
two duplicated degrees as large as d(vr) would exceed k(n + k2 )/(2k + 1). Hence, 
if d( Vr} = p ~ n - r + 1, then d( Vr+i) ~ p + i - 1 and Vr+i is adjacent to at least 
p +i-n+ r ~ i + 1 vertices of A for each i ~ 1. Thus, the number of edges from 
B to A is at least 1 + 2 + ... + ( n- r + 1). On the other hand, the number of edges 
from A to B is bounded above by the sum of the degrees of the vertices in A, and 
the only possible degrees are k, k + 1, ... , (n- r). Therefore, we have the following 
inequality: 

'ED~ (n- r + 1) + 1 + 2 + ... + (k- 1). 

A direct consequence of this and the bounds on r and t imply that 
'ED ~ k(n + k2 )/(2k + 1), a contradiction which completes the proof of Theo­
rem 6. • 

We next describe the second family of graphs that can be derived from the half 
graph Hn. One of these graphs confirms that the second inequality in Theorem 6 
cannot be substantially improved. Other members of this family of graphs will 
play the same role for the inequalities in Theorem 7 which follows. 

Let k be a fixed even positive integer, and let { v1 , v2, ... , vn} be the vertices 
of the half graph Hn. Assume n is divisible by 2(k - 1), and let m = n/2 and 
t = (m/(k - 1)) + (k - 2)/2. Alter the graph Hn by deleting the m- t edges 
between Vm and the vertices S = { Vm+b Vm+2' ... , V2m-tl, and adding m- t 

edges between S and T = {VI, v2, ... , vk-2}. This can be done such that each of 
the vertices of T has degree t and the degrees of the vertices of S are unchanged, 
smce 

(k-1) m- t = (k- 2)t-
2 

= (t- 1) + (t- 2) + ... + (t- k + 2). 
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For t ~ k- 1 (which is certainly true for n large) this graph, which we will 
denote by 

Hn(k- 1, (n + (k- 1)(k- 2))/(2k- 2)), n- 1, k), 

is in )(n(k- 1, (n + (k- 1)(k- 2))/(2k- 2)), n- 1, k). Direct calculation gives 
the following for this graph: 

EM= e~l).' 
'ED= k(n + (k- l)(k- 2))/(2k- 2), and 

ED' = (n + (k- 1)(k- 2))/(2k- 2) = t. 

Note that the graph Hn(k, (n+k(k-1))/2k), n-1, k+1) has minimum degree 
k and ED= (k + 1)(n + k(k- 1))/2k. This indicates that the second inequality in 
T~eorem 6 is the correct order of magnitude. 

For the graph Hn(k-1, (n+ (k-1)(k-2))/(2k-2)), n-1, k), the minimums 
of the functions ED+ E.M and ElY+ E.M, considered as functions of k, can be 
easily calculated using elementary techniques. Their minimums and the value of 
k that gives the minimum are the following (for the last function the values are 
approximated): 

ED'(k) + E.M(k): 

ED(k) + E.M(k) : 

(3(n/2) 213
- 1} 

2 
(n + 3(n/2)213

) 

2 

k = (n/2) 113 + 1 

k = (n/2) 113 + 1 

These give upper bounds for the extremal numbers for each of the functions, and 
the following theorem will show that they each give the correct value in order of 
magnitude. 

Theorem '1. H G is a graph of sufli.ciently large order n, then: 

n2/3 
ED' + E.M ~ -

2
-, and 

n2/3 
ED+ E.M ~ n/2 + -

2
-. 

Proof. For ease of calculation we will consider the case when n = 2m is even. 
The argument for n odd is same, although the arithmetic is more complicated. Let 
{ v1, v2, ... , vm} be the vertices of G which give the degree sequence d1 ~ d2 ~ ... 
~ dn, and let A= { v11 v2, ... , vm} and B be the remaining vertices of G. Assume 
that at least one of the inequalities fails to be satisfied by the degree sequence of G. 
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Clearly any duplicated degree from m, m + 1, ... , n- 1 gives 'ED' ~ n/2 and 
'ED ~ n. Also, any missing degree from m, m + 1, ... , n - 1 along with the sum 
of duplicated degrees given by Theorem 6 implies each of the inequalities of the 
Theorem. Thus, we assume that none of the degrees m, m + 1, ... , n - 1 can 
be missing or duplicated, so the degrees of the vertices in B are precisely these 
numbers. This implies for each i ~ 1 that d(vm+d = m + i- 1 and Vm+i is 
adjacent to at least i vertices of A. Therefore, the number of edges from B to A is 
at least 1 + 2 + ... + m. On the other hand, the number of edges from A to B is 
bounded above by the sum of the degrees of the vertices in A. Hence, we have the 
following inequality (where S' = S n A): 

'ES' + 'ED ~ 1 + 2 + ... + m. 

No vertex in A has degree m = n/2, and therefore 

(1) 'ED ~ n/2 +'ED' + 'E.M. 

H there is a duplicated degree as large as n~
3

, an immediate contradiction is 

reached. Therefore, each duplicated degrees is less than n~3 , and so there are 
more than n 113 indices in D. Since the number of terms in .M or D' is the same as 
the number of indices in D, we have 

(2) 

Inequalities (1) and (2) imply 

(3) 
n2/3 

'ED > n/2 + -
2
-. 

The inequalities (2) and (3) give contradiction which complete the proof of 
Theorem 7. • 
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