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1. Introduction. 

Let G(n,m) denote the set of graphs with n vertices and m edges. It is well-known 

that each G~:G(n,2n- 2) contains a subgraph of minimum degree 3 but there exists a 

G~:G(n,2n- 3) with no subgraphs of minimum degree 3 (see [1] p. xvii). 

It was proved in [2] that each G f G ( n, 2n- 1) contains a proper sub graph of minimum 

degree 3, but there exists G ~:G(n, 2n- 2) without this property. In fact, a stronger result 

was proved in [2], namely that G f G ( n, 2n - 1) must contain a sub graph of minimum 

degree 3 with at most n- cyln vertices for some c > 0. It was conjectured in [2] that each 

G f G ( n, 2n - 1) contains a sub graph of minimum degree 3 with at most en vertices for 

some absolute constant c < 1. 

In this paper we study cycle lengths of graphs which have no proper subgraphs of 

minimum degree 3. For ease of reference, let G* ( n, m) denote the set of graphs with n 

vertices, m edges and with the property that no proper subgraph has minimum degree 

3. The results mentioned so far show that G ~:G*(n, m) implies m ::::; 2n- 2, and if 

G f G* ( n, 2n- 2) then G has miminum degree 3. Throughout the paper we investigate the 

cycle structure of graphs G, with G f G* ( n, 2r.- 2). In fact we give the following conjecture. 

CONJECTURE: If G f G* ( n, 2n - 2), then G contains all cycles of length at most k where 

k tends to infinity with n. 

Our results are all related to this conjecture. We have several examples to demon

strate the role of 2n - 2 in this conjecture. For example for each n there exists graphs 

G, G f G * ( n, 2n - 3), such that G has no triangle (Examples 1 and 2). It is also true that 

there are G f G* ( n, 2n- 3) such that G has no cycles of length 5 or more (Example 3). For 

every r, we construct a graph G f G * ( n, 2n - c( r)) such that G has no cycles of length less 

than or equal tor (Theorem 4). In fact, the minimum val~e of c(r) is determined precisely 

for r = 3,4. 

On one hand, our conjecture says that the graphs in G* ( n, 2n- 2) contain small cycles. 

We prove that these graphs contain C3,C4 and Cs (Theorem 2.) On the other hand, our 

conjecture says that the graphs in G* ( n, 2n - 2) contain long cycles. Our main result is 

that G ~:G*(n,2n- 2) contains a cycle of length at least l/ognJ (Theorem 5.). However, 
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graphs in O* ( n, 2n- 2) does not always contain very long cycles (as large as cfo for some 

c > 0, Example 7). 

2. Properties of Graphs without proper subgraphs of minimum degree 3. 

In this section we give a lemma and a theorem which we shall use frequently in sections 

3 and 4. We first introduce some terminology. 

Consider an ordering Xl, x2, ... , Xn of the vertex set of a graph. An edge XiXj, i > j 

of the graph is called a for'ward edge on xi and a backward edge on Xj. The forward 

(backward) degree of Xi is the number offorward (backward) edges incident to Xi· We shall 

let d+(xi), d-(xi) denote the forward and backward degree of xi, respectively. 

For any graph G we formally define an ordering of the vertices of G as follows: x1 

is a vertex of minimum degree in G. If X1JX2,··· ,xt are already defined and t < JV(G)J, 

then let Xt+l be a vertex of minimum degree in G- {x1,x2, ... ,xt}. If G has no proper 

subgraph of minimum degree 3, then d+(xi) ~ 2 for 2 ~ i :S JV(G)J. Since we shall use 

this ordering often, we formulate this statement as lemma. 

LEMMA 1. Let G have n vertices and contain no proper subgraph of minimum degree 3. 

Then, the vertices of G can be ordered so that d+(xl) is the minimum degree of G and 

d+(xi) ~ 2 fori~ 2. 

THEOREM 1. IfG EG*(n,2n- 2), then the vertices ofG can be ordered so that a+(xt) = 

3, d+(xi) = 2 for 2 ~ i ~ n- 2, and d+(xn-1) = 1. Moreover d-(xi) ~ 1 for 2 ~ i ~ n. 

PROOF: In the ordering of the vertices described in Lemma 1 observe that 

n-1 

2n- 2 = JE(G)J = L d+(xi) ~ d(xt) + 2(n- 3) + 1 :S 2n- 2. 
i=1 

Since d(xl) ~ 3 (otherwise G has at least 2n edges), d+(xi) ~ 2 fori= 2, 3, ... , (n- 2) 

and d+(xn-d ~ 1, all the inequalities are equalities. Thus, a+(xl) = 3, a+(xi) = 2 

for 2 ~ i ~ n- 2, and d+(xn-d = 1. Since d(xi) ~ d(xl) = 3 and d+(xi) :S 2 for 

1 < £ ~ n, d-(xi) ~ 1 follows. • 

COROLLARY 1. IfG EG*(n,2n- 2) then G has minimum degree 3. 

3. Small Cycles in G*(n,2n- 2). 

THEOREM 2. If GEG*(n,2n- 2) then for n ~ 5, G contains a C3 and a C5. If 

G EG*(n, 2n- 3) and n ~ 6, then G contains c4. 

PROOF: For G EG*(n, 2n-2) consider the ordering of vertices given in Theorem 1. Clearly, 
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Xn-2,Xn-1 and Xn determine a c3. Without loss of generality we may assume that Xn-3 

is adjacent to Xn-1 and Xn. 

Assume that£ is the largest index such that Xi is adjacent to Xj for some j, £ < j < n-1. 

There exists such an index since i = 1 is a suitable choice. If Xi is adjacent to Xn-1 or 

to Xn, say to Xn, then select any k > i such that k # j, k # n, k # n- 1. This gives the 

C5, XiXnXkXn-1XfXi in G. 

If Xi is not adjacent to either Xn-1 or to Xn, then (since d+(xi) = 2) Xi is adjacent to 

some xk, with i < k,j # k, n # "k, n- 1 # k. But then xixkXn-1XnXfXi is a C5 in G. 

To see that GcG* ( n, 2n - 3) contains a C4 , observe that Theorem 1 almost holds in 

that we can order the vertices of G as x1, x2, ... , Xn so that at most one of the equalities 

d+(xi) = 2 for 2 ;:;;; i ;:;;; n- 2, d+(x1) = 3, and d+(xn-1) = 1 fails to hold. Moreover if 

equality does not hold for some i then d+(xi) is just one less than the value shown above. If 

each of the equalities d+(xn-d = 1,d+(xn-2) = d+(xn-3) = 2 hold then the subgraph of 

G induced by X= {xn-3, Xn-2, Xn-1, Xn} has five edges and there is a c4 in G. Therefore, 

we assume that there is no C4 in the subgraph induced X. Also, by a suitable permutation 

of the vertices in X, we may assume that Xn-3Xn-2, Xn-3Xn-1, Xn-3Xn and Xn-2Xn-1 are 

edges in X. But d+(xn-4) = 2 and the only way to avoid a C4 in G is to assume Xn-4 to 

be adjacent to Xn-3 and to Xn. Since n ~ 6, Xn-5 exists and d+(xn-5) ~ 2. Thus, there 

exists a c4 in G containing Xn-5 and three vertices of {xn,Xn-1,Xn-2,Xn-3,Xn-4}·• 

With more work it is possible to show that GcG* (2n- 2) always contains C5 for n ~ 6. 

The following constructions show that Theorem 2 is sharp. 

EXAMPLE 1: Let n ~ 6 be even. Consider the graph on n vertices defined as follows. Let 

x1x2 ... Xn-2 be a cycle of length n- 2. Let y and w be two new vertices with y adjacent 

to all xi of even index and w adjacent to all xi of odd index. Finally place an edge between 

y and w. The graph obtained contains no triangles, (in fact, is bipartite) has no proper 

subgraph of minimum degree 3, and has 2n- 3 edges. • 

EXAMPLE 2: Let n = 2k + 1 ~ 9 and consider a cycle of length k with vertices x1 x2 ... Xk. 

For i = 1, 2, ... , k - 1 place new vertices Yi in the graph with each Yi adjacent to xi. 

Finally, let v and w be two additional vertices of the graph such that each are adjacent to 

Y1,Y2, ... ,Yk-1 and xk. The resulting graph has 2n- 3~edges, no triangle and no proper 

subgraph of minimum degree 3. • 

EXAMPLE 3: Consider the graph obtained from K2,n-2 by placing an edge between the 

two vertices of the two-vertex color class. This graph has no cycles of length 5 or more, has 

2n - 3 vertices, and contains no proper subgraph of minimum degree 3. • 

EXAMPLE 4: Assume that n - 2 is divisible by 4, n ~ 10, and consider a cycle of length 

n- 2 with vertices x1 , x 2, x3, ... , Xn-2· Let y and w be t~o new vertices. Join vertex y to 
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Xi fori= 1 or i = 2(mod 4) and join w to Xi fori= 0 or i = 3 (mod 4). This graph has 

no C4, has 2n- 4 vertices, and has no proper subgraphs of minimum degree 3. It is easy 

to modify this example for n = 0, 1, 3 (mod 4) . • 

Based on these examples, we conclude that Theorem 2 is sharp: there exists 

Gt:G*(n,2n- 3) without C3 (Example 1 and 2); there exists Gt:G*(n,2n- 3) without 

C5 (Example 1 and 3); there exist G ~:G*(n,2n- 4) without C4 (Example 4). 

Up to now we've only consjdered the existence of Ck (fork= 3,4,5) in G ~:G* (n, 2n- 2). 

We continue by looking for the minimum m that G E G* ( n, m) contains a cycle of length 

less than r. Theorem 2 and Examples 1 and 2 show that m = 2n- 2 when r = 4. The 

upper bound for m in cases r = 5 and r = 6 are given in the next result. 

THEOREM 3. Let g(G) denote the girth of G. Ifn ~ 6 and G t:G*(n, 2n-4), then g(G) ~ 4. 

Ifn ~ 8 and G ~:G*(n,2n- 6) then g(G) ~ 5. 

PROOF: Assume G ~:G*(n,2n- 4) and apply Lemma 1. Clearly d+(xl) ~ 3, otherwise G 

has at least 2n edges. If n ~ 6 the sub graph H induced by Xn, Xn-1, Xn-2, Xn-3, Xn-4 in G 

has at least (2n- 4)- 3- 2(n- 6) = 5 edges. We may assume that His a cycle of length 

5, otherwise H contains Cs or C4 and g(G) ~ 4 follows. Therefore d+(xi) = 3, d+(xi) = 2 

for i = 2, 3, ... , n- 5. But Xn-5 is adjacent to two vertices of the five-cycle H giving a Cs 

or c4. 
To prove the second part of the Theorem, assume G E G* ( n, 2n- 6) and apply Lemma 1. 

Again, d+(xl) ~ 3. Since n ~ 8, we consider the subgraph H induced by {xn,Xn-l,Xn-2, 

Xn-3, Xn-4, Xn-5, Xn-6} in G. Thus, H contains at least (2n- 6)- 3- 2(n- 8) = 7 edges. 

Let C be a cycle of H with minimum length, so that C is a cycle without a diagonal. If 

ICI = 7 then H = C and d+(xl) = 3,d+(xi) = 2 fori= 2,3, ... ,n- 7. In particular, 

Xn-7 is adjacent to at least two verices of C giving a cycle of length at most 5. If ICI = 6, 

then without loss of generality assume Xn,Xn-l,Xn-2,Xn-3,Xn-4,xn-5,Xn is a 6- cycle 

and Xn-6 is adjacent to Xn-5· If Xn-6 is adjacent to any vertex xi for n- 4 ~ i ~ n then 

we have a C3 , C4 or C5 . Therefore, H has 7 edges and again d+ ( xl) = 3, d+ (xi) = 2 for 

2 ~ i ~ n- 7. In particular d+(xn-7) = 2, and it is easy to check that the only case 

when Xn-7, Xn-6, .. . , Xn does not induce a cycle of len~gth at most 5 in G occurs if Xn-7 is 

adjacent to Xn-6 and Xn-2 (see Figure 4). It is easy to see that d+(xn-8) = 2 implies the 

existence of a cycle of length at most 5. Thus ICI ~ 5 completing proof of the theorem. • 

To show that the first part of Theorem 3 is best possible we give the following example. 

EXAMPLE 5: Assume n is divisible by 5 and n ~ 10. Let x1x3x5x2x4x1 be a five-cycle 

and Y1Y2 ... Yn-5 Yl is an- 5 cycle. Vertex xi is adjacent to Yi if and only if j = i (mod 

5) (for all i, 1 ~ i ~ 5). This graph has 2n- 5 edges, has no proper subgraph of minimum 

degree 3 and contains no c3 or c4. 
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We do not know examples of G € G* ( n, 2n - 7) with g( G) ~ 6 for infinitely many n. 

However, it is possible to find G € G* ( n, 2n - 8) with g( G) = 6 for infinitely many n. 

The next theorem shows that graphs in G*(n,2n- c) do not always contain small 

cycles. 

THEOREM 4. For every postive integer r there exists c 

G €G*(n, 2n- c(r)) such that g(G) > r. 

c(r) and a graph 

PROOF: Let k be a natural number and let C1, C2, ... , Ck be vertex disjoint cycles oflength 

t = 2·5r+1-l. We shall define the graph Gk by adding edges to the graph C1 UC2 U· · ·UCk. 

Assume that the vertices of Ci are xi, x~, ... , x} (indexed in the natural order of the cycle). 

The definition of Gk is recursive. Set G1 = C1. If G1, G2, ... , Gk-1 are already defined we 

shall define G k by adding edges xy to G k-1 u Ck such that X€Ck, y€Ck_ 1. The definition 

will preserve the following properties (for each i, 1 ~ i ~ k): 

(i) each cycle of Gi is longer than r 

(ii) the maximum degree of Gi is at most 5, and 

(iii) dai(xi) = 4, daJx~) = 2, dai(x~·) = 3 for 2 ~ j ~ t- 1 and i ~ 2. 

Note that properties (i), (ii) and (iii) trivally hold fori= 1, since G1 = C1. 

To define Gk we add edges e0 = xfy0 , e1 = xfy1, e2 = x~y2, e3 = x~y3, ... ,et-1 

xf-1Yt-1 to Gk-1 U Ck> such that Yj€V(Ck-1) for j = 0,1, ... ,t- 1 and Gk satisfies 

properties (i), (ii), and (iii) fori= k. Observe that (iii) holds independent of the choice of 

each Yj, so that we need only select each Yj such that (i) and (ii) hold. The edge e0 can be 

defined arbitrarily. Assume that e0 , e1. ... , e8 are defined for 0 ~ s < t - 1 in such a way 

that properties (i) and (ii) hold for G 1 = G k-1 U Ck U { e0 , e1, ... , e8 }. We define es+1 as 

follows. Let W denote the set of vertices in Ck_ 1 which can be reached by a path of length 

at most r from x~+l in the graph G 1
• Since (ii) holds for G 1

, JWJ < 5r+l and therefore 

JV(Ck-d -WI > t- 5r+l = 5r+l - 1. Let T be a subset of V(Ck-1) - w such that 

JTJ = 5r+1. By definition, for any y€T the graph G' U es+1 statisfies (i) with es+1 = x~+1 y. 

Using property (iii) for i = k- 1 

2::: dak-l (y) ~ 3JTI + 1 = 3.5r.+l + 1. 
y€T 

Since G 1 is obtained from Gk_ 1 by adding s + 1 edges, 

2::: dat (y) ~ 2::: dak-l (y) + s + 1 :s: 3. 5r+l + 1 + t- 1 = 5r+2 
- 1. 

y€T y€T 

Thus there exists an Ys+FT with da'(Ys+l) < 5. Thus with es+1 = x~+1 Ys+1, the graph 
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G11 = G1 U e8+1 satisfies properties (i), (ii) and (iii). Therefore G k is defined. 

It is clear that JV(Gk)l = kt and JE(Gk)i = 2kt- t. The proof is completed by showing 

that G k has no proper sub graph of minimum degree 3. Assume to the contrary that G* 

is such a proper subgraph. Since dak(xf) = 2, xf ¢ V(G*). However, dGk-xf(xL1) = 2 

implies xf_1 ¢ V(G*). Repeating this argument we get that xj ¢ V(G*) for 1 ~ j ~ t. 

But dak -ck (xk-l) = 2 and by observations just like those made above, none of the 

vertices of Ck-l belong toG*; Continuing in this way we see that G* is the empty graph, 

a contradiction. Hence Gk f.G*(tk, 2tk- t) for all k with t = 2 · sr+l - 1, showing that 

c(r) = 2 · sr+l - 1 is a suitable choice. • 

4. Long cycles in G* (n, 2n- 2). 

In this section we prove one of the main results of the paper, that is G f.G*(n, 2n- 2) 

contains a long cycle. Note that G f. G* ( n, 2n- 3) does not necessarily contain even a path 

of length 4 (see Example 3 in Section 2). 

THEOREM 5: IfGt:G*(n,2n- 2), then G contains a cycle of length at least llognJ. 

PROOF: Consider the ordering of G of Theorem 1. Since d-(xi) > 0 for£= 2, ... , n, we 

can find a spanning tree T recursively in G as follows. Place x1 in T. If XI, xz, ... , Xt are in 

T and t < n, then choose any edge XiXt+l of G such that 1 ~ £ ~ t. Redefine T by adding 

vertex Xt+l and the edge XiXt+l to the old T. By definition of the tree, a-(xi) = 1 in T 

for 2 ~ i ~ n and a+(xi) ~ 2 in T for 2 ~ i ~ n. Since a+(xr) = 3 in G, T is a tree of 

maximum degree ~ 3. Therefore, T contains a path P of length at least llogn J starting 

with xi. 

Let XI = Xi1 , Xi2 , .•• , Xik denote the vertices of P in the natural order defined by P i.e 

Xiixii+l is an edge of P for 1 ~ j:::; k- 1. Notice that i1 < i2 < · · · < ik follows from the 

definition ofT since a-(xi) < 2 in T for 2 ~ i ~ n. We call a path p = (xil) Xi2) ... 'Xik) 

in G a forward path if i1 < i2, · · · < ik. Note that the definition depends on the order 

x1, x2, ... Xn defined by Theorem 1. The discussion up to this point insures that G has a 

forward path of length at least llogn J. 
Let P = ( xi1 , Xiz, ... , xik) be a forward path of G with a maximum length. Since 

d-(xi) ~ 1, and a+(xi) ~ 1 in G for 2 ~ i ~ n ~ 1,~it follows that £1 = 1, ik = n. Let 

t be any positive integer such that 1 ~ t < k and it # n- 1. Since a+(xi) ~ 2 in G for 

1 :::; i ~ n- 2, we can find a forward path Pt in G starting at Xit and ending at some vertex 

Xit' of P such that 

(a) Pt and P are edge disjoint 

(b) V(Pt) nV(P) = {xit,xit'} 

Note that (a) implies t + 1 < t1
• We claim for t < s that the paths Pt and P8 are vertex 

disjoint if t1 < s or if s = t1 
- 1. The case t1 < s is obvious since both Pt and P8 are forward 
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paths. Assume s = t1 
- 1. But t + 1 < t1 and s + 1 < s1 implies that Pt and P8 do not have 

common endpoints. Assume that x is the last common vertex of P8 and Pt we find on P8 

by traveling along P8 from its starting point xi.. It is easy to see that the following edge 

sequence is a forward path: starting from xi
1 

= xb travel along P to xi. ; continue on P8 

to x; from x travel to xit' = Xi•+l along Pt: finally from xit' to Xik = Xn travel along P. 

This path is longer that P. This contradiction proves the claim. 

Choose a subset Ql,Qz, ... 9r of the paths P1,P2, ... ,Pt as follows. Set Ql = P1. If 

Q1, Q2, ... , Q 8 are defined and the endpoint xv of Qs is not Xn then Qs+l = Ps'-1· If the 

endpoint xi.' of Q8 is Xn then set r = s. 

It is now easy to construct a cycle using all the vertices of P U Ql U · · · U Qr. But P 

has at least llogn J vertices so that the cycle C has length at least llogn J .• 
Finally, to see that GcG* ( n, 2n - 2) does not contain necessarily a very long cycle, 

(larger that c.jfi') consider the following example. 

EXAMPLE 6: Let k be an integer, k ~ 4. Let C be a k -cycle with vertices x1 , x 2 , ... , x k. 

Select a new vertex w and connect w to each Xi with vertex-disjoint paths of length k - 1. 

(The only common vertex of these paths is w). Select another new vertex y and let y be 

adjacent to all vertices except those of {xz, x3, ... , xd. Let Gk be the graph just defined. 

The graph Gk has k(k-1)+2 = n vertices. Since d(w) = k+1, d(y) = n-k, d(xl) = 4 

and all the other vertices are of degree 3, G k has 

_k _+_1_+_n_-_k_+_4_+_____,_( n_-------'3 )'---3 = 2n _ 2 
2 

edges. It is easy to check that G k has no proper sub graph of minimum degree 3. It is also 

easy to see that the longest path of G k - y is smaller that 5k. Therefore the longest path 

of G k is smaller that 10k ~ 10..;;+1". 
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