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A graph coloring algo'rithm that immediately colors the vertices taken 
from a list without looking ahead or changing colors already assigned is 
called "on-line coloring." The properties of on-line colorings are investi
gated in several classes of graphs. In many cases we find on-line color
ings that use no more colors than some function of the largest clique 
size of the graph. We show that the first fit on-line coloring has an abso
lute performance ratio of two for the complement of chordal graphs. We 
prove an upper bound for the performance ratio of the first fit coloring 

. on interval graphs. It is also shown that there are simple families resist
ing any on-line algorithm: no on-line algorithm can color all trees by a 
bounded number of colors. 

1. INTRODUCTION 

A coloring (or proper coloring) of a graph G is an assignment of positive inte
gers called "colors" to the vertices of G so that adjacent vertices have different 
colors. 

An on-line coloring is a coloring algorithm ~hat immediately colors the ver
tices of a graph G taken from a list without looking ahead or changing colors 
already assigned. To be more precise, an on-line coloring of G is an algorithm 
that properly colors G by receiving its vertices in some order v1, ••• , V 11 • The 
color of vi is assigned by only looking at the subgraph of G induced by the set 
{v1, ••• , vJ, and the color of vi never changes during the algorithm. 

Let A be an on-line coloring algorithm and consider the colorings of a graph 
G produced by A for all orderings of the vertices of G. The maximum number 
of colors used among these colorings is denoted ,by XA (G). Clearly, XA (G) mea
sures the worst-case behavior of A on G. 
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On-line coloring can be viewed as a two-person game on a graph G. In each 
step player I reveals the vertices of G and player II answers by immediately 
coloring the current vertex. The aim of II might be to use as few colors as pos
sible and then the strategy of I against II consists in finding the "worst" order of 
vertices that forces as much color as possible. 

The simplest on-line coloring is the first fit algorithm, for which we use the 
abbreviation "FF" throughm,tt the paper. The first fit algorithm (FF) is an on
line coloring that works by assigning the smallest possible integer as color to 
the current vertex of the graph. 

Obviously, FF produces a maximal stable sequence partition V(G) = 
S 1 U · · · U S b where S i is a maximal nonempty stable set in the sub graph 
induced by Si U · · · U Sk, for every i, 1 ~ i ~ k. The converse is also true: 
every maximal stable sequence partition of G can be reproduced by FF if an 
appropriate ordering of the vertices is taken. Therefore, XFF(G) coincides with 
the canonical achromatic number of a graph G introduced in [8]. 

Our interest in on-line graph coloring algorithms is motivated by the fact that 
certain situations necessitate the performance of on-line operations. Such situa
tions occur, for instance, in dynamic storage allocation [9]. In some cases these 
problems are formulated as two-dimensional packing problems (see [1 and 3]). 
Certain algorithms can be interpreted as on-line colorings in special families 
of graphs. In particular, the rectangle packing problem of M. Chrobak and 
M. Slusarek ([4,5]) can be formulated as follows: how powerful are the on-line 
and FF colorings on the family of interval graphs? It is asked in [4] whether FF 
has a constant performance ratio in the family of interval graphs. This fascinat
ing problem inspired the present paper. 

Our main concern is to get upper bounds for XA(G), in particular for XFF(G), 
in terms of w( G) for several classes of graphs. Here w( G) denotes the clique 
number of G, i.e., the maximum number of vertices in a complete sub graph of G. 

First we consider FF in the case of subfamilies of perfect graphs. We prove 
the following results: 

XFF(G) ~ w(G) + 1 
XFF(G) ~ ~ · w(G) 

XFF(G) ~ 2 · w(G) - 1 

if G is split graph (Proposition 2.2); 
if G is the complement of a bipartite graph 
(Theorem 2.3); . 
if G is the compleinent of a chordal graph 
(Theorem 2. 4). 

For perfect graphs w(G) = x(G), where x(G) denotes the chromatic number 
of G, i.e., the minimum number of colors in a proper coloring of G. Therefore 
the (tight) bounds given above show that the performance ratio XFF(G)/x(G) of 
FF coloring is constant for the appropriate perfect graphs. The positive answer 
to the question of Chrobak and Slusarek would imply the analogous result con
cerning interval graphs. The authors proved that for every n there is a constant 
c(n) such that XFF(G) ~ c(n) · w(G)'+(tln) if G is interval graph. W. Just proved 
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[personal communication] a better upper bound, XFF(G) ~ cw(G) log(w(G)). 
We are grateful to him for allowing us to present his result as Theorem 3.4 in 
this paper. 

Although no linear upper bound is known, the computer experiences ofT. F. 
Liska [personal communication] with random interval families seems encourag
ing to accept FF coloring as a practical approximation algorithm for the on-line 
coloring problem of interval graphs. (The performance ratio obtained varies 
between 1.3 and 1.4). A result of Kierstead and Trotter ([10]) can be inter
preted as an on-lin'e algorithm to color interval graphs with at most 3w(G) - 2 
colors. This result is sharp, i.e., no on-line algorithm can color all interval 
graphs with less than 3w( G) - 2 colors. 

We should mention a result of C. McDiarmid in [8], which says that FF 
behaves quite well asymptotically, since XFF(G) ~ (2 + e) · x(G) holds for 
almost all graphs G. 

It is well known that FF coloring is ineffective on the family of bipar
tite graphs. We prove that bipartite graphs also resist any on-line algorithm: 
for all n there is a tree T,

1 
such that XA(Tn) ~ n for all on-line algorithms A 

(Theorem 2.5). 
The power of on-line colorings depend to some extent on the absence of 

certain induced forests in the graphs to be colored. A graph G will be called 
"F-free" if G does not contain an induced subgraph isomorphic to F. It is easy 
to see, for example, that FF works "perfectly" on P4-free graphs, that is, 
XFF(G) = x(G) if G is P4-free (Proposition 2.1). On the other hand, no on-line 
algorithm can be effective on the family of P6-free graphs: for all n there exists a 
P6-free graph Gn such that xCGn) = 2 and XA(G,) ~ n for all on-line algorithms 
A (Theorem 4.5). 

Concerning small forests, we prove among other things that XFF( G) can 
be bounded in terms of w(G) if G is claw-free (Theorem 4.1) or 2K2-free 
(Theorem 4.2). The family of all (K2 + 2K1)-free graphs G is an example 
where FF is ineffective but there exists a more sophisticated on-line coloring A 
for which XA(G) can be bounded in terms of w(G) (Theorem 4.4). 

2. FIRST FIT COLORINGS ON PERFECT GRAPHS 

In this section XFF(G) ~ k is interpreted as follows: the vertex set of G has a 
maximal stable sequence partition into k or more nonempty stable sets S 1 , 

S2 , .•. satisfying that every Si (i = 1, 2, ... ) is a maximal stable set in the sub
graph of G induced by Si U Si+ 1 U .... 

For convenience, we also introduce the complementary notion of first fit 
clique covering as ~FF(G) = XFF(G), where G denotes the complement of 
graph G, and we refer to the stability number a( G) = w( G). 



220 JOURNAL OF GRAPH THEORY 

Proposition 2.1. If G is a P4-free graph (i.e., contains no path of four vertices 
as induced sub graph), then 

XFF(G) = w(G). 

Proof. It is well-known (see [2]) that any maximal stable set of a P4-free 
graph meets all maximal cliques of the graph. Thus the proposition follows by 
induction on w( G). I 

Concerning the role of P4 subgraphs in on-line colorings, we note that 
XFF(G) = 2 if and only if G is a P4-free bipartite graph-i.e., the union of 
disjoint complete bipartite graphs- and has at least one edge. 

Proposition 2.2. If G is a split graph (i.e., the union of a clique and a stable 
set with arbitrary edges between them), then XFF( G) ~ w( G) + 1. I 

Since the complement of a split graph is also a split graph, by definition, we 
immediately obtain that ~FF( G) s a( G) + 1 holds for every split graph G. 

Theorem 2.3. If G is bipartite graph, then ~FF(G) ~ ~ · a( G), and this bound 
is tight. 

Proof. A maximal clique sequence partition of G consists of a set F of in
dependent edges and a stable .set X U Y of the nonsaturated vertices (X and Y 
are, respectively, in the first and second bipartition class of G). Obviously, 
IFI + lXI ~ a(G), IFI + IYI ~ a(G), and IX U Yl = lXI + IYI ~ a(G). 
From these three inequalities ~FF(G) = IFI + IX U Yl ~ ~ · a(G) follows. 

To see that the bound is tight, let V( G) = A U B U C U D. Suppose that 
A, B, C, and D are pairwise disjoint stable sets of k vertices, and that A U B, 
B U C, and C U D induce complete bipartite sub graphs. Then clearly, 
~FF(G) = 3k and a(G) = 2k. I 

A graph is called chordal if it has no induced subgraph isomorphic to a cycle 
with at least four vertices. Note that the split graphs considered in Proposition 
2.2 are chordal (in fact, as one can verify easily, G is a split graph if and only 
if both G and G are chordal graphs); furthermore, trees and interval graphs also 
belong to the family of chordal graphs. 

Theorem 2.4. If G is chordal, then 'FF(G) s 2 · a( G) - 1, and there are 
graphs satisfying equality. 

Proof. To prove the upper bound we use ind~ction on IV( G) 1. The theorem 
is true if G is a complete graph. Let C 1, C 2 , .•• , C k be a first fit clique partition 
of G -that is, Ci is a maximal clique in the sub graph of G induced by Ci U 
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· · · U Ck for every i, 1 ::; i ::; k. We shall show that a(G) 2: (k + 1)/2. Let 
G I = G\ V(Cl). Obviously, C2, C3, ... 'ck is a first fit clique partition of G I. 

If G 1 has more components than G, then the claim easily follows by using 
the inductive hypothesis. Otherwise, G has a simplicial vertex (a vertex whose 
neighborhoods induce a clique) in C1• This vertex can be added to any maxi
mum independent set of G 1 and again the proof follows by induction: 

a(G) 2: a(G 1) + 1 2: (k - 1) + 1 + 1 > ~ 
2 2 . 

The path v 0 , v 1, ••• , v 311 _ 1 with additional edges v 3i v 3i+ 2 for every i 
0, 1, ... , n - 1 is an example of a graph G with ~FF(G) = 2a(G) - 1. I 

Theorem 2.4 says that XFF is bounded in terms of the clique number for the 
complement of chordal graphs. Our next result will show that this is not true for 
the family of chordal graphs, even more, there is no bounded on-line algorithm 
for trees. 

Theorem 2.5. For every positive integer n there exists a tree T
11 

such that 
XA (Tn) ~ n holds for every on-line algorithm A. 

Proof. In the proof, on-line colorings are viewed as a two-person game; 
the vertices of a graph are revealed by player I and player II colors the current 
vertex. Suppose that I wins when II is forced to use at least n colors. We will 
show a winning strategy for I by defining "winning" trees T 11 for every 
n = 1,2, .... 

Let T1 be the single vertex tree and assume that T 1, ••• , T
11

_ 1 have already 
been defined. Then Tn is obtained as follows: We take for every k, 1 ~ k ~ 
n - 1, jV(Tk)j disjoint copies of Tk and in all copies we distinguish distinct ver
tices as roots. Tree Tn is formed as the union of all these rooted copies of 
T1, ••• , Tn-l plus a new vertex x joined to every root. 

Now we show how I has to play on Tn against II, who can apply an arbi
trary on-line coloring algorithm A. One can assume that there are strategies for 
I that forces at least k distinct colors when playing on Tk ( 1 ~ k ~ n - 1). 

We argue that I is able to obtain n - 1 distinct colors at the roots. Assume 
that I has only revealed verti~es from copies of T1, ••• , Tk-I and forced k - 1 
distinct colors at the corresponding roots (1 ~ k ~ n - 1). Now continue the 
game with a copy of Tk until forcing a kth distinct color at some vertex v. Then I 
can freely identify Tk with its copy in T11 , which has the root corresponding to v. 

Obtaining in this way n - 1 distinct colors at 'the roots, I wins by revealing 
vertex x of Tn. This proves the theorem. I 
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3. FIRST FIT COLORING ON INTERVAL GRAPHS 

The "rectangle problem" of M. Chrobak and M. Slusarek [4] can be formulated 
as the question of whether FF achieves a constant performance ratio on the 
family of interval graphs. In more explicit form the problem is as follows: 

Problem. Is there an absolute constant c such that XFF( G) ~ c · w( G) for ev
ery interval graph G ? 

For the family of unit interval graphs, M. Chrobak and M. Slusarek proved 
XFF ~ 2 · w - 1 in [5] and there are unit interval graphs (intersection graphs of 
unit intervals in the real line) for which the bound is tight. 

For the family of all interval graphs it is easy to see that XFF ~ w2
• This was 

improved by A. Krawczyk [M. Chrobak, personal communication] to XFF ~ 
w2

- 2 · w + 4. 
On the other hand, XFF ~ 4w - 9 has been proved in [5] and it was reported 

[M. Chrobak, personal communication] that this lower bound is improved by 
M. Slusarek to XFF ~ (22/5)w + c with some constant c. 

The main result of this section (Theorem 3.4) is due to W. Just [personal 
communication]. It says that XFF ~ cw log w, which improves the bound of 
Lemma 3.2. 

Throughout this section '3 denotes a finite family of closed intervals of the 
real lineR. (An interval can appear more than once in the family.) Let G'!f de
note the intersection graph of '3. It is natural to use the notation XFF('Y) = 

XFF(G'!f) and w('Y) = w(G'!f). We need some further notation. Let '3 be a family 
of intervals, p E R and I E '3. Then we introduce 

and 

p(p, '3) = i{I :I E 'Y,p E 1}1, 

p(I, '3) = min p(p, '3) , 
pEl 

p('Y) = max p(I, '3). 
IE'!! 

It is easy to see that w('Y) = maxpER p(p, '3) hoJPs for every interval family '3. 
Finally, let 

f(k) = max{XFF('Y) : w('Y) = k}, 

and 

g (k) = max{xFF('Y) : p('Y) = k}. 

Clearly, f(k) ~ g (k) follows from the definition. (Equality never holds; for ex
ample,f(l) = l,g(l) = 3.) 
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In this section we interpret FF on '3 as a partition of '3. A partition 'j = 

'31 U · · · U 'jm is produced by FF if and only if every ?Ji contains pairwise 
disjoint intervals, and for all i and}, 1 ~ i < j ~ m, J E '31 implies I n J =I= 

0 for some I E .?Ji. Obviously, subfamilies '31, ••• , '3m correspond to a maxi
mal stable sequence partition of G'!f produced by FF. 

Proposition 3.1. For ev_ery family '3, p(?f) ~ I w('3)/2l 

Proof. Let k = w(?J), 'J{ = {I~> . .. ,Ik} a set of pairwise intersecting inter
vals, and p E n f=, I1 . We choose the first l_(k - 1)/2J intervals of 'J{ in 
"increasing left end-point" order and then choose the first L(k - 1)/2J intervals 
of 'J{ in "decreasing right end-point" order. At most 2 · L(k - 1)/2J < k inter
vals are chosen and they cover any further I1 E 'J{ separate L(k - 1)/2J-times. 
Thus p(?f) ~ p(I1, 'J{) ~ L(k - l)/2J + 1 = lk/2l. I 

The following lemma comes easily from Proposition 3 .1. 

Lemma 3.2. Let 1 ~ t < k, m = l(t + l)/2l Then 

j(k) ~f(t) + j(k- m) + 2(k- m). 

For small values of k, Lemma 3.2 gives j(2) ~ 4, j(3) ~ 7, j(4) ~ 12, 
f( 5) ~ 17, etc. These upper bounds are tight only for k = 2 and k = 3 
(j(4) = 11). The best upper bound that one can derive from Lemma 3.2 is 
f(k) ~ c(n)k 1+iln for all n. We do not prove Lemma 3.2 since the following 
lemma of W. Just gives a better upper bound of j(k): 

Lemma 3.3 (W. Just). g(2k) ~ 2g(k) + 6k - 2. 

Proof. Assume that g(2k) ~ 2g(k) + 6k - 1 = n. Then there exists a 
family '3 with p(?f) = 2k such that '3 is partitioned into '31 U '32 U · · · U 'jn 
by FF. Consider the family '3' = U 7=m'ji where m = g(k) + 6k - 1. Clearly 
'3' is partitioned into n - m + 1 = g(k) + 1 parts by FF; thus the definition 
of g(k) implies the existence of I E '3' such that p(I, ?!') ~ k + 1. 

Let A be defined as the set of those elements j from { 1, ... , m - 1} for which 
?!1 has an interval containing at least one end-point of I. Let B = {1, ... , m -

1}\A. For any fixed j E B, let ?r.f denote the set of intervals in '31 that are in 
the interior of I. The definition of FF implies that ?r.f =I= 0 for all j E B. Let 
?!* = ujEB ?!f. It is obvious that ?!* is partitioned into IB I parts by FF. 

On the other hand, p(?T*) ~ 2k - p(I, '3') ~ k - 1, which implies IB I < 
g(k). Therefore lA I = m - 1 - IB I ~ 6k - 1, showing that at least 3k inter
vals of '3\'3' covers one of the end-points of {Since p(I, ?!') ~ k·+ 1, that 
end-point of I is covered by at least 4k + 1 intervals of ?r and Proposition 3.1 
implies p(?f) ~ 2k + 1, contradicting the assumption. I 
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The recursion of Lemma 3. 3 clearly implies g(k) ~ ck log k. Recall that 
f(k) ~ g(k) and we have 

Theorem 3.4 (W. Just). If G is an interval graph, XFF(G) ~ cw(G) 
log(w(G)). I 

4. ON-LINE COLORINGS OF GRAPHS WITH FORBIDDEN FORESTS 

The results of this section concern the power of FF and on-line colorings in 
families of graphs that do not contain a fixed forest F as induced subgraph. In 
[6], it wqs conjectured that graphs in these families have proper colorings when 
the number of colors depends only on F and the clique number of the graph. 
We show that such proper colorings can be provided by FF (ifF is one of 
the forests K 1, 3 , 2K2 , and K1,2 + K 1) or by an on-line algorithm (when F = 

K2 + 2K1). On the other hand, x(G) is bounded in terms of w(G) if G is P6-free 
([7]) but no on-line algorithm can produce such a coloring of G. 

Let R(k, 3) denote the Ramsey function, i.e., R(k, 3) is the smallest n for 
which any graph on n vertices contains either a complete subgraph on k vertices 
or three vertices inducing a stable set. 

Proposition 4.1. If G is a claw-free graph, then 

XFF(G) ~ R(w(G), 3). 

Proof. Let A 1, ••• , Am be the color classes defined by FF for some order of 
the vertices of G (which is a maximal stable sequence partition). Then for some 
fixed vertex x E Am there exist vertices xi E Ai, 1 ~ i ~ m - 1, such that 
xxi E E(G). Since the subgraph of G induced by the set {x 1, ••• ,xm_ 1} contains 
neither a clique of w(G) vertices nor a stable set of three vertices, m ::::; 
R(w(G), 3) follows. I 

Theorem 4.2. If G is a 2K2-free graph, then XrF(G) is bounded in terms of 
w(G). 

Proof. It is known that x(G) ~ (wCGl2 + 
1
) if G is 2K2-free (see [11]). Let 

A 1, ••• , Am denote the stable sets in a proper coloring of G such that m ~ 
(wcci + \ Let B 1, ••• ,B k denote a maximal stable sequence partition formed by 
FF. We say that Bi is of type (j1, ••• ,jt) for 1 ~ j 1 < · · · < j1 ~ m when Bi n 
A1 ~ 0 if and only if j E {j1, ••• ,jt}. 

We claim that all B i are of different type. 
Assume that B 1 and B 2 are of the same type, say type (1 , ... , t). We choose 

qi E Ai n B2 for all i, 1 ~ i ~ t. Clearly' qi is adjacent to some vertex of B 1, 1 ~ 
i ~ t. Therefore we can choose an edge set of G in the form {qilpi2 , qi2 pi3, 



ON-LINE AND FIRST FIT COLORINGS 225 

qi3 Pi4 , •.• , qisPii} where il, ... , are distinct elements of {1, ... , t} and 
Pih E Aih n B 1 (1 ~ h ~ s). 

Suppose that this edge set is chosen so that s is as small as possible. 
Consider the subgraph H induced by the vertices qi 1 , Pi2 , qis' and Pii in G. If 

s = 2, then H is isomorphic to 2K2 , a contradiction. If s > 2, then qisPi2 ~ 
E(G) (from minimality of s), and again His isomorphic to 2K2 . 

Thus we proved the cl~im that shows 

We state our next theorem without proof. 

Theorem 4.3. 
terms of w( G). 

If G is a (K1, 2 + K1)-free graph, then XFF(G) is bounded in 
I 

Theorem 4.4. There exists an on-line algorithm A such that XA (G) is bounded 
in terms of w(G) for all (K2 + 2K1)-free graphs G. 

Proof. Assume that the vertices of G are given in the order v1, ••• ·' vn. Let 
K denote a complete subgraph of G that may change during the algorithm. Ini
tially K = {v 1} and color v 1 with color one. We say that the algorithm is in 
stage i if IKI = i. 

The algorithm A runs as follows: Assume that we are in stage i, K = 

{s1, ••• , sJ. The vertices to be colored at state i may belong to A~,A~, ... ,A; 
or to Bi12 ,Bi13 , ••• ,B:-I,i according to the following rule: 

If y E V(G) is adjacent to all vertices of K\{s) or i = 1, then y E A;. As
sume that 1 ~ j < k ~ i. The set B }, k denotes those vertices of V( G)\( U ;= 1 A; U 
K) that are not adjacent to s1 and to sk, but adjacent to all vertices of {s1, ••• , 

sk_ 1}\{s). The definition of A\, ... ,Af implies that the sets AJ (for j = 

1,2, ... , i) and B},k (for all pairs j,k satisfying 1 ~ j < k ~ i) form a parti
tion of V(G)\K. 

The algorithm A proceeds at stage i as follows: Let vm be the next vertex of 
G to be colored. If vm E BJ,k for some j and k: 1 ~ j < k ~ i, then vm gets a 
new color and A remains at stage i. If vm E A j for some j, 1 ~ j ~ i, then 
color of vm is the smallest color that was not used in {v 1, ••• , vm}\A J and al
lowed by the previous colors assigned to Aj\{vm} during stage i of A. If the ver
tices of {vI' ... ' v m} that belong to A j during stage i of A determine a stable set 
in G, then A remains at stage i. Otherwise, there exists an m ' < m such that 
vm,vm is an edge of G and vm' E A J during stage i of A. In this case stage i is 
finished and K is redefined as (K\{sJ) U vm'' v 11J Clearly, K is a clique of G 
and IK I = i + 1. 

We can change the notation to write K as {s1, ••• , si, si+ 1} and A enters stage 
i + 1. Note that, for a fixed j, the vertices of A J are colored with at most two 
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colors during stage i of A. (In fact, a second color may come only at the last 
vertex of A J during stage i of A.) 

We prove that the number of colors used by A is bounded above by a func
tion of w(G). 

It is clear that there are at most w( G) stages during A, since at stage i there 
exists a clique of G with i vertices. For a fixed i ( 1 ~ j < k ~ i) the vertices 
of B }, k colored during stage i of A induce a clique in G, since G is (K2 + 2K1)

free. Therefore at most w(G) colors are used on BJ.k during stage i of A (for 
fixed i, j, and k). As we noted before, the vertices of A j for fixed j and i, 1 ~ 
j ~ i, are colored with at most two colors. Therefore, the number of colors 
used by A at stage i is at most w( G) · (~) + 2i. The total number of colors used 
by A can be estimated as 

w(G) 

L w(G) · I 
i=! 

It is worth noting that the idea used in the proof of Theorem 4.4 can be ex
tended to get an on-line algorithm A for which XA (G) is bounded in terms of 
w(G) and t, for all tK2-free graphs G. 

We also note that A cannot be changed to FF in Theorem 4.4. To see this, let 
Gil denote the graph obtained from the complete n - n bipartite graph by re
moving n independent edges. Clearly, Gil is (K2 + 2K1)-free. Moreover, Gn is 
the standard example to demonstrate x(G,J = 2 and XFF(Gil) = n (see, e.g., 
[8]). We note that there is an obvious on-line coloring that uses three colors for 
all Gil. 

Our final result in this section shows that on-line colorings are ineffective on 
P6-free graphs. 

Theorem 4.5. For every positive integer n there exists a bipartite P6-free 
graph Gil such that XA (Gil) ~ n holds for every on-line algorithm A. 

Proof. This proof is similar to that of Theorem 2.5, where on-line color
ings are viewed as a two-person game. The vertices of a graph are revealed by 
player I and player II colors the current vertex. Spppose that I wins when II is 
forced to use at least n colors. We give winning 'strategy for I by defining P6-

free bipartite graphs G1 , G2 , ••.• 

Let Gibe a single vertex and assume that G1, ••• , Gn-J have already been 
given. Then Gil is defined as follows: We take for every k, 1 ~ k ~ n - 1, 
disjoint copies of Gk' say G k and Gr We add a new vertex X and join with 
every vertex of G! lying in the first bipartite class and with every vertex of G ~ 
lying in the second bipartite class, 1 ~ k ~ n - 1. (Fork = 1 the two classes 
coincide.) 

One can easily check that G'IJ is bipartite and contains no induced P6• Now we 
show how to play on G ll against II. 
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We argue that I is able to obtain n - 1 neighbors of x colored with distinct 
colors. Assume that I revealed only vertices from copies of G1, ••• , Gk-l and 
forced k - 1 distinct colors on the neighbors of x. Now I can continue the 
game with revealing vertices from a copy of Gk until forcing a new color at 
some vertex v. Let us identify this copy with G ~ or G~ according to which v 
lies in the first or second ·bipartite class of Gk. Obtaining n - 1 distinct colors 
at the neighbors of x in th!s way, I wins by revealing vertex x. I 
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