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Abstract. The graph G on (n:,p) edges is shown to have a.n ascending subgraph decomposition 

when either G is of bounded degree and sufficiently large order or when G is a. sta.r forest. 

I. Introduction. 

In [1] the authors give the following decomposition conjecture. 

CONJECTURE: Let G be a graph with (ntl) edges. Then the edge set of G can be 

partitioned into n sets generating graphs G1, G2, ... ,Gn such that IE(Gi)l = i (fori = 

1, 2, ... , n) and Gi is isomorphic to a subgraph of Gi+l fori= 1, 2, ... , n- 1. 

A graph G which can be decomposed as described in the conjecture will be said to 

have an ascending subgraph decomposition (abbreviated ASD). The graphs G1,G2, ... ,Gn 

are said to be members of such a decomposition. 

We establish that the conjecture holds for certain classes of graphs. In particular we 

show the conjecture holds if G is of bounded degree and of sufficiently large order or if G is 

a star forest. Surprisingly the latter of these, when G is a star forest, is the most difficult 

to prove. This could indicate that the conjecture (if true) is a difficult one to prove. 

The ascending subgraph decomposition of a graph is also closely related to the packing 

problem considered in [2]. There the authors conjecture that the graph Kn+l can be 

decomposed into any n edge disjoint trees T1,T2, ... ,Tn where each T;. has i edges. It 

should be emphasized that this decomposition does not require that each Ti be isomorphic 

to a subgraph of Ti+l· This suggests the weaker conjecture that G = K 71t1 has an ASD 

where each member Gi is any tree on i edges. It is ecosy to see that Kn+1 has an ASD when 

each Gi is a star K 1,i or each G;. is a path Pi+1 on i edges, but even the weaker form of 

the conjecture is unsolved. 
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IT Results. 

The first theorem we present is a graph less special than Kn+1, but which still has the 

special ASD into stars. 

THEOREM 1. Let Hn-1 be anyn-1 edge graph with at most n vertices. Then Kn -Hn-1 

has an ASD with K1,b K1,2,; .. , K1,n-2 the members of the decomposition. 

PROOF: The proof is by induction on n, being trivial when n is small. Assume the result 

hold~ for the graph Kn-1- Hn-2, i.e. this graph has an ASD into K1,1, K1,2, ... , K1,n-3· 

Let v be the vertex of largest degree in Kn - Hn-1· Clearly its degree, deg v = n- 1 or 

n - 2. We consider these two possible cases separately. 

CASE 1: deg(v) = n- 2. 

The graph Kn - Hn-1 - v which results by deleting v from Kn.- Hn-1 can be 

written as Kn-1 - Hn-2· By assumption Kn-1 - Hn-2 has an ASD into the stars 

K1,b K1,2, ... , K1,n-3· But vis incident to precisely n- 2 edges of Kn- Hn-1· Therefore 

this star K1,n-2 with center at v together with the decompositon K1,1, K1,2, ... , K1,n-3 of 

Kn- Hn-1 - v yield the desired ASD of Kn- Hn-1· 

CASE 2: deg(v) = n- 1 

We again consider the graph Kn- Hn-1 - v. Let w and z be any two nonadjacent 

vertices in Kn - Hn-1 - v. Modify the graph Kn - Hn-1 - v by inserting edge wz. 

The resulting graph Kn- Hn-1 - v + wz can be written as Kn-1 - Hn-2 and has by 

assumption an ASD into stars K1,l,Kl,2•····K1,n-3· Since wz is an edge of one of these 

stars, we may assume it is the star K1,i with center at vertex w. Replace the edge wz 

of K1,i by the edge wv in Kn- Hn-l - v obtaining an ASD of Kn - Hn-1 - v + wv 

into stars K1,b K1,2, ... , K1,n-3· The remaining n- 2 edges of Kn- Hn-I incident to v 

(other than wv) form a star Kt,n-2 with center at v. This star together with the ASD of 

Kn-Hn-1-v+wv into Kt,b K1,2, ... , Kt,n-3 give the desired decomposition of Kn-Hn-1· 

In order to prove the next theorem we need the following lemma. 

LEMMA 2: Let M1, M2, ... , Mt be a partition of a m~tching of the graph G into l sets and 
l 

let e 1, e2, ... , em be any collection of m edges in G- U Mi. If l ~ m+ 2, then the set of edges 
i=1 

l 
( U Mi) U { e1, e2, ... , em} can be partitioned into sets of matchings M{, M~, ... , M~, M~+1 
i=l 

such that !Mil= IM:I fori= 1,2, ... ,land IM~+ll = m. 

PROOF: Form a bipartite graph G' whose vertex set AU B is A = { Mt, M2, ... , Mt} and 

B = { eb e2, ... , em}· Let a vertex MiEA be adjacent in G' to the vertex e;EB if e; is not 
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incident in G to any vertex of Mi. Since e; can be incident in G to at most two elements of 

A, it follows from l ~ m + 2 that each element of B is adjacent in G' to at least m elements 

of A. Thus each t-element subset of B has at least t adjacencies in A. By the theorem of 

P. Hall [3] the element~ of B can be matched in G' to m elements of A. Assume without 

loss of generality the ei is matched with Mi fori= 1, 2, ... , m. For each i, select any fixed 

edge <£Mi, i = 1,2, ... ,m. Let.ting MI = (Mi- {e~}) U {ei} fori= 1,2,.:., m, MI = Mi 

fori= m + 1, ... , l, and M~+l =;= {e~, e~, ... , eH gives the desired partition. 

THEOREM 3. Let G be a graph of maximum degree don (ni1) edges. Ifn ~ 4d2 +6d+3, 

then G has an ASD into graphs G1,G2, ... ,Gn with each Gi a matching (on i edges). 

PROOF: By Vizing's Theorem [4] G has edge chromatic number at most d + 1. Hence the 

edges of G can be decomposed into sets (subgraphs) Mb M2, ... , Mr (r ~ d+ 1) with each 

Mi a matching in G. We wish to partition the edge set into graphs G1, G2, ... , Gn such 

that each Gi is a matching with i edges. To do this we start by splitting each Mi into 
r 

graphs (sets) such that U Mi contains the graphs Gn,Gn-1, ... ,Gn-k, with each of these 
i=l 

graphs Gi contained entirely in some M;, and such that k has the largest possible value. If 

this can be done such that k = n - 1, then the proof is complete. 

k 
Assume k < n -1, set 8 = n- k -1, and let R; = M;- ( U Gn-i), j = 1,2, ... ,r. We 

i=O 
r 

have found all the desired graphs except for G1,G2 ... ,G,. Also 8(8+1)/2 =IE( U R;)l ~ 
j=l 

(8 -1)(d+ 1) where the last inequality follows from the choice of 8. This gives 8 < 2d+ 1. 

The idea of the proof is repeated use of the lemma in the following way. For each 

m, 1 ~ m ~ 8, we find m + 2 graphs Gil' G h, . .. , G im+2 such that all are contained in 

some M;. Specifically for each m (1 ~ m ~ 8) select a set of m (unused) edges e1, e2, ... , em 
r . 

in U R;. Letting G ; 1 , G h, ... , G im+2 correspond to the matchings M1, M2, ... , Mm+2 of 
j=l 

the lemma we obtain, by the lemma, a new graph Gm (corresponding to M~+1), new graphs 

isomorphic to G ;1 , G :12, ... , G im (corresponding to Mf, M~, ... , M:n), and retain the graphs 

G;m+l'Gim+2 (corresponding to M:n+1,M:n+2). This means that disjoint collections of m 

elments are needed for m = 1, 2, ... , 8 plus 2 additidnal ekments to always insure the 

exist~nce of the collection { G ;1 , G h, ... , G im+2} for each m. But the largest of these 

collections has 8 + 2 elements, so that at most 8 + 1 of the graphs Gn-i (i = 0, 1, 2, ... , k) 

which appear in any M j may not be usable in finding the 8 disjoint collections. This means 

that the proof is complete if the number of graphs in the list Gn, Gn-1, ... , Gn-Jc is as large 
8 8 

as the sum 2+ 2: i plus the nonusable part in each M;, i.e. if k+1 ~ 2+ 2: i+(s+1)r. But 
~1 ~1 
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8 

2+ E i+(s+1)r = 2+s(s+1)/2+(s+1)r ~ 2+(2d)(2d+1)/2+(2d+1)(d+1) = 4d2+4d+3. 
i=l 

Since k + 1 = n- s, the proof is complete if n;:::: 4d2 + 6d + 3. But this is a condition of 

the theorem, completing the proof. 

The reader should observe that in both Theorems 1 and 3 the graphs Gi which appear 

in the decomposition are all of the same type. In Theorem 1 each member is a star and in 

Theorem 3 each member is a matching. In the next theorem we consider the case where 

G is a star forest and show it. has an ASD. Surely such a star forest could contain too few 

stars to contain an n-matching and no star with n or more edges so that an ASD would 

not need to have each of its members of the same type. 

THEOREM 4. Let G be a star forest with (nil) edges. Then G has an ASD. 

PROOF: To describe the desired decompositon we will use the convention that each of the 

edges of graph Gi will be assigned the label i. Thus an ASD is an assignment of labels 

1, 2, ... , n to the edges of G such that each sub graph Gi (generated by those edges with 

label i) is isomorphic to the subgraph Gi+l (generated by edges with label i + 1). 

The proof will be by induction on n and is trivial for small values. We assume through

out that all star forests with (~) edges, t ~ n, have an ASD. 

Let G be a star forest wtih (n;l) edges. We consider three separate cases. 

CASE 1: The stars of G with at most n edges have collectively at least n edges. 

Let H1, H2, ... , Ht be the stars of G with at most n edges. Assume IH1I ~ IH2I ~ 
~ IHtl· Delete exactly n edges from these £ stars, starting with all edges from the 

largest star Ht. Thus assume that all the edges of Ht, Ht.-b · · · , Ht-m have been removed 

and possibly some (but not all) of the edges of Ht-m-1 have been removed in this deletion. 

We will eventually assign the labels 1, 2, · · · , n to these n edges. 

Let G' be the graph which results from the deletion of the n edges. By assumption G1 

has an ASD with members G~,G~, ... ,G~ such that each G~ has i -1 edges with each of its 

edges assigned label i. Further Gi is isomorphic to a subgraph of Gi+l fori= 2, 3, ... , n-1. 

It is clear that the number of edges which remain on the star Ht-m-l after the deletion 

is less than the total number of edges deleted from the stars Ht, Ht-b ... , Ht.-m· Thus 

the labels assigned to then deleted edges may be done so that if Ht-m-l and G~ have an 

edge in common, then some edge deleted from one of the other stars receives label i. This 

gives the desired decomposition, i.e. if L1 , L2, ... , Ln represent the single edge graphs w~th 

labels 1, 2, ... , n respectively, then G1 = L1 and Gi = G~ U Li fori= 2, 3, ... , n is an ASD 

of G. 

CASE 2: The graph G contains two stars K1,l and K1,,m such that n ~ l ~ m. 

Define the function /such that for a positive integer k < n, f(k) = 1+2+· · ·+k+(k+ 
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1 )( n- k). Observe that I ( k + 1) - I ( k) = n- k- 1. Select the smallest positive k such that 

m ~ l(k) ~ m + £. This choice of k is possible since n ~ £and l(k + 1)- l(k) = n- k -1. 

Our objective is to delete f(k) edges from the two stars, invoke induction on the resulting 

graph, and then join the f(k) edges appropriately to the ASD found by induction. The l(k) 

edges we delete include all the edges of the large star K1,m and an appropriate number from 

the small star kl,l· We shall split ·the set of deleted edges into n stars £1, £2, ... , Ln such 

that star Li receives label i and L\ = K1,1,L2 = K1,2, ... ,Lk = K1,k and Li = Kl,k+l for 

i = k + 1, k + 2, ... , n. It is obvious that the Li's can be defined as described but we need 

further restrictions to apply the induction. 

Let G1 be the graph with c;k) edges obtained when the l(k) edges are deleted from 

G. By the induction assumption G1 has an ASD with members G~+2 , G~+a, ... , G~ where 

each G~ has i- k- 1 edges, each assigned label i. 

Let H denote the part of the star K1,l which remains after the deletion ·of the l(k) 

edges. Further let Si = H n G~ for i = k + 2, k + 3, ... , n. We wish to form the ASD for G 

with members G1,G2, ... ,Gn by setting Gi = Li fori= 1,2, ... ,k + 1 and Gi = Li U G~ 

for i = k + 2, k + 3, ... , n. To insure that this gives our ASD of G we need to make 

certain that Li and Gi are vertex disjoint. This may require exchanging some of the stars 

Si (k + 1 ~ i ~ n) with substars of K1,m (part of the deleted set of edges). 
n 

IT £-IE( U Si)l ~ (k;l), then no exchange is necessary. Simply select a subcollection 
i=k+2 

n 
of £1, £2, ... , L k+ 1 whose total edge set has cardinality £- IE( U Si) I· Members of this 

i=k+2 
subcollection are obtained from the edges of K1,l that were deleted and the remaining Li 

are all obtained from the large star K1,m· 

Therefore consider the remaining case when£- IE( U Si)l > (k;l). Since l(k) ~ 
i=k+2 

m ~ £, there exists a subsequence Si1 , Si2 , ••• , Sik of Sk+2, Sk+3, . .. , Sn (each Si; with 

fewer than k + 1 edges) such that 

n n 

o < £- [(k + 1)r- IE( U si,.)l] - IE( U Si)l ~ (k;1). 
j=l i=k+2 

Let r be as small as possibL such this inequality holds. Then, exchange Si
1

, Si
2

, ••• , Si,. with 

disjoint substars of K1,m, changing the set of deleted edges. In this case let Li
1

, Li2 , ••• , Li,. 

come from the star K1,l (part of the new set of deleted edges). In addition select a subcol

lection of £1, L2, ... , Lk+l whose total edge set has cardinality 

r n 

£- [(k + 1)r- IE( U si,.)IJ-IE( U Si)l. 
j=l i=k+2 
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Members of this subcollection also come from the star K1,t and are part of the new deleted 

edge set. All remaining Li come from unusued edges of K1,m· 

Thus in each case an ASD for G with members G 1, G2, ... , Gn is obtained by setting 

Gi = Li fori= 1, 2, ... , k + 1 and Gi = Li U C.~ fori= k + 2, k + 3, ... , n. This completes 

the proof of case 2. · 

CASE 3: . Cases 1 and 2 fail to hold. 

In this case G consists of one star with more than n edges and the remaining stars con

tain collectively at most n- 1 edges. For this particular case we can construct the members 

of an ASD directly. Let t be the total number of edges in the "small" stars, those which have 

fewer than n edges. Split these t edges into single edge graphs Ln+l-t, Ln+2-t, ... , Ln. The 

large star has precisely (n;l) - t edges. Decompose it into the following stars: G~ = K1,i 

for i = 1, 2, ... , n- t and G~ = Kl,i-1 for i = n- t + 1, n- t + 2, ... , n. Then letting 

Gi = G~ fori= 1,2, ... ,n-t and Gi = LiUG~ fori= n-t+ 1, ... ,n gives an ASD for G. 

This completes the proof of this case and the proof of the theorem. 

m. Conclusion. 

At least two interesting questions are suggested by the results of this paper. The first 

of these was suggested by P. Erdos when he learned of Theorem 4. 

QUESTION 1: Let G be a star forest with (n;l) edges such that each star of the forest 

has more than n edges. Does G have an ASD in which each member is a star? 

QUESTION 2: Let G be a graph with (n;l) edges. Does G have an ASD such that each 

member is a star forest? 
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