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1. Introduction. .

Let G(n,m) denote the set of graphs with n vertices and m edges. It is well-known
that each G eG(n,2n — 2) contains a subgraph of minimum degree 3 but there exists a
G €G(n,2n — 3) with no subgraphs of minimum degree 3 (see [1] p. xvi).

It was proved in [2] that each G € G(n,2n — 1) contains a proper subgraph of minimum
degree 3, but there exists G ¢ G(n,2n — 2) without this property. In fact, a stronger result
was proved in [2], namely that G ¢G(n,2n — 1) must contain a subgraph of minimum
degree 3 with at most n — c\/n vertices for some ¢ > 0. It was conjectured in [2] that each
G €G(n,2n — 1) contains a subgraph of minimum degree 3 with at most cn vertices for
some absolute constant ¢ < 1.

In this paper we study cycle lengths of graphs which have no proper subgraphs of
minimum degree 3. For ease of reference, let G*(n,m) denote the set of graphs with n
vertices, m edges and with the property that no proper subgraph has minimum degree
3. The results mentioned so far show that G eG*(n,m) implies m < 2n — 2, and if
G €G*(n,2n — 2) then G has miminum degree 3. Throughout the paper we investigate the
cycle structure of graphs G, with G ¢ G*(n,2n —2). In fact we give the following conjecture.

CONJECTURE: If GeG*(n,2n — 2), then G contains all cycles of length at most k where
k tends to infinity with n.

Our results are all related to this conjecture. We have several examples to demon-
strate the role of 2n — 2 in this conjecture. For example for each n there exists graphs
G, GeG*(n,2n — 3), such that G has no triangle (Examples 1 and 2). It is also true that
there are G € G*(n,2n — 3) such that G has no cycles of length 5 or more (Example 3). For
every r, we construct a graph G e G*(n,2n — ¢(r)) such that G has no cycles of length less
than or equal to r (Theorem 4). In fact, the minimum value of ¢(r) is determined precisely
for r = 3,4.

On one hand, our conjecture says that the graphs in G*(n,2n — 2) contain small cycles.
We prove that these graphs contain C3,C4 and Cs (Theorem 2.) On the other hand, our
conjecture says that the graphs in G*(n,2n — 2) contain long cycles. Our main result is

that G e G*(n,2n — 2) contains a cycle of length at least [logn| (Theorem 5.). However,
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graphs in G*(n,2n — 2) does not always contain very long cycles (as large as ¢/ for some

¢ > 0, Example 7).

2. Properties of Graphs without proper subgraphs of minimum degree 3.

In this section we give a lemma and a theorem which we shall use frequently in sections
3 and 4. We first introduce some terminology.

Consider an ordering z1,%2,... ,Zn of the vertex set of a graph. An edge z;z;,1 > j
of the graph is called a forward edge on z; and a backward edge on z;. The forward
(backward) degree of z; is the number of forward (backward) edges incident to z;. We shall
let d*(2;), d™(x;) denote the forward and backward degree of z;, respectively.

For any graph G we formally define an ordering of the vertices of G as follows: z
is a vertex of minimum degree in G. If z1,z3,... ,z; are already defined and ¢t < |V(G)],
then let z¢41 be a vertex of minimum degree in G — {z1,z2,...,z:}. If G has no proper
subgraph of minimum degree 3, then d*(z;) £ 2 for 2 £ ¢ < [V(G)|. Since we shall use

this ordering often, we formulate this statement as lemma.

LEMMA 1. Let G have n vertices and contain no proper subgraph of minimum degree 3.
Then, the vertices of G can be ordered so that d*(z1) is the minimum degree of G and
dt(z;) £2fori> 2.

THEOREM 1. IfG €G*(n,2n—2), then the vertices of G can be ordered so that d¥(z;) =
3,d"(z;) =2 for2<¢{<n—2 and d¥(zn—-1) = 1. Moreover d™(z;) 2 1 for2<i < n.

PROOF: In the ordering of the vertices described in Lemma 1 observe that

n—1
2n—2=|B(G)|= Y d¥(z;) Sd(z1) +2(n-3) +1< 2n - 2.
i=1
Since d(z1) £ 3 (otherwise G has at least 2n edges), d™(z;) £ 2 fori =2,3,...,(n—2)
and dt(zp—1) £ 1, all the inequalities are equalities. Thus, d¥(z;) = 3, d*(z;) = 2
for 2 £ ¢ < n~2 and d(z,—1) = 1. Since d(z;) 2 d(z1) = 3 and d¥(z;) < 2 for
1<1i<n,d (z;) 2 1follows. W

COROLLARY 1. IfGeG*(n,2n — 2) then G has minimum degree 3.
3. Small Cycles in G*(n,2n — 2).
THEOREM 2. If GeG*{n,2n — 2) then for n 2 5, G contains a C3 and a Cs5. If

G eG*(n,2n —3) and n 2 6, then G contains Cy.

3

PROOF: For G e G*(n,2n—2) consider the ordering of vertices given in Theorem 1. Clearly,
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Tp—2,Zn—1 and z, determine a C3. Without loss of generality we may assume that z,—3
is adjacent to zp—1 and zy,.

Assume that 7 is the largest index such that z; is adjacent to z; for some 7, ¢ < 5 < n—1.
There exists such an index since 1 = 1 is a suitable choice. If z; is adjacent to z,—1 or
to zy,, say to zy, then select any k > 1 such that k # j,k # n,k # n — 1. This gives the
Cs, 2iTnTpTn—12;2; In G.

If z; is not adjacent to either £,—1 or to zy, then (since d¥(z;) = 2) z; is adjacent to
some x, with ¢ < k,5 # k,n # k,n — 1 # k. But then z;z; 2,122z, is a C5 in G.

To see that GeG*(n,2n — 3) contains a Cy, observe that Theorem 1 almost holds in
that we can order the vertices of G as z1,z3,...,%n so that at most one of the equalities
dt(z;) =2for 2 £i<n—-2,d (z) =3, and d*(zn_1) = 1 fails to hold. Moreover if
equality does not hold for some ¢ then d*(z;) is just one less than the value shown above. If
each of the equalities d*(zp—1) = 1,d¥(zn—2) = d*(2—3) = 2 hold then the subgraph of
G induced by X = {zp—3,2n—2, Tn—1,Zn} has five edges and there is a C4 in G. Therefore,
we assume that there is no Cy4 in the subgraph induced X. Also, by a suitable permutation
of the vertices in X, we may assume that 3242, Zn—3%Tn—1,Tn—3%n and Tp_2Tp_1 are
edges in X. But d™(z,—_4) = 2 and the only way to avoid a Cy4 in G is to assume z,_4 to
be adjacent to z,—3 and to z,. Since n 2 6, z,—5 exists and dt(zp—5) 2 2. Thus, there
exists a Cy in G containing z,—5 and three vertices of {zn,zpn—1,Zn—2,Zn—3,Zn—4}.M

With more work it is possible to show that GeG*(2n — 2) always contains Cg for n 2 6.

The following constructions show that Theorem 2 is sharp.

EXAMPLE 1: Let n > 6 be even. Consider the graph on n vertices defined as follows. Let
T1Zg...Tn—2 be a cycle of length n — 2. Let y and w be two new vertices with y adjacent
to all z; of even index and w adjacent to all z; of odd index. Finally place an edge between
y and w. The graph obtained contains no triangles, (in fact, is bipartite) has no proper

subgraph of minimum degree 3, and has 2n — 3 edges. W

EXAMPLE 2: Let n =2k+1 2 9 and consider a cycle of length k with vertices zyz ... zg.
For ¢ = 1,2,...,k — 1 place new vertices y; in the graph with each y; adjacent to z;.
Finally, let v and w be two additional vertices of the graph such that each are adjacent to

Y1,Y2,-.-,Yx~1 and zx. The resulting graph has 2n — 3.edges, no triangle and no proper
subgraph of minimum degree 3. H

EXAMPLE 3: Consider the graph obtained from K352 by placing an edge between the
two vertices of the two-vertex color class. This graph has no cycles of length 5 or more, has

2n — 3 vertices, and contains no proper subgraph of minimum degree 3. I

EXAMPLE 4: Assume that n — 2 is divisible by 4, n 2 10, and consider a cycle of length

n — 2 with vertices z1,zg,23,...,Zp—2. Let y and w be two new vertices. Join vertex y to
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z; for i =1 or 1 = 2(mod 4) and join w to z; for { =0 or ¢ = 3 (mod 4). This graph has
no C4, has 2n — 4 vertices, and has no proper subgraphs of minimum degree 3. It is easy
to modify this example for n =0,1,3 (mod 4). R

Based on these examples, we conclude that Theorem 2 is sharp: there exists
G eG*(n,2n — 3) wii;hout C; (Example 1 and 2); there exists G ¢ G*(n,2n — 3) without
Cs (Example 1 and 3); there exist G ¢ G*(n,2n — 4) without Cy (Example 4).

Up to now we’ve only consjdered the existence of Cy, (for k = 3,4,5) in G ¢ G*(n,2n—2).
We continue by looking for the minimum m that G e G*(n,m) contains a cycle of length
less than r. Theorem 2 and Examples 1 and 2 show that m = 2n — 2 when r = 4. The

upper bound for m in cases r = 5 and r = 6 are given in the next result.

THEOREM 3. Let g(G) denote the girth of G. If n 2 6 and G e G*(n,2n—4), then g(G) £ 4.
Ifn 2 8 and G €G*(n,2n — 6) then g(G) < 5.

PROOF: Assume G ¢G*(n,2n — 4) and apply Lemma 1. Clearly d¥(z;) £ 3, otherwise G
has at least 2n edges. If n 2 6 the subgraph H induced by zn,Zp—1, Tn—2, Zn~3,Tn—a in G
has at least (2n — 4) — 3 — 2(n — 6) = 5 edges. We may assume that H is a cycle of length
5, otherwise H contains C3 or Cy and ¢(G) < 4 follows. Therefore d*(z;) = 3,d*(z;) = 2
for 1 =2,3,...,n— 5. But zn_s5 is adjacent to two vertices of the five-cycle H giving a Cg
or Cy.

To prove the second part of the Theorem, assume G € G*(n,2n—6) and apply Lemma 1.
Again, d*(z1) £ 3. Since n > 8, we consider the subgraph H induced by {zn,zn—1,%n-2,
Tn—3,Tn—4,Tn—5,%n—6} in G. Thus, H contains at least (2n — 6) — 3 — 2(n ~ 8) = 7 edges.
Let C be a cycle of H with minimum length, so that C is a cycle without a diagonal. If
IC] = 7 then H = C and dt(z1) = 3,d%(z;) = 2 for ¢ = 2,3,..,n — 7. In particular,
Tp—7 is adjacent to at least two verices of C giving a cycle of length at most 5. If |C| = 6,
then without loss of generality assume zp,Zn—1,Zn—2,%n—3,%Tn—4,Zn—5,Zn is a 6 - cycle
and z,—g is adjacent to zn—5. If zn—g is adjacent to any vertex z; for n — 4 < ¢ < n then
we have a C3,Cy or Cs. Therefore, H has 7 edges and again d*(z;1) = 3,d"(z;) = 2 for
2 < i £ n—17. In particular d*(z,—7) = 2, and it is easy to check that the only case

when z,-7,Tp—g,. ..,y does not induce a cycle of lenigth at most 5 in G occurs if zp—7 is
adjacent to zp—g and zn,—2 (see Figure 4). It is easy to see that dt(zn—g) = 2 implies the
existence of a cycle of length at most 5. Thus |C| £ 5 completing proof of the theorem. B

To show that the first part of Theorem 3 is best possible we give the following example.

EXAMPLE 5: Assume n is divisible by 5 and n 2 10. Let zyz3z52z92471 be a five-cycle
and Y1y ... Yn—5 ¥1 is a n — 5 cycle. Vertex =z; is adjacent to y; if and only if j = ¢ (mod
5) (for all {,1 £ 1 £ 5). This graph has 2n — 5 edges, has no proper subgraph of minimum

degree 3 and contains no C3 or Cy.
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We do not know examples of G ¢G*(n,2n — 7) with g(G) 2 6 for infinitely many n.
However, it is possible to find G € G*(n,2n — 8) with g(G) = 6 for infinitely many n.
The next theorem shows that graphs in G*(n,2n — ¢) do not always contain small

cycles.

THEOREM 4. For every postive integer r there exists ¢ = c¢(r) and a graph
G eG*(n,2n — ¢(r)) such that g(G) > r.

PROOF: Let k be a natural numt')er and let C1,Cy,...,C} be vertex disjoint cycles of length
t = 2.5"t1 _1. We shall define the graph G, by adding edges to the graph C; UC3U---UCy.
Assume that the vertices of C; are r‘i,x’z', e ,a:g (indexed in the natural order of the cycle).
The definition of Gy, is recursive. Set Gy = Cy. If G1,Ga,...,Gg—1 are already defined we
shall define G}, by adding edges zy to Gj_; U C) such that zeCy, yeCr_;. The definition

will preserve the following properties (for each 7, 1 £¢ < k):

(i) each cycle of G; is longer than r
(it) the maximum degree of G; is at most 5, and
(i) dg,(}) =4, dg,(z}) =2, dg, () =3for2<jSt—1andi > 2.
Note that properties (i), (ii) and (iii) trivally hold for ¢ = 1, since G; = Cy.

To define G we add edges e, = x’fyo, e = x’fyl, eg = :c’zcyz, ez = :cé“yg,...,et_l =
xf_lyt_l to Gg_1 U Cy, such that y;eV(Cy_q) for 7 = 0,1,...,¢t — 1 and G} satisfies
properties (i), (ii), and (iii) for ¢ = k. Observe that (iii) holds independent of the choice of
each y;, so that we need only select each y; such that (i) and (ii) hold. The edge e, can be
defined arbitrarily. Assume that e,,e1,...,¢es are defined for 0 £ s <t — 1 in such a way
that properties (i) and (ii) hold for G' = G_; UCy U {es, e1,...,¢€s}. We define ez as
follows. Let W denote the set of vertices in Cy_; which can be reached by a path of length
at most r from z¥,; in the graph G'. Since (ii) holds for G', [W| < 5"t! and therefore
[V(Cre1) = W| >t — 51 = 5™+1 — 1. Let T be a subset of V(C_;) — W such that
|T| = 571, By definition, for any yeT the graph G' U es1 statisfies (i) with es41 = xf+1y.

Using property (iii) fori =k -1

chk—-l(y) <37 +1 =351 41
yeT

Since G' is obtained from Gj_; by adding s + 1 edges,

Y da(y) £ doy (W) +s+1<35™ 414t -1=5" 1.
yeT yeT

Thus there exists an ys1€7 with dg/(ys+1) < 5. Thus with egq1 = x§+1ys+1, the graph
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G" = @' U €44 satisfies properties (i), (i) and (iii). Therefore G} is defined.

It is clear that |V (G)| = kt and |E(Gy)| = 2kt — t. The proof is completed by showing
that G has no proper subgraph of minimum degree 3. Assume to the contrary that G*
is such a proper subgraph. Since de(zf) =2, zf ¢ V(G*). However, de—:cf (=F =2
implies xf_l ¢ V(G*). Repeating this argument we get that x;‘ ¢V(G*)for1 <5<t

k“l) = 2 and by observations just like those made above, none of the

But dg, —¢, (=
vertices of Cj_; belong to G*, Continuing in this way we see that G* is the empty graph,
a contradiction. Hence Gy ¢ G*(tk, 2tk — t) for all k with ¢ = 2 -5"F! — 1, showing that

¢(r) = 25" — 1 is a suitable choice. M

4. Long cycles in G*(n,2n — 2).
In this section we prove one of the main results of the paper, that is G ¢ G*(n,2n — 2)
contains a long cycle. Note that G ¢ G*(n,2n — 3) does not necessarily contain even a path

of length 4 (see Example 3 in Section 2).
THEOREM 5: If GeG*(n,2n — 2), then G contains a cycle of length at least [logn|.

PROOF: Consider the ordering of G of Theorem 1. Since d™(z;) > Ofori =2,...,n, we
can find a spanning tree T recursively in G as follows. Place z1 in T. If z1,29,...,2; arein
T and t < n, then choose any edge z;z¢+1 of G such that 1 £ ¢ £ t. Redefine 7' by adding
vertex z¢+1 and the edge z;z¢41 to the old T. By definition of the tree, d (z;) =1in T
for 2 < i< nand d¥(z;) £2in T for 2 <4 < n. Since d(z;) = 3in G, T is a tree of

maximum degree < 3. Therefore, T' contains a path P of length at least [logn| starting

with z;.
Let z1 = x4, %y, . - ., %;, denote the vertices of P in the natural order defined by P i.e
z;;%;;,, is an edge of P for 1 < 7 £ k— 1. Notice that 17 <4y < -+« < 1}, follows from the

definition of T since d™(z;) < 2in T for 2 £ ¢ £ n. We call a path P = (z;;,;,,...,%;,)
in G a forward path if i < i9,-++ < tg. Note that the definition depends on the order
1, Ty, ...Zn defined by Theorem 1. The discussion up to this point insures that G has a
forward path of length at least |logn|.

Let P = (2;,%;,...,%; ) be a forward path of G with a maximum length. Since
d (z;) 2 1,and d¥(z;) 2 1in G for 2 £ ¢ < n ~ 1,.it follows that ¢y = 1,1} = n. Let
t be any positive integer such that 1 £t < k and ¢ # n — 1. Since d™(z;) 2 2 in G for
1< ¢ < n—2,wecan find a forward path P; in G starting at ;, and ending at some vertex

z;,+ of P such that

(a) P and P are edge disjoint
() V(P)nV(P) = {zj, =i}

Note that (a) impliest+1 < t'. We claim for t < s that the paths P; and P; are vertex

disjoint if ' < s or if s = ¢/ — 1. The case ¢/ < s is obvious since both P; and P; are forward
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paths. Assume s =t — 1. But t +1 < ¢’ and s+ 1 < s’ implies that P; and P, do not have
common endpoints. Assume that z is the last common vertex of Py and P; we find on P
by traveling along Ps from its starting point z;,. It is easy to see that the following edge
sequence is a forward path: starting from z;, = z;, travel along P to z;, ; continue on P
to z; from z travel to 5‘1}’ = g;,,, along P;: finally from =z, to z;, = zn travel along P.
This path is longer that P. This contradiction proves the claim.

Choose a subset Q1,Qs,...Qy of the paths P, P;,..., P; as follows. Set Q; = Py. If
Q1,Q2,...,Q;s are defined and tile endpoint z;,s of Qs is not zy, then Q541 = Py _;. If the
endpoint z;; of @, is z, then set r = s.

It is now easy to construct a cycle using all the vertices of PUQ{ U---UQ,. But P
has at least |logn| vertices so that the cycle C has length at least |logn|.H

Finally, to see that GeG*(n,2n — 2) does not contain necessarily a very long cycle,

(larger that ¢/n) consider the following example.

EXAMPLE 6: Let k be an integer, k > 4. Let C be a k -cycle with vertices zq,zg, ..., 7.
Select a new vertex w and connect w to each x; with vertex-disjoint paths of length &k — 1.
(The only common vertex of these paths is w). Select another new vertex y and let y be
adjacent to all vertices except those of {z2,z3,...,z}. Let Gj be the graph just defined.

The graph Gy, has k(k—1)+2 = n vertices. Since d(w) = k+1, d(y) = n—k, d(z1) = 4
and all the other vertices are of degree 3, G has

k+1+n—k+4+(n—3)3
2

=2n—2

edges. It is easy to check that Gy has no proper subgraph of minimum degree 3. It is also
easy to see that the longest path of G — y is smaller that 5k. Therefore the longest path
of G is smaller that 10k £ 10y/n + 1.
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