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Abstract. A family r§ of graphs is called x-bound with binding function f if x(G')::::;; f(w(G')) 
holds whenever G' is an induced subgraph of GE r§. Here x(G) and w(G) denote the chromatic 
number and the clique number of G, respectively. The family of perfect graphs appears in this 
setting as the family of x-bound graphs with binding function f (x) = x. The paper exposes open 
problems concerning x-bound families of graphs. 
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0. INTRODUCTION 

Our aim is to introduce and propose .a systematic study of x-bound (and 
0-bound) families of graphs and their binding functions. These families are 
natural extensions of the world of perfect graphs. Recall that the family f!lJ of 
perfect graphs contains the graphs G which satisfy· x(G') = w(G') for all 
induced subgraphs G' of G. Here x(G) and w(G) denote the chromatic 
number and the clique number of a graph G, respectively. 

A family (/} of graphs is called x-bound with binding function f if 
x(G') :( f(w(G')) holds whenever GE (/}and G' is an induced subgraph of G. 
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Without restricting· generality, we may assume that a binding function is an 
N ~ N function, where N denotes the set of positive integers; moreover, f(1) 
= 1 and f (x) ~ x for all x EN. Under these natural assumptions the smallest 
binding function is f (x) = x and the family of graphs which is x-bound with 
binding function f (x) = x is the family of 'perfect graphs. The complementary 
notion of x-bound families is the notion of 8-bound families. A family C§ of 
graphs is 8-bound with binding function f if 1§ is a x-bound family with 
binding function f (here 1§ denotes the family containing the complements of 
the graphs of ~· 

Section 1 introduces the notion of x-bound and 8-bound families of 
graphs with several examples. The most frequently occurring problems 
concerning binding functions are formulated . and illustrated there, namely: 

1. Does there exist a binding function for a given family C§ of graphs? 
2. What is the smallest binding function for C§? 

3. Does there exist a linear binding function for CS? 
4. Does there exist a polynomial binding function for CS? 
The examples in 1.2 (e.g., circular arc graphs, multiple interval graphs, 

box graphs, polyomino graphs, overlap graphs) show that the behaviour (or 
at least the known properties) of these families concerning their binding 
functions are quite different. Although these families are usually x-bound and 
8-bound (the exception is the family of box graphs for more than two 
dimensions), in most cases the order of magnitude or linearity of their 
smallest binding function is not known. 

The significance of binding functions from algorithmic point of view is 
discussed in 1.3. The idea is that families having "small" x-binding functions 
(8-binding function) are natural candidates for approximation algorithms 
with a "good" performance ratio for the coloring problem (clique cover 
problem). The smaller is a binding function of a family, the better perform
ance ratio is to be expected from an approximation algorithm operating on 
the graphs of the family. 

Perfect families of graphs are often characterized by a set of forbidden 
induced subgraphs. The family of P 4 -free graphs, split graphs, threshold 
graphs, triangulated graphs, Meynel graphs are examples of such families. 
Analogous questions are discussed in Sections 2, 3 and 4 for x-bound families 
of graphs: which forbidden induced subgraphs make a family x..:bound? 
Section 2 presents problems and results concerning the following conjecture: 
the family of graphs which does not contain a fixed forest as an induced 
subgraph is x-bound. In Section 3 we discuss problems when the set of 
forbidden induced subgraphs is infinite. The Strong Perfect Graph Conjec
ture fits into this problem area. It is surprising that a much weaker conjecture, 
namely that the family of graphs without odd holes and their complements is 
x-bound, seems to be difficult. We should call this conjecture the. Weakened 
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Strong Perfect Graph Conjecture. In Section 4 we consider the case where 
the set of forbidden subgraphs is closed under taking complementary graphs. 

In Section 5 we study the effect of taking the union and intersection of 
graphs on binding functions. It is straightforward that the union of x-bound 
families is again a x-bound family. However, the intersection of two x-bound 
families (even the intersection of t)VO perfect families) is not necessarily x
bound. 

The situation of having the notion of x-bound and 8-bound families 
resembles the time B.P.G.T. (Before Perfect Graph Theorem) when two types 
of perfectness had to be defined. It is easy to construct families which are x
bound but not 8-bound although "natural" graph families are usually both x
bound and 8-bound. In Section 6 we try to find analogous of the Perfect 
Graph Theorem for certain x-bound families of graphs. Let rJ1 denote the 
family of graphs 8-bound with 8-binding function f If qjf is x-bound, then 
the' smallest x-binding function of rJ1 is called the complementary binding 
function of f It turns out that the only self-complementary binding function 
is f (x) = x, that is the Perfect Graph Theorem is stable in a certain sense. 
Only "small" binding functions may have complementary binding functions: 
if f has a complementary binding function, then inf f (x)jx = 1. However, it 
remains an open problem even to prove that f (x) = X+ 1 has a comple
mentary binding function. 

All results appearing here with proofs are unpublished elsewhere. They 
are expository in nature and serve mainly as background material and status 
information for the open problems. In fact, the main 1)1otivation of the 
author for writing this paper is his desire to see some of these 44 problems to 
be solved. I am indebted to my friend and· colleague J. Lebel for several 
discussions which helped these ideas to take shape. 

1. x-BOUND AND 8-BOUND .FAMILIES AND THEIR BINDING FUNCTIONS 

1.1. Basic concepts. Let w (G) and x (G) denote the clique number and the 
chromatic number of a graph G, i.e., w(G) is the maximal number of pairwise 
adjacent vertices of G, and x (G) is the minimal number k such that the 
vertices of G can be partitioned into k stable sets. A subset of vertices in a 
graph is called stable if it contains pairwise non-adjacent vertices. 

A function f is a x-binding function for a family rJ of graphs if 

x(G') ~ f(w(G')) 

holds for all induced subgraphs G' of G E rJ. We shall always assume that 
f: N ~ N, where N denotes the set of positive integers; moreover, f(l) = 1, 
f(x) ~ x for all XEN. 
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A family rg of graphs is x-bound if there exists a x-binding function 
for rg, 

The above definitions can be formulated for the complementary parame
ters of graphs. Let a (G) and 8 (G) denote the stability number and the clique
cover number of a graph G, i.e., a (G) is the maximal number of vertices in a 
stable set of G, and 8 (G) is the minimal number k such that the vertices of G 
can be partitioned into k cliques. 

A function f is a 8-binding function for a family rg of graphs if 

8(G') ~ f(a(G')) 

holds for all induced subgraphs G' of G E rg, A family rg of graphs is 8-bound 
if there exists a 8-binding function for rg, 

Since w (G) = a (G) and x (G) = 8 (G) hold for any graph G by definition 
(where G denotes the complement of G), we observe that 

f is a x-binding function for rg if and only if f is a 8-binding function 
for (§; 

rg is x-bound if and only if i§ = { G: G E rg} is 8-bound. 

If a family rg is x-bound, then it has obviously a smallest x-binding 
function defined by 

f*(x) =max {x(G'): G' c GE rg, w(G') = x}. 

Similarly, a 8-bound family has a smallest 8-binding function. 
Due to the assumptions on binding functions, the smallest binding 

function a family may have is the identity function f (x) = x. The family of 
graphs With x-binding function f (x) = X is the important family of perfect 
graphs. The family of perfect graphs is denoted by f!JJ. The Perfect Graph 
Theorem of Lovasz [27] states that f!JJ = :!J>, which implies that f!JJ can be 
equivalently defined as the family of graphs with 8-binding function f (x) 
=X. 

The basic problems in our approach concerning a family rg of _graphs 
are: 

Is rg a x-bound (or 8-bound) family? 
What is the order of magnitude of the smallest x-binding (or 8-binding) 

function for rg? 
Determine the smallest x-binding (or 8-binding) function for rg, 
Before looking at some examples of x-bound or 8-bound families, let us 

have a glance at the outside world. Let Gi be a graph such that ro(Gi) = 2 
and x(Gi) = i for each integer i ~ 2. The existence of Gi is well known (see, 
e.g., [30]). Now the family {G2 , G3 , ... } is obviously not x-bound since it is 
impossible to define the value of a x-binding function f (x) for x = 2. A more 
surprising example of a family which is not x-bound is provided by the 
intersection graphs of boxes in the three-dimensional Euclidean space (see 
1.2). 
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1.2. Some examples of x-bound and 0-bound families. Now let us have a 
look at some well-known families of graphs and their binding functions. We 
start with three classical subfamilies of f!JJ which we frequently need later. 

Interval graphs: the intersection graphs of closed intervals on a line. 

Triangulated graphs: the graphs containing no Ck (a cycle of k vertices) 
for k ~ 4 as an induced subgraph .. 

Comparability graphs: the graphs G whose edges can be oriented transi
tively (ab, bcEE(G) implies acEE(G)). 

·The proof of the perfectness of the above families can be found in [16]. 
We continue with some well-known non-perfect families of graphs defined as 
intersection graphs of geometrical objects. Proof techniques and results 
concerning their binding functions have been surveyed in [22]. 

Circular arc graphs (see [16], p. 188): the intersection graphs of closed 
arcs· of a circle. The family of circular arc graphs is 0-bound, its smallest 0-
binding function is f(x) = x+ 1. The family is x-bound as well, the function 
f (x) = 2x is a suitable x-binding function for x ~ 2. Both of these statements 
follow immediately from the perfectness of interval graphs. It is easy to 
construct circular arc graphs Gk for all k, satisfying w ( Gk) = k, x ( Gk) 
= L3k/2J. Tucker conjectured (see [37]) and Karapetian [25] proved that 

x(G) ~ L(3/2)w(G)J 

holds for all circular arc graphs G. In our terminology, this result states: 

THEOREM 1.1. The smallest x-binding function for the family of circular 
arc graphs is f (x) = L(3/2) xJ. 

Multiple (or t-) interval graphs: intersection graphs of sets which are the 
union of t closed intervals on a line. In the special case where t = 1, we get 
interval graphs. These graphs were introduced in [17] and [24]. The results 
of [21] imply that the family of t-interval graphs is 0-bound for all fixed t. 
The order of magnitude of the smallest 0-binding function is not known even 
for t = 2. 

PROBLEM 1.2. Determine the order of magnitud~ of the smallest 0-
binding function for double interval graphs. In particular, does there exist a 
linear 0-binding function for double interval graphs? 

It was proved in [20] that the family of t-interval graphs is x-bound 
with a linear binding function 2t(x-1) for x ~ 2. 

Box graphs (introduced in [34]): intersection graphs of sets of boxes in 
the d-dimensional Euclidean space. A box is a para~lelepiped with sides 
parallel to the coordinate axes. For d = 1 we have the family of interval 
graphs. 

It is easy to see that the family of d-dimensional box graphs is 0-bound 
with 0-binding function xd (see Proposition 5.5). The order of magnitude of 
the smallest 0-binding functions is not known even for d = 2. 
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PROBLEM 1.3. Determine the order of magnitude of the smallest 0-
binding function for two-dimensional box graphs. 

Concerning x-binding functions, it was proved by Asplund and 
Grtinbaum in [1] that two-dimensional box graphs are x-bound with an 
0 (x2

) x-binding function. The order of magnitude of the smallest x-binding 
function is not known, its value at x = 2 is 6 as proved in [1]. 

PROBLEM 1.4. Determine the order of magnitude of the smallest x
binding function for two-dimensional box graphs. In particular, decide 
whether it is linear or not. 

A surprising construction of Burling [ 4] shows that the family of three
dimensional boxes in not x-bound. 

Polyomino graphs. This subfamily of two-dimensional box graphs has 
received some attention in the last few years. A polyomino is a finite set of 
cells in the infinite planar square grid. With a polyomino P we may associate 
a hypergraph H (P) whose vertices are the cells of P and whose edges are the 
set of cells in maximal boxes contained in P. The intersection graph G (P) of 
H(P) may be called a polyomino graph. Obviously, G(P) is a subfamily of 
two-dimensional boxes, thus it is both 0-bound and x-bound. Answering a 
question of Berge et al. [3], Shearer [36] proved that G (P) is perfect if P is 
simply connected. It would be interesting to know whether the family of 
polyomino graphs has linear binding functions; these questions are attributed 
to P. Erdos. 

PROBLEM 1.5. Does there exist a linear 0-binding function for polyomino 
graphs? 

PROBLEM 1.6. Does there exist a linear x-binding function for polyomino 
graphs? 

Overlap graphs (alias circle graphs, stack sorting graphs; see [16], p. 
242). These graphs are defined by closed intervals on a line as follows: the 
vertices are the intervals and two vertices are joined by an edge if the 
corresponding intervals overlap, i.e., they are intersecting but neither contains 
the other. An equivalent definition is obtained by considering the intersection 
graphs of chords of a circle. Golumbic calls these graphs "not so perfect" (see 
[16], p. 235). A measure of "non-perfectness" can be the order of magnitude 
of the smallest binding functions. It is easy to give an 0 (x2

) 0-binding 
function for the family of overlap graphs (see Proposition 5.4). It is harder to 
prove that the family is x-bound, the smallest knowp x-binding function is 
exponential (see [20]). 

PROBLEM 1. 7. Does there exist a linear 0-binding function for the family 
of overlap graphs? 

PROBLEM 1.8. Does there exist a linear x-binding function for the family 
of overlap graphs? 
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Intersection graphs of straight-line segments in the plane. This family of 
graphs was introduced in [7]. The problem whether this family is x-bound 
(8-bound) arose during a conversation with P. Erdos. Denote this family by 

<§SLS · 

PROBLEM 1.9. Is <§SLS a x-bound family? 

PROBLEM 1.10. Is <§sLs a 8-bou~d family? 

1.3. Algorithmic aspects of binding functions. For various classes of 
perfect graphs there are fast polynomial algorithms to determine a largest 
stable set (of size ll (G)), a largest clique (of size w(G)), a good coloring of 
V(G) with x(G) = w(G) colors or a vertex-cover by 8(G) = ll(G) cliques. 
Many examples of such algorithms can be found in [16]. It turned out (see 
[18]) that all of these problems can be solved by polynomial algorithms for 
the 'family f!J> of perfect graphs. 

Families of x-bound graphs are natural candidates for polynomial 
approximation algorithms for the vertex coloring problem. Similarly, polyno
mial approximation algorithms may work for the clique-cover problem in 
case of classes of 8-bound graphs. It is typical that the proof of the existence 
of a x-binding function f for a family <§ of graphs provides a polynomial 
algorithm for a good coloring of the vertices of GE <§with at most f(w(G)) 
colors. In this case we have a polynomial approximation algorithrn with 
performance ratio at most f(w(G))/w(G), which may or may not be statisfac
tory in a particular situation. A very favourable case occurs when a family <§ 

has a linear x-binding function. Then the performance ratio of the algorithm 
is constant. The polynomial approximation algorithm can be useful if the 
coloring problem is known to be NP-complete for the family <§ which is 
again a typical case. A similar reasoning shows the role of 8-binding 
functions in approximation algorithms for the clique-cover problem. (The 
basic notions on computational complexity are used here as defined in [14].) 

To see some examples, consider the coloring problem for circular arc 
graphs. This problem is NP-complete (see [15]); on th~ other hand, it is easy 
to give a polynomial approximation algorithm with performance ratio at 
n1ost 2. The algorithm comes from the proof of the fact that 2x is a x
binding function for the family of circular arc graphs. It is possible to color 
better, the proof of Theorem 1.1 yields a polynomial approximation algo
rithm with performance ratio 3/2. 

The situation is similar if the coloring problem is considered for multiple 
interval graphs. The problem is NP-complete since the family of 2-interval 
graphs contains the family of circular arc graphs and the latter is NP
complete. The proof of the existence of the x-binding function 2t (x -1) for 
the family of t-intervals (x ;;:: 2) provides a very simple polynomial approxi
mation algorithm with performance ratio less than 2t (see [20]). 
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The above reasoning might convince the reader of the importance of the 
following vaguely formulated problem: 

PRoBLEM 1.11. Find some applicable sufficient condition which implies 
that a family has a linear x-binding function. 

The existence of a linear binding function is an open problem for many 
x-bound and/or 8-bound families. Problems 1.2-1.8 provide examples and we 
shall see others later. 

Concerning potential applications, we note that the coloring problem of 
circular arc graphs and multiple interval graphs occurs in scheduling prob
lems (see [39], [24], [16]), applications of the coloring problem of overlap 
graphs are discussed in [16]. The clique-cover problem of polyomino graphs 
is motivated by the problem of picture processing as noted in [3]. 

2. BINDING FUNCTIONS ON FAMILIES WITH ONE FORBIDDEN SUBGRAPH 

Let H be a fixed graph and consider the family r§(H) of graphs which 
does not contain H as an induced subgraph: 

r§(H) = {G: H ¢ G}. 

What choices of H guarantee that r§(H) is a x-bound family? Assume 
that H contains a cycle, say of length k. Let Gi be a graph of chromatic 
number i and of girth at least k + 1. The existence of such graphs was proved 
by Erdos and Hajnal in [10]. Clearly, Gi E r§(H) for i = 1, 2, ... , showing 
that r§(H) is not x-bound. I conjectured that r§(H) is x-bound in all other 
cases, i.e., the following holds: 

CoNJECTURE 2.1 ([19]). r§(F) is x-bound for every fixed forest F. 

Let Sn denote the star on n vertices and let R(p, q) be the Ramsey 
function, that is the smallest m = m(p, q) such that all graphs on m vertices 
contain either a stable set of p vertices or a clique of q vertices. The following 
result shows that r§(Sn) is x-bound and its smallest x-binding function is close 
to the Ramsey function. 

THEOREM 2.2. The family r§ (Sn) is x-bound and its smallest x-binding 
function f* satisfies 

R(n-1, x+1)-1 
------ ~ f*(x) ~ R(n-1, x) 

n-2 
for all fixed n, n ~ 3. 

Proof. Let G be a graph on R(n-1, x+ 1)-1 vertices such that G 
contains neither a stable set of n -1 vertices nor a clique of x + 1 vertices. 
Clearly, 

G E r§(Sn) and X (G) ~ I V(G)J/(n- 2), 

which gives the lower bound for f*. 
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To show the upper bound, let GE ~(Sn), w(G) = x. We claim that the 
degree of any vertex of G is less than R(n-1, x). If some vertex PE V(G) has 
at least R(n-1, x) neighbours, then the neighbourhood of P contains either 
a stable set of n- 1 vertices or a clique of x vertices. The first possibility 
contradicts GE ~(Sn) and the second contradicts w(G) = x, and the claim 
follows. Therefore, the chromatic number of G is at most R (n -1, x). 

Note that for n = 3 the lower ~nd upper bounds are the same showing 
that f* (x) = x, i.e., ~(S3) is a perfect family. It is easy to see that ~(S3) 

consists of graphs which can be written as the union of disjoint cliques. 

PROBLEM 2.3. Improve the estimates of Theorem 2.2 for the smallest x
binding function of ~(S4). 

The next special case where Conjecture 2.1 is solved occurs if the 
underlying forest is a path. 

, THEOREM 2.4. Let Pn denote a path on n vertices, n ~ 2. Then ~(Pn) is x
bound and fn (x) = (n -1)x- 1 is a suitable x-binding function. 

Proof. Considering n ~ 1 fixed, we prove by induction on w(G). To 
launch the induction, note that the theorem trivially holds for graphs G with 
w(G) = 1. Suppose that (n-1)x- 1 is a binding function for all G'E ~(Pn) such 
that w(G')::::;; t for some t ~ 1. 

Let GE ~(Pn) and w(G) = t+ 1. Assuming that x(G) > (n-1)\ we shall 
reach a contradiction by constructing a path (Q 1 , Q2 , ... , Qn) induced in G. 
Technically, we define nested vertex sets 

and vertices 

... , 

for all i satisfying 1 ~ i::::;; n with the following properties: 
(i) Gi is a connected subgraph of G; 

(ii) X (Gi) > (n- i)(n-1Y- 1
; 

(iii) if 1 ::::;; j < i and Q E V(GJ, then Qi Q is an edge of G if and only if j · 
= i- 1 and Q = Qi. 

For i = 1 we choose G1 as a connected component of G with x(G1) 

> (n-1Y because x(G) > (n-1Y was assumed. Let Q1 be any vertex of G1 . 

Assume that G1 , G2 , ... , Gi and Q1 , Q2 , ... , Qi are already defined for 
some i < n; moreover, (i)-(iii) are satisfied. Define Gi + 1 and Qi + 1 as follows. 

Let A denote the set of neighbours of Qi in Gi. Let 

B = V(GJ -(Au {QJ). 

The graph GA induced by A in G satisfies w(GA) ~ t because the presence of 
a (t + 1)-clique in G A would give a (t + 2)-clique in the subgraph induced by 
Au {Qi}· Now the .inductive hypothesis implies x(GA)::::;; (n-1Y- 1

. 



422 A. Gyarfas 

Assume that B i= (/>.Now x(Gi) ~ x(GA)+x(GB) since a good coloring of 
G A with x ( G A) colors, a good coloring of GB with x ( GB) new colors and an 
assignment of any color used on V(GB) to Qi define a good coloring of Gi. 
Therefore 

x(GB) ~ x(Gi)-x(GA) > (n-i)(n-1Y- 1 -(n-1y- 1 

= (n-.(i+1))(n-1Y- 1
, 

which allows us to choose a connected component H of GB satisfying 
x(H) > (n-(i+l))(n-1)t- 1

. Since Gi is connected by (i), there exists a vertex 
Qi+ 1 E A such that V(H) u {Qi+ d induces a connected subgraph which we 
choose as Gi+ 1 · It is easy to check that G1 , G2 , ... , Gi+t and 
Q1 , Q2 , ... , Qi + 1 satisfy the requirements (i)-(iii). 

Assume that B = (/). Now x(Gi) ~ x(GA)+ 1, which implies 

( n - i)( n - 1 Y- 1 < ( n - 1 )t- 1 + 1. 

Consequently, i = n- 1. Since A # (/) by properties (i) and (ii) of Gi, Qn can 
be defined as any vertex of A, Gn = {Qn}· 

The proof of Theorem 2.4 shows that for triangle-free graphs a stronger 
statement holds. 

CoROLLARY 2.5. If G is a connected triangle{ree graph of chromatic 
number n, then every vertex of G ·is an endpoint of an induced Pn in G. 

Let fn* (x) denote the smallest x-binding function of ~(Pn). Then 

(1) R(lnj2l, x+l)-1 f,*() ( __ 1)x-1 
I l ~nx~n ' n/2 -1 

where the upper bound comes from Theorem 2.4 and the lower bound 
follows easily from the observation that an induced Pn in a graph G contains 
a stable set of size I nj2l. The truth is probably close to the lower bound. 
For example, for n = 4 the lower bound is sharp, since the family ~(P 4) is 
known to be perfect (see [35]). 

PROBLEM 2.6. Improve the lower or the upper bound of (1)! for the 
smallest x-binding function fn* (x) of ~(Pn)· 

PRoBLEM 2.7. What is the order of magnitude of f 5* (x)? 

PROBLEM 2.8. Determine 

c = lim fn* (2)/n. 
n--->oo 

(It is easy to see that 1/2 ~ c ~ 1.) 

Combining the ideas of the proofs of Theorems 2.2 and 2.4, it is possible 
to prove that ~(B) is x-bound, where B denotes a broom. A broom is a tree 
defined by identifying an endvertex of a path with the center of a star. The 
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broom is the maximal forest for which Conjecture 2.1 is known to be true in 
the following sense: if F is a forest which is not an induced subgraph of a 
broom, then Conjecture 2.1 is open. In particular, the following three special 
cases of Conjecture 2.1 are ·open problems: 

PROBLEM 2.9. Prove that t§(F) is x-bound for 

F= >--<
. 

PROBLEM 2:10. Prove that t§(F) is x-bound for 

F = e-• -------1..__ ___ _ 

PROBLEM 2.11. Prove that t§(2Kl,3) is x-bound. 

It seems hard to attack the following special case of Conjecture 2.1: a x
binding function f (x) for t§(F) can be defined at x = 2 if F is a forest. To 
settle this problem it is clearly enough to consider the case where F is a tree 
since every forest is an induced subgraph of some tree. Thus we have 

CoNJECTURE 2.12. Let T be a tree and let G be a triangle1ree graph 
which does not contain T as an induced subgraph. Then x(G) ~ c, where cis a 
constant depending only on T. 

Conjecture 2.12 was proved for trees of radius two in [23]. The smallest 
tree for which Conjecture 2.12 is open looks like: 

I 
PROBLEM 2.13. Prove Conjecture 2.12 for the tree above. 

In what follows we consider problems concerning :the smallest x-binding 
functions of some special forests. The first example is mK 2 , the union of m 
di~joint edges. Note that mK2 is an induced subgraph of P 3m- b therefore 
t§(mK2) is x-bound by Theorem 2.4. Theorem 2.4 gives an exponential x
binding function for t§(mK 2). The methods used in [40] give better results. 

THEOREM 2.14 (Wagon [40]). The family t§(mK2) has an 0 (x2
(m-l)) x

binding function. 

THEOREM 2.15 (Wagon [40]). The function 

is a x-binding function for t§ (2K 2). 

5 - Zastos. Mat. 19.3-4 
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PROBLEM 2.16. What is the order of magnitude of the smallest x-binding 
function for ~ (2K 2)? 

Problem 2.16 was posed in [ 40] and arose again in connection with a 
problem of Erdos and El-Zahar [9]. Wagon notes in [ 40] that 3x/2 is a 
lower bound for the smallest x-binding function of ~(2K2). A much better 
lower bound is 

where R(C4 , Kx+l) denotes the smallest k such that every graph on k 
vertices contains either a clique of size x + 1 or the complement of the graph 
contains C4 (a cycle on four vertices). The above lower bound is non-linear 
because R{C4 , K 1) is known to be at least t1 +e for some e > 0 as proved by 
Chung in [5]. Concerning particular values of the smallest x-binding function 
f* for ~(2K2), it is easy to see that f* (2) = 3. Erdos offered 20$ to decide 
whether f* (3) = 4. The prize went to Nagy and Szentmikl6ssy who proved 
[31] that f* (3) = 4. 

Now we turn our attention to the smallest x-binding function of ~(F), 
where F is a forest on four vertices. The number of such forests is six and 
three of them {P4 , S4 and 2K2) have been discussed before. The smallest 
x-binding function of ~(4K 1 ) is asymptotically !R(4, x+ 1) as the next 
proposition shows. 

PROPOSITION 2.17. Let f* (x) be the smallest x-binding function for 
~(4K 1). Then 

R(4, x+1)-1 f*() R{4, x+1)+2R(3, x+1) 
-----~ X~ 1. 

3 3 

Proof. The lower bound is obvious. Let p be the maximal number of 
disjoint three-vertex stable sets in GE ~(4K1 ). Let jV(G)I = 3p+q; then 
q ~ R(3, x+1)-1 and 

I v (G) I + 2q R ( 4' X+ 1)- 1 + 2 ( R (3' X + 1) - 1) 
X (G) ~ p + q = 3 ~ 3 

= R(4, x+ 1)+2R(3, x+ 1) 
1 3 . 

The smallest x-binding function of the family ~(P3 u Kt) is asymptotically 
t R(3, x+ 1). 

THEOREM 2.18. Let f* (x) be the smallest x-binding function of 
~(P3 u K 1). Then 

R(3, x+ 1)-1 f* ( ) R(3, x+ 1)+x-2 
-----~ X~ . 

2 2 . 
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The lower bound is obvious. The proof of the upper bound is based on 
the following lemma: 

LEMMA 2.19. Assume that GE C§{P3 u K 1) and rx.(G) ~ 3. Let S be a 
largest Stable set of G, i.e., lSI= rx.(G). Then w(G-S) = w(G)-1. 

Proof. Let 

S = {s1 , s2 , .. • , s(J' and VE V(G)-S. 

Since G E r:§ ( P 3 u K 1), v is adjacent either to exactly one vertex of S or to all 
vertices of S. Therefore, V(G)-S = v1 u Jl2, where VE v1 is adjacent to 
exactly one vertex of S and VE V2 is adjacent to all vertices of S. Let W be a 
clique of V(G)-S. Assume that w1 , w 2 EWn V1 , w1 =F w2 , and w 1 siEE(G), 
w2 si E E (G), i =F j. Since lSI ~ 3, we can choose sk E S such that k =F i, k =F j. 
Now {w1 , w 2 , sb sd (or {wb w 2 , si, sd) induces P 3 uK1 in G, which contra-

·dicts GE ~(P3 u K 1). We conclu_d~_ that all vertices of W n f 1 are adjacent to 
the same vertex, say si E S. Clearly, si is adjacent to all vertices of W n V2 • 

Therefore, any clique of V (G)- S can be augmented to a larger clique by 
adding a suitable vertex of S. 

Proof of Theorem 2.18. The theorem is trivial if rx.(G) = 1. Assume 
that rx.(G) = 2 and let x 1 y 1 , x 2 y2 , .. . , xPyP be a largest matching of G. Let q 
= IV(G)I-2p; then x(G) ~ p+q and w(G) ~ q. Thus 

IV(G)I +q R(3, w(G)+ 1)-1 +q X (G) ~ p + q = ~ ___: ___ --...:_ __ _ 
2 2 

as stated in the theorem. 
Now we can proceed by induction on w(G). The case w(G) = 1 is trivial. 

The inductive step follows from Proposition 2.17 and from the fact that the 
Ramsey function R ( x, 3) is strictly increasing. Let rx. (G) ~ 3 and let S be a 
stable set of size rx. (G). The inductive hypothesis can be applied to G' = G- S. 
Thus 

R(3, x)+x-2 R(3, x+1)+x-1 
X (G) ~ X ( G') + 1 ~ 2 + 1 ~ : 2 . 

The sixth four-vertex forest which was not discussed yet is P2 u 2K 1 • 

PROBLEM 2.20. What is the order of magnitude of the smallest x-binding 
function for r:§(P2 u 2K 1)? The lower bound 

R(3, x+ 1)-1 

2 

is obvious and it is easy to prove that 

(
x+1) 

2 
+x-1 

is an upper bound. 
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3. BINDING FUNCTIONS ON F AMillES 
WITH AN INFINITE SET OF FORBIDDEN SUBGRAPHS 

Let :Yf be a set of graphs and let ~(:Yf) denote the family of graphs 
containing no graph of :Yf as an induced subgraph: , 

~(£') = {G: H ¢ G for all HE :Yf}. 

In Section 2 we have dealt with x-binding functions of ~(:Yf) for the case 
I:Yfl = 1. Now we are concerned with the case 

:Yf = {Hl, H2, .. . , Hi, ... }. 

If HiE :Yf were acyclic for some i, then Conjecture 2.1 would imply that 
~(£') is a x-bound family. Assume that, for some fixed k, g (Hi)~ k for all i, 
where g (Hi) denotes the girth (the length of the smallest cycle) of Hi. By the 
basic result of Erdos and Hajnal (see [10]), one can define Gi as a graph of 
chromatic number i and girth of at least k + 1 for all i. Consequently, the 
family 

~ = {G1 , G2 , ... , Gj, ... } 

is not x-bound. Since Gi E ~(:Yf) for all i, we observe that 

PROPOSITION 3.1. Jf ~(:Yf) is x-bound, then 

Sup g(H) = oo. 
HE.Yt' 

The most challenging open problem concerning perfect graphs 1s the 
Strong Perfect Graph Conjecture. Let us define :Yf 0 as 

The Strong Perfect Graph Conjecture states that ~(:Yf0 u Yi'0) is the family 
of perfect graphs, i.e., 

~(:Yfo u YP"o) = f!J. 

Using our terminology, the Strong Perfect Graph Conjecture is equivalent to 
the statement that ~ ( :Yf 0 u Y1) is a x-bound family with x-binding function 
f(x) = x. Surprisingly, it is not even known if ~(:Yf0 u YP"0 ) is x-bound. 

CoNJECTURE 3.2 (Weakened Strong Perfect Graph Conjecture). The family 
~(:Yfo u YP"o) is x-bound. 

The Strong Perfect Graph Conjecture gives a necessary and sufficient 
condition for perfectness in terms of forbidden subgraphs. To state similar 
conjectures for families having binding functions different from f (x) = x 
seems to be difficult. Consider, for example, the family of graphs with 8-
binding function f (x) = x + 1. Graphs of that family do not contain the 
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(disjoint) union of G 1 and G2 as an induced subgraph, where 
G1 , G2 E £?0 u £ 0 . The following proposition shows that "critical" graphs 
can be much more complicated. Since its proof is based on case analysis, we 
state it without proof. 

Fig. 1 

PROPOSITION 3.3. Let G be a graph shown in Fig. 1. Then 8(G)= a:(G) 
+ 2 and every induced proper subgraph G' c G satisfies 8 ( G') ~ a ( G') + 1. 

A natural way to show Conjecture 3.2 is to prove the following stronger 
conjecture: 

CONJECTURE 3.4. The family ~(Yeo) is x-bound. 

Perhaps Conjecture 3.4 can be strengthened further: 

CoNJECTURE 3.5. The family ~(Jf'O) is x-bound for all m ~ 2, where 

YPO = {C2m+1' c2m+3' ... }. 

A weaker version of Conjecture 3.5 seems to be ~also interesting: 

CoNJECTURE 3.6. The family ~(r&z) is x-bound for all l ~ 4, where 

r&1 = { C z, C l+ 1 , C l+ 2, ... } . 

Note that ~(r&4) is the family of triangulated graphs which is perfect. 
However, for l ~ 5 the conjecture is open. 

Special cases of the Strong Perfect Graph Conjectu,re are known to be 
true. Some of these, results say that ~(£) is perfect if 

£ = Yf0 u £ 0 u {H}, 

where H is a four-vertex graph. J. Lebel was curious about the four-vertex 
graphs H for which the perfectness of ~(£0 u :Yf0 u {H}) is not known. The 
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Perfect Graph Theorem reduces the eleven cases to six. The perfectness of 
~C~o u Yl0 u {H}) is known in the following cases: 

H = K4 (Tucker [38]); 
H = K 4 -e (Parthasarathy and Ravindra [33]); 
H = K 1,3 (Parthasarathy and Ravindra [32]); 
H = K 3 u e, where e is an edge which has exactly one vertex 1n 

common with K 3 (a consequence of Meyniel's theorem [29], and a direct 
proof follows from Lemma 2.19); 

H = P 4 (Seinsche proved [35] that ~(P 4 ) is perfect). 
It remains to solve 
CoNJECTURE 3.7 (J. Lehel). The family 

~(£'o u Ylo u {C4}) = ~(£'o u {C4}) 

is perfect. 

4. BINDING FUNCTIONS ON FAMILIES 

HAVING A SELF-COMPLEMENTARY SET OF FORBIDDEN SUBGRAPHS 

A family ~ of graphs is self-complementary if ~ = ?§, i.e., G E ~ if and 
only if G E ~- A self-complementary family ~ is x-bound if and only if ~ is 8-
bound. Moreover, if ~ is x-bound, then the smallest x-binding function of ~ 
is the same as the smallest 8-binding function of ~. Therefore, we can speak 
about binding functions of ~without referring to x or to 8. We mention two 
well-known families of perfect self-complementary graphs. 

Permutation graphs (see [16]): graphs G such that both G and G are 
comparability graphs. · 

Split graphs (see [16]): graphs G such that both G and G are triangu
lated graphs. Equivalently, split graphs are graphs whose vertices can be 
partitioned into a clique and a stable set. 

Let £' be a family of graphs. Obviously, ~(£') is self-complementary if 
and only if£' is self-complementary. In what follows, we investigate binding 
functions of ~(£') for self-complementary £'. To see some perfect families 
first, note that ~(P4) is perfect [35], ~(C4 , 2K 2 , C5) is perfect and coincides 
with the family of split graphs as proved by Foldes and Hammer [13]. A 
slightly more general result is in [21] (Theorem 3). The family 
~(C4 , 2K2 , P4) is a subfamily of both previous families, thus it is perfect. 
The family contains the so-called threshold graphs (see [16]). 

Concerning the existence of binding functions, the main open problem is 
a special case of Conjecture 2.1. 

CoNJECTURE 4.1. The family ~(F, F) has a binding function for every 
fixed forest F. 



Perfect graphs 429 

It seems useful to look at some special cases of Conjecture 4.1. A 
straightforward attempt is to settle the following weaker versions of Prob
lems 2.9-2.11: 

PROBLEM 4.2. Prove Conjecture 4.1 for F from Problem 2.9. 

PROBLEM 4.3. Prove Conjecture 4.1 for F from Problem 2.10. 

PRoBLEM 4.4. Prove Conjecture 4.1 for F = 2K 1,3 . 

Another problem is to determine or estimate the smallest binding 
function of qJ(F, F) when qj(F) is known to be x-bound. The rest of the 
section is devoted to problems and results of this kind. 

PROBLEM 4.5. Estimate the smallest binding function of qj(Sn, Sn). (Sn is · 
a star on n vertices.) 

Concerning special cases of Problem 4.5, note that the case n = 3 is 
trivial since qj(S3 , S3) contains only cliques and their complements. The case 
n ~ 4 is settled by the following theorem (cf. Theorem 2.2): 

THEOREM 4.6. The smallest binding function of qJ(S4 , S4 ) (the claw and 
co-claw free graphs) is 

f(x) = L3xj2J. 

Proof. Let G be a non-perfect member of qJ(S4 , S4 ). The result of 
Parthasarathy and Ravindra [32] implies that G contains an induced odd 
cycle or its complement. By symmetry we may assume that 

is an induced subgraph of G for some k;;:: 2. 
We claim that any vertex x E V (G)- V ( C 2k + 1) is adjacent to all or to no 

vertices of C 2k + 1 . 

To prove the claim assume that x is adjacent to V;. If x is not adjacent 
to vi_ 1 and x is not adjacent to vi+ 1 (indices are taken modulo 2k + 1 ), then 
{vi_ 1 , v;, vi+ 1 , x} induces S4 in G, a contradiction. We may assume that V; 

and vi+ 1 are both adjacent to x. If there exists a vertex vj in 

such that vj and X are not adjacent, then { Vj, Vj' vi+ 1' X} induces s4 in G, a 
contradiction. Thus x is adjacent to all vertices of C'. Assume that x is not 
adjacent to vi_ 1 or to vi+ 2 , say x and vi_ 1 are not adjacent. If k = 2, then x 
and vi+ 2 are adjacent (otherwise, {vi_ 1 , vi+ 1 , vi+ 2 , x} would induce S4 ); 

therefore {vi_ 1 , vi+t' vi+ 2 , x} induces S4 . If k;;:: 3, the11 {vi_ 1 , vi_ 3 , vi_ 4 , x} 
induces s4. In all cases we have obtained a contradiction. Therefore X is 
adjacent to all vertices of C 2k + 1 and the claim is proved. 

Let V(G)- V(C2k+d =Au NA, where A (NA) denotes the set of ver
tices adjacent (non-adjacent) to C2k+ 1 . We claim that either A or NA is 
empty. 
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Assume that aEA, bENA and abEE(G). Let vivi~E(G); now 
{a, b, vb vi} induces S4 . Similarly, if ab~E(G), then we choose i and j such 
that ViVjEE(G), and now {a,b,vbvJ induces s4. Thus the claim is true. 

The theorem follows by induction on the number of vertices of 
GE ~(S4 , S4 ). The inductive step goes as follows. 

Let GE~(S4 , S4). If G is perfect, then 

· l3w(G)J x(G) = w(G) ~ -
2

- . 

Otherwise G = C Zk + 1 u A or G = C Zk + 1 u N A as was proved above. In the 
first case we use the inductive hypothesis for A: 

x(G) = x(A)+3;;; l3co~Ai }3 = l3(co(~)-2) }3 = l3co~G) J. 
In the second case we use the inductive hypothesis for NA: x(G) = x(NA) 
and w(G) = w(NA), so 

x(G) = x(NA);;; l3co~A) J = l3co~G) J. 
We have proved that f(x) = L3xj2J is a binding function for ~(S4 , S4). 

To see that it is the smallest one, let Gm be defined as follows. Consider Km 
a~d __ remove the edges of Lm/5J _vertex disjoint C5 . Now it is easy to 
see that Gm E ~(S4 , S4 ) for all m; moreover, 

w ( G sk) = 2k, X ( G sk) = 3k, w ( G sk + 1) = 2k + 1 , X ( G Sk + 1) = 3k + 1. 

PROBLEM 4.7. Estimate the smallest binding function of ~(Pn, 1\) (cf. 
Theorem 2.4 and Problem 2.6). 

PROBLEM 4.8. What is the order of magnitude of the smallest binding 
function for ~(P5 , P5)? (Cf. Problem 2.7.) 

PROBLEM 4.9. What is the order of magnitude of the smallest binding 

function for ~(mK2 , mK2)? (Cf. Theorem 2.14.) 

The case m = 2 in Problem 4.9 is settled by the following theorem: 

THEOREM 4.10. The smallest binding function for ~(2K2 , 2K 2 ) is f (x) 
= x + 1. (Cf. Problem 2.16.) 

Proof. Let GE ~(2K2 , 2K2 ) and letS be a stable set of G such that lSI 
= a (G). Assume that x, y E V (G)- S, xy ¢ E (G). The definition of S and 
2K 2 ¢ G imply that F(x) nS and F(y) nS are non-empty sets and one 
contains the other, say 

F(x) n S r;; F(y) n S 

(F(p) denotes the set of neighbours of pE V(G)). Now 2K 2 ¢ G implies 
IF(x) n Sl = 1. 
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Let 
K 1 = {x: XE V(G)-S, IF(x) nSI > 1}; 

then K 1 is a clique in G by the argument above. We proceed to show that 
V(G)-(S u K 1) is again a clique of G. Assume that p, qE V(G)-(S u K 1) and 
pq ¢ E (G). By definition, 

IF(p) n Sl '= IF(q) n Sl = 1. 

However, r (p) n S = r (q) n S contradicts the maximality of S, and 
F(p) n S # F(q) n S contradicts the assumption 2K2 ¢G. 

We have shown that the deletion of a stable set S of G results in a 
perfect graph (the complement of a bipartite graph). Thus 

x(G) :( x(G-S)+ 1 = w(G-S)+ 1 :( w(G)+ 1, 

showing that f(x) = x+ 1 is a binding function for ~(2K2 , 2K2 ). To see that 
f (x) = x + 1 is the smallest binding function, it is enough to consider 
complete graphs from which the edges of a C5 are deleted. 

The proof of Theorem 4.10 gives 

CoROLLARY 4.11. If GE ~(2K2 , 2K 2 ), then V(G) can be partitioned into 
two cliques and a stable set. By symmetry, V (G) can be also partitioned into 
two stable sets and a clique. 

Using Lemma 2.19 it is easy to prove 

THEOREM 4.12. Let F denote the forest P 3 u K 1 . Then ~(F, F) contains 
complete multipartite graphs and their complements, and moreover the graph C5 . 

Using the result of Parthasarathy and Ravindra [33] which proves the 
Strong Perfect Graph Conjecture for ~(K4 -e) (or, equivalently, for 
~(K2 u 2K 1)), it is easy to derive 

THEOREM 4.13. Let F denote the forest K 2 u 2K 1 . Then the non-perfect 
members of ~(F, F) are 

1. the graph of Fig. 2 and its non-perfect subgraphs; 
2. a clique K whose vertices are adjacent to two consecutive vertices 

of a C5 ; 

3. the complements of the graphs defined in 1 and 2. 

Fig. 2 
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Putting together the previous two theorems, we have the following 
corollary: 

CoROLLARY 4.14. Let F denote either P 3 u K 1 or K 2 u 2K1 . Then the 
smallest binding function of ~ (F, F) is 

f (x) = {3x if x = 2, 
if X> 2. 

Before completing this section, note that the smallest binding function of 
~ (F, F) was found for four-vertex forests F with one exception. The excep
tional case occurs when F = K4 , i.e., F is a stable set of four vertices. The 
family ~(K4 , K 4 ) is very eccentric since it is finite (like ~(Km, Km) in general 
for fixed m). Its smallest binding function f* (x) is determined by the values 
f* (2) and f* (3). It is easy to deduce that f* (2) = 3 from the facts that 
R(3, 4) = 9 and that a graph G with w(G) = 2, x(G) ~ 4 satisfies IV(G)I ~ 9. 
(In fact, IV(G)I ~ 11 is true as proved by Chvatal in [6].) Is it possible to 
determine f* (3) without brute force? 

5. BINDING FUNCTIONS ON UNION AND INTERSECTION OF GRAPHS 

k k 

For graphs G1 , G2 , .•. , Gk, the graphs U Gi and n Gi are usually 

defined as follows: 
V(U Gi) = U V(Gj), 

V(n Gi) = n V(Gj), 

i==1 i=1 

E(U Gj) = U E(Gi), 

E(nGi) = nE(GJ 

If ~1 , ~2 , .•. , ~k are families of graphs, then their union is the family 
{U Gi: Gj E ~j} and their intersection is the family { nGi: Gj E ~i}. By defini
tion, n ~i is a x-bound family if and only if U {§i is a 8-bound family. This 
fact combined with x(G1 u G2) ~ x(G1) x(G2) gives the following obvious 
observation: 

PRoPOSITION 5.1. (a) If ~1 , ~2 , .•• , ~k are x-bound families with binding 
k 

functions f1' f2, ... '/,., then u ~j is a x-bound family and n}; is a suitable 
i == 1 

x-binding function. 
(b) If ~1 , ~2 , ... , ~k are 8-bound families with binding functions 

k 

fbf2, .. . ,!,., then n ~j is a 8-bound family and n}; is a suitable 8-binding 
i== 1 

function. 

Proposition 5.1, trivial as it is, can sometimes be conveniently applied to 
prove the existence of binding functions. 

CoROLLARY 5.2. Let f!lJ denote. the family of all perfect graphs. The union 
(intersection) qf k copies of f!jJ is x-bound (8-bound) with binding function xk. 
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PROBLEM 5.3. What is the smallest x-binding function for f!jJ u f!/J? 

PROPOSITION 5.4. The family of overlap graphs is 8-bound with 8-binding 
function x 2

• 

Proof. Let ~1 denote the family of co-interval graphs, and let ~i 

denote the family of interval inclusion graphs. Since ~1 and ~2 are perfect 
families, x2 is a x-binding function for ~1 u ~2 by Corollary 5.2. The "family 
of overlap graphs is a subfamily of ~1 u ~2 . 

PROPOSITION 5.5. The family of d-dimensional box graphs is 8-bound with 
8-binding function Y!. 

Proof. The family in question is the intersectio11 of d families of 
interval graphs and we can apply Corollary 5.2. 

k 

It is tempting to think that n ~i is x-bound provided that ~i is x-
i= 1 

bound for i = 1, 2, ... , k. However, this is not the case. It may happen that 
~1 n ~2 is not x-bound although ~1 and ~2 are perfect families. A surprising 
construction of Burling [ 4] gives three-dimensional box graphs Bn for all 
positive integers n such that w (Bn) = 2 and x (Bn) = n. The result shows that 
!In !In !I is not x-bound, where !I denotes the family of interval graphs. 
The analysis of Burling's construction shows moreover that !I n cl is not x
bound, where cl is the family of "crossing graphs" of boxes in the plane. The 
vertices of crossing graphs are boxes in the plane and two vertices are 
adjacent if and only if the corresponding boxes cross each other. It is 
immediate to check that ,/ is a subfamily of the family of comparability 
graphs. Note that !In !I is x-bound with an 0 (x2

) x-binding function as 
proved by Asplund and Grtinbaum [1]. Therefore the results in [4] and in 
[1] imply 

THEOREM 5.6. Let !I and C(l denote the family of interval graphs and 
comparability graphs, respectively. Then 

(a) !In !I is x-bound; 
(b) !In !In !I is not x-bound; 
(c) ·!f n C(l is not x-bound. 

Perhaps part (a) holds in a stronger form. 

PROBLEM 5.7. Let !T denote the family of triangulated graphs. Is !T n !T 
x-bound? In particular, is !T n !I x-bound? 

Since the graphs of !T can be represented as subtrees of a tree (see [16]), 
Problem 5.7 can be viewed as a geometrical problem. 

The following result shows a pleasant property of comparability graphs. 

PROPOSITION 5.8. Let C(l denote the family of comparability graphs. The 

intersection of k copies of C(l is x-bound and x2
"-

1 
is a suitable x-bindinfl 

function~ 
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Proof. Let G1 , G2 , ... , GkE C(J and assign a transitive orientation to the 
edges of Gi for all i (1 :( i :( k). Assume that 

k 

xyEE( n GJ 
i= 1 

The edge xy is oriented according to its orientation in Gk; moreover, we 
assign a type to it as follows. The type of xy is a 0-1 sequence of length k- 1. 
For all j (1 :( j :( k -1) the j-th element of the sequence is 0 if xy is oriented 
in G i from x to y, and it is 1 otherwise. It is immediate to check that the 

. k 

edges of a fixed type of n Gi define a transitively oriented graph. The 
i= 1 

k 

number of possible types is at most 2k- 1
, which implies that n Gi can be 

i= 1 

written as the union of at most 2k- 1 comparability graphs. Now the 
proposition follows from Corollary 5.2. 

PROBLEM 5.9. Estimate the smallest x-binding function of C(J n C(J. 

A subfamily of perfect graphs, the permutation graphs, occur in many 
applications. Permutation graphs can be defined as graphs G such that both 
G and G are comparability graphs. Corollary 5.2 and Proposition 5.8 give 

PROPOSITION 5.10. Let k be fixed and consider the family c;§ of graphs 
obtained by at most k applications of intersections and unions from permutation 
graphs. Then c;§ is x-bound and 8-bound. 

Now we want to determine the smallest 8-binding function of a family 
obtained as the union of k bipartite graphs. Observe that this family contains 
exactly the graphs of chromatic number at most 2k. Therefore, we are 
interested in finding the smallest 8-binding function for the family c;§m of at 
most m-chromatic graphs. 

PROPOSITION 5.11. Let f: (x) denote the smallest 8-binding function for 
c;§m· Then 

(a) f: (x) :( L(m+ 1)/2J x; 
(b) f: (x) ~ (m/2) x for x > x 0 = x 0 (m). 

Proof. It is trivial to cover the vertex set of an at most m-chromatic 
graph G by the vertices of at most L(m+ 1)/2J = s bipartite graphs 
B1 , B 2 , •• . , B5 • Now 

s s 

8(G) :( I 8(BJ = I a(Bi):( s·a(G) 
i= 1 i= 1 

and (a) follows. 
The lower bound is pointed out by Erdos, remarking that for n ~ n0 

and for arbitrary m there is a graph G = G (n, m) on kn vertices satisfying 
a(G) = n, w(G) = 2, and x(G) = m (see [8]). J. 

k ¥1111 : 
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PROPOSITION 5.12. The smallest binding function f 3* (x) of rg3 satisfies: 
(a) f3*(x) ~ i x; 
(b) fl (x) ~! x if x is. divisible by 5. 
Proof. First we prove (a). We may assume that Gr=rg3 is 3-chromatic. 

Let A 1 , A 2 , A 3 be the color classes of G in a good 3 coloring of V(G). Let 
G12 , G13 , G23 be the subgraphs of. G induced by A1 u A 2 , A1 u A 3 , A 2 u A 3 , 

respectively. Since Gij is a bipartite graph, fJ(Gij) =a(Gij), which shows that 
V(Gu) can be covered by at most a (G) cliques (vertices or edges) of Gu for 
1~i<j~3. 

We may assume that the clique cover of V(Gu) covers all vertices of 
V(Gij) exactly once. The cliques in the covers of V(G12), V(G13), V(G23) form 
a clique cover of G with at most 3a (G) elements and all vertices of G are 
covered exactly twice by these cliques. This cover can be partitioned into 
components where the cliques (edges and vertices) of each component are 
either the edges and the two end vertices of a path (allowing two identical 
vertices as a degenerate case) or the edges of a cycle of length divisible by 3. 
It is easy to check that the vertices of a component of m cliques can be 
covered by at most 5m/9 cliques. These cliques are edges and vertices except 
for a component which forms a triangle; in this case the triangle is used 
instead of three edges. Therefore, we get a clique cover of V(G) with at most 

5 5a (G) 
3a(G)·- =--

9 3 

cliques. 
The lower bound (b) was guessed by Erdos who devised to find a graph 

G with /V(G)/ = 15, a(G) = 5, x(G) = 3, and w(G) = 2. Really, such a graph 
G exists as a subgraph of a 17-vertex graph H containing neither triangles 
nor six independent vertices (see H in [26]). The graphs containing disjoint 
copies of G form a family with fJ-binding function 8x/5 for the cases where x 
is divisible by 5. 

PROBLEM 5.13. Let f 3* (x) be the smallest binding function of rg3. Deter-
Illine 

x--+oo 

(It is at least ! and at most i by Proposition 5.12.) 

6. COMPLEMENTARY BINDING FUNCTIONS 

AND STABILITY OF THE PERFECT GRAPH THEOREM 

We say that a binding function f has a complementary binding function if 
the family rg1 of graphs with fJ-binding function f is x-bound. The smallest 
x-binding function of rg 1 is called the complementary binding function of f 
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Note that () and x can change roles in the definitions. We are interested in 
the following general problem: 

PROBLEM 6.1. Which binding functions have complementary binding 
functions and what are their oomplementary binding functions? 

Using the notion of complementary binding function, the Perfect Graph 
Theorem states that f (x) = x is a self-complementary binding function. (The 
converse statement is also true, see Theorem 6. 7 .) 

One feels that only "small" functions may have complementary binding 
functions. This is really the case as the next theorem shows. 

THEOREM 6.2. If f (x) has a complementary binding function, then 
inf f (x)/x = 1. 

Proof. To prove the theorem, it is enough to show that fe(x) =:= (1 +e)x 
has no complementary binding function if B is a real number satisfying 
0 < e ~ 1. The proof is based on graphs defined by Erdos and Hajnal in [11]: 
for every e E (0, 1] and for every natural number k there exists a graph Gk 
with the following properties: 

(1) x(G1) = k, 

(2) 
IV(G)I 

2 --< +e 
tl(G) 

for all induced subgraphs G s; G1. 

Note that (2) implies that G1 is a triangle-free graph. Therefore, (1) implies 
that the family C§e = { Gj_, Gi, ... } is not x-bound. We are going to prove that 
C§e is a 0-bound family with 0-binding function fe (x). 

Let G be an induced subgraph of Gk. We have to prove that O(G) 
~ (1 +s)a(G). Since G is triangle-free, O(G) = IV(G)I-v(G), where v(G) is the 
cardinality of a maximal matching in G. We can express v(G) by the Tutte
Berge formula (see [39] and [2]) as follows: 

(3) v(G)= min IV(G)I+IAI"-a(H)' 
A s;V(G) 2 

where H denotes the subgraph induced by V(G)-A in G and a(H) denotes 
the number of odd components of H. Using (3) and O(G) = IV(G)I-v(G), we 
can write O(G) ~ (1 +e)tl(G) equivalently as 

(4) tl (~) ~ I V(H)I +a (H) for all H s; G. 
2(1 +s) 

In order to prove (4), let H be an induced subgraph of G with connected 
components H 1 , H 2 , ... , H m. Consider the partition of { 1, 2, ... , m} into I 1 , 

I 2 , I 3 defined as follows: 

(5) 
if Hi is bipartite and I V(Hi)l is even, 

if Hi is bipartite and I V(HJI is odd, 

if Hi is not bipartite. 
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We claim that 

(6) 

(H·) IV(H;)I + l .f I 
a , > 2(1+e) 1 iE 3 . 

i-

The first two inequalities are obvious. To prove the third one, let C 2,+ 1 

be a minimal odd cycle of Hi for some i E I 3 • Using (2) for C2t+ b we get 

2t+1 
t = a(C2t+1) > -2-, I.e., 

+e 

1 
t > -, 

e 

which implies 

(7) 
2 

IV(Hi)l ~ 2t+ 1 > -+ 1. 
e 

Observing that (7) ·is equivalent to 

and 

IV(H;)I IV(Hi)l + 1 
---> ' 

2+e 2(1 +e) 

(H.) IV(Hi)l 
a ' > 2 +e 

by (2), we get the third inequality of (6). 
Now we use (6) to estimate a (G). Clearly, 

m 

a(G) ~·I a(Hi) = I a(HJ+ I a(Hi)+ L a(Hi) 
i= 1 

IV(H)I+II2 ui3I V(H)+u(H) 
~ ~----

2(1 +e) 2(1 +e) 

since IV ( HJI is even for i E I 1 by ( 5). Thus we have proved ( 4) and the 
theorem follows. 

- ' 
Theorem 6.2 gives a necessary condition for the existence of comple-

mentary binding functions. Concerning sufficient conditions, the main open 
problem is the following 

CoNJECTURE 6.3. The function f(x) = x+c has a complementary binding 
function for any fixed positive integer c. 
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Conjecture 6.3 is open even in the case c = 1. Probably this case already 
contains all the difficulties. An evidence supporting Conjecture 6.3 is the 
following result: 

PROPOSITION 6.4. If~ is the family of graphs with 8-binding function f (x) 
= x+c, then, for all GE ~' w(G) = 2 implies x(G)::::;; 6c+2. 

Proof. Assume that GE ~' w(G) = 2. Clearly, 

IV(G)I 
-

2
- ~ 8(G) ~ 1X(G)+c, 

which implies 

(8) ( ) I V ( G)l - 2c 
IX G ~ 2 . 

Let C1 be an odd cycle of minimal length in G, let C2 be an odd cycle of 
minimal length in the subgraph induced by V(G)- V(C1) in G, etc. We 
continue to define C1 , C2 , ... , Cm until the subgraph induced by 

i= 1 

in G does not contain odd cycles. Applying (8) to the subgraph C induced by 
m 

U V(CJ in G, we get 
i= 1 

IV (C) I- 2c (C) ;, (C ) _ IV (C) I-m 
---- ::::;; IX ~ f... IX i - ----

2 i=1 2 

from which m ~ 2c follows. A good coloring of V(G) can be defined by 
coloring V (C) with 3m colors and using two additional colors for the 
bipartite graph induced by V (G)- V (C). Therefore, 

x(G) ~ 3m+2 ~ 6c+2. 

By a deep result of Folkman [12] which answers a conjecture of Erdos 
and Hajnal, condition (8) implies x (G) ~ 2c + 2. Therefore, Proposition 6.4 
holds with 2c + 2 instead of 6c + 2. 

The existence of complementary binding functions is known only for . 
"very small" functions. We mention a modest result of this type. 

PROPOSITION 6.5. Let t be a fixed positive integer. If f (x) is a binding 
function such that f (x) = x for all x ~ t, then f (x) has a complementary 
binding function. 

It does not seem to be a trivial problem to determine the complement
ary binding functions of any function different from f (x) = x. Perhaps the 
simplest problem of this type is 

PRoBLEM 6.6. Let f be the binding function defined as 
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f(x) = {; 
if X =/= 2, 

if X= 2. 
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What is the complementary. binding function of f? Perhaps L3x/2J is the 
truth. 

The following result shows that the Perfect Graph Theorem is stable in 
a certain sense: 

THEOREM 6.7. Iff (x) is a self-complementary binding function, then f (x) 
= x for all positive integers. 

Proof. Assume that f is self-complementary. 

Case 1. Assume that f(2) = 2. If f(x) =1= x for some XE N, then we can 
choose kEN such that k ~ 3, f (k) > k and f (x) = x for x < k. Clearly, f is 
a 8-binding function for { c2k+ d but fails to be a x-binding function for 
{ C 2k + d, i.e., f is not self-complementary. The contradiction shows that f ( x) 
=.X for all xEN. 

Case 2. Assume that 

f(2) > 2 and f(k) < l(3k -1)/2l for some k. 

Consider the graph Gk whose complement is Lkj2J disjoint C5 and, for odd 
k, an additional isolated vertex. Now f is a 8-binding function for { Gk} 
(a(Gk) = 2, 8(Gk) = 3) but fails to be a x-binding function for (Gk] (w(Gk) 
= k, X ( Gk) = I (3k - 1 )/2l). 

Case. 3. f(k) ~ l(3k-1)/2l for all kEN. In this case Theorem 6.2 
implies that f (x) has no complementary binding function, again a contradic
tion. 

A generalization of the Perfect Graph Theorem (proved also by Lovasz 
in [28]) states that a graph G is perfect if a ( G') · w ( G') ~ IV ( G')l holds for all 
induced subgraphs G' of G. The first step in searching analogous properties 
would be to settle 

PROBLEM 6.8. Let C§ be a family of graphs G satisfying 

C( (G'). (J) (G') ~ I V(G')I-1 

for all induced subgraphs G' of G. Is it true that C§ is a x-bound (or, 
equivalently, 8-bound) family? If yes, what is the smallest binding function 
for C§? 

Acknowledgment. I should like to express my gratitude to the referee, 
to the technical editor and to all others whose 'work improved my 
manuscript. 

Added in proof. Problems 1.7 and 1.8 are answered by A. Kostochka. 
Problems 2.11 and 4.4 are easy. 

6 - Zastos. Mat. 19.3-4 
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