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ABSTRACT

An (n,k)~coloring of a complete graph K means a
coloring of the edges of K with k colors so that all
monochromatic connected subgraphs have at most n vertices.
We are interested in the maximum number of vertices of
complete graphs with (nyk)-colorings. We survey results
concerning this problem and give some new results which lead

to the complete solution for kLS.

0. Introduction.

Let f(n,k) denote the smallest integer m=m(n,k)
with the following property: if the edges of K. are
colored with k colors then there exists a monochromatic
connected subgraph of more than n  vertices. The function
fin,k) has been introduced in [12] and f(n,3) was deter-
mined in [12]1 amnd [11. The observation f(n,2)=n+l is
equivalent with a remark of Erdos and Rado saying that for
any graph G, either 6 or its complement is connected. The
second author has further results on f(n,k) in [131. The
problem of determining +f(n,k) was rediscovered by the
first author and Brandis in [31.

From the point of view of Ramsey theory, f(n,k)-1 is a
lower bound for the Ramsey number R(Tn,k) , where T. is any
tree of n edges. Bounds on R(Tn,%) have been studied in
L1031,

We shall use the term (n,k)—~coloring introduced by
Bierbauer and Brandis in [31. An (n,k)-coloring is a colar-
ing of the edges of a complete graph with k colors

s0 that all connected monochromatic subgraphs have at most

(1) Fartly supported by the AKA Research Fund of the

Hungarian Academy of Sciences
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n vertices. The function Ff(n,k)~1 clearly give the
iargest number of verices of a complete graph which has an
(ny,k)=coloring.

An (nyk)-coloring can be viewed as k partitions of a
ground set'info sets of cardinality at most n, so that all
pairs of elements appear together is some of the sets. Thus
resolvable block designs with =1, k parallel classes and
with blocksize n are natwal examples of (n,k)-colorings.
However, (n,k)— colorings are much more "relaxed"
structures: the "blocks" may have any sizes up to n and the
pairs of the ground set appear together in at least one
black. In extremal (n,k)-colorings, i.e. in (n,k)-colorings
of compiefa graphs of f(n,k)~-1 vertices, the structure of
connected monochromatic combonents is often close to the
block structure of resolvable block designs.

In section 2 we review results on f(n,k) and present
some new results. ‘

We give a new lower bound of f(n,k):

fln,k)>(k~1)= (p+1)—ws (k—-1)
if  n=(k-1)p+k—-1-i, O{iZk-1, and an affine plane of order
k-1 exists (Theorem 1.5). Here wi:(q)  denotes the minimum
number of points of an affine plane Ay of order q
which meet every line of Ag in at least 1 poeints. The
minimum is taken over all affine planes of order q. The
bound is always sharp for 3:iki5 (see Theorems
1,16,1.17,1.18). 1If we compare this lower bound with the

upper bound of n(k-1)+1 (Theorem 1.1), we see that for
fived k the function F(n,k)-n{k-1) is smaller than a
function depending only on k. It is unknown whether a

similar statement holds if no affine plane of order k-1
exists (Froblem 1.15). The main res&lts of the paper are
prepared in section 2, where.a method is described to get an
upper bound of f(n,k). The upper bound n(k-1)+1 (Theorem
1.1) comes from a joint result of J. Lehel and the second
author: if the edges of a complete bipartite graph Kem.~ are
colored with s colours then there exists a monochromatic
connected subgraph of at least [(m+n? /871 vertices

(Corallary 2.2). Our main concern is to push this method to
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its limit, i.e. to prove that Kain,-» contains a monochromatic
connected subgraph of at least [m/sl1+In/sl1 vertices in
every s—coloring (Conjecture 2.4). We can prove this for
23544 (Corollary 2.3), which gives an essential part in
determining f(ﬁ,k) for 3:ik<S.

In section 2 the properties of M-extremal graphs play
an important role. For fixed m,n, we call a bipartite
graph 6 M-extremal if the vertex classes of 6 contain m
and n vertices, the connected components of G have at
most M vertices and G has as many edges as possible under
these conditions. The important properties of M-extremal
graphs are summarized in Lemma 2.5. The main application of
M—extremal graphs is the following Theorem (Theorem 2.1).

If 6 is & bipartite graph with m and n vertices in its
colow classes and G has at least [mn/s]1 edges, then G
contains a connected component of at least [{m+n) /s
vertices. Moreaover, if 2¢s44 then G contains a connected

component of at least fm/s1+n/sl vertices.

In section 3 we apply our methods to determine f(n,k)

for A EAH
4p+1 if n=2p ’ 9p+1 if n=3p

fin,3) = fin,4)= Ip+2 if n=3p+1
4p+2 it n=Zp+1 Fp+S if n=3p+2
16p +1 if n=4p

fin,5)s= iep +2 if n=4p+l

lép +7 if n=4p+2
16p+10 if n=4+3
The authors recently learned that f(n,4) have been

determined independently by Bialostocki and Dierker.

In this section we survey results concerning f(n,k)
and present some new results. We start with upper bounds.
Theorem 1.1. (C131) Fln, b0 Sk=n+ 1. |

We note that Theorem 1.1 immediately follows from the
following result of J. Lehel and the second author: if the
edges of a complete bipartite graph 6 are colored with

k-1 colors then 6 contains a monochromatic connected
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subgraph of at least M|V(G) |/(k—-1)] vertices. This result
appears in section 2 as Corollary 2.2. Another proof of
Theorem 1.1 is obtained if we consider the following
hypergraph H, determined by an (n,k)~-coloring of a
complete graph K. The vertices of H are the vertices
of K and the edges of H are the vertex sets of the
connected monochromatic components of K. The dual
hypergraph H* of 'H is a k—-partite intersecting
hypergraph (every two edges of H* have at least one
common vertex). A result of Furedi ({111) says that a k-
uniform intersecting hypergraph H has a vertex of degree
at least IEMH) |/ (k-1)7, unless H is a projective plane of
order k-1. Since a k-partite hypergraph is never a
projective plane, H* contains a vertex of degree at
least TEWMH*) | /(k=1)7 which implies that H contains
an edge with at least [7IV(H)I/(k-1)7 vertices and Theorem
1.1 follows. ‘
The following upper bound is due to the first author and
Brandis:
Theorem 1.2 ([31). Assume k = K(mod n), 24 kK < n and let
L= (k—K) / (k-1). If 4k » 3n+t — dn(n+8—2$) - S(B—ﬁ)fnthen

£yl < (km1)n - (koKD +1. Otherwise

£(n,k) gu:(n—1>+1/2—(.n(L::—s)—r::uc:—g—1)—(1—1/4)'/”J+1 !
The cases not covered by Theorem 1.2 are ccyered by the.
following two results.
Theorem 1.3 (L[31). If n 2, 1<k=i(mod n), then

fFin,k) Sk (n-1)+2.,
Equality holds iff a resolvable block design exists with
=1, block size n and replication k.
Theorem 1.4 (L31). If k=0(mod n), then
fin,k) £ k(R—1)+1,

and for n>2, f{n,n) £ n(n-1).
For comparison, it is easy to see that for n»k:2, Theorem
1.1 is better than Theorem 1.2. If ng<k then Theorems 1.2-
1.4 are better than Theorem 1.1l.

Concerning lower bounds of f(n,k), first we give a
construction which uses the existencg of an affine plane of

order k-1. The lower bound ie close to the upper bound of
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Theorem 1.1 and for k=3,4,5 it gives the exact value of
#(n,k). Let Ay denote an affine plane of order gq and
let Xi,...4yXq+1 be the ideal points of Ag. Assume that we
have a complete graph K whose vertex set is partitioned
into gf parts, S:y8z,404,384q=. Consider a one-to-one
mapping between the points of Ag and the sets Siy...98a=.
We color an edge PO of K with color k if PeS, ,0€S,,i%j
and the points corresponding to S. and 85 in Aq
determine a line containing Xw. The edges of K whose
endpoints belong to the same set 8. may be colored
arbitrarily. The colorings of complete graphs obtained by
this method are called normal (g+l)-colorings. Note that
normal (g+l)-colorings are defined only for those values of
q for which an affine plane of order q exists.

An i~transversal of an affine plane A, is a set of
points in Ag which meet every line of ALy in at least i
points. Let w:(Ag) denote the minimum cardinality of an
i-transversal of A and let .wi(q) be min wi (Ra), where
the minimum is taken over all affine planes of order q.

The following Theorem gives a lower bound for f(n,k) in
terms of wi(k-1).
Theorem 1.5. Assume that an affine plane of order k-1
exists, let n=(k-1)p+k-1~i, where 0<iik-1. Then
Fin,k)r(k-1)=(p+1)—wa (k—1).
Froof. Let A.-.: be an affine plane of order k-1 possess
-ing an i-transversal T of w.s(k—-1) elements. Let
m=(k~1)=(p+1)~ws (k=1) and consider a normal k-coloring of Km,
where we associate a set of p elements to the points of T
and we associate a set of p+l elements to the points out-
side T. By the definition of the normal coloring and the
i-transversal, a monochromatic connect;d component of Km
has at most pi+(k—1-i) (p+1)=n vertices. Thus we have an

(ny,k)=coloring on Km and the theorem follows.

Corollary 1.6. If an affine plane of order k-1 exists, then
Flk-1)p,k) >(k=1)=p for all p:zl. :

This follows as Ww—1(k~1)=(k-1)%, Another easy application

of Theorem 1.5 occurs if i=k-2. Now Wi—=(k-1)=(k-1)=-1 is

obvious which yields
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Corollary 1.7. If an affine plane of order k-1 exists,
then

FO(k=-1)p+l k) > (k-1)=Zp+1,
We observe that wi(k-1)¢ 2k-3 since two intersecting lines
of Ax- 'givé a l-transversal. Thus we have

Corpllary 1.8. If an affine plane of order k-1 exists,
then

f((k—i)é+k—2,k)}(k~1)2p+(k—2)2.

A fundamental result of Jamison's (L71) implies that
1-transversals (also called "affine blocking sets") in
desarguesian As have at least 2qg-1 points. It is how-
ever possible to obtain i-transversals of smaller size in
other affine planes. BEruen and de Resmini ([81) use the
Hughes plane of order 9 to show w,:(9){16.
Corollary 1.92. £(9p+8,10) *Blp+S.

We note that Corollary 1.6 is sharp for all k and
corollary 1.7 is sharp for k=3,4,5.

A resolvable BIBD with blocks of cardinality n, with
»=1 and with k parallel classes is clearly suitable to
define an (n,k)-coloring. In this case we have k(n-1)+1
points, I+ we substitute t points for all points of this
design, an (nt,k)-coloring can be defined on t(k(n~1)+1)

vertices in analogy to normal colorings. Thus we have

Proposition 1.10. If a resolvable BIBD exists with blocks
of cardinality n, with =1 and with k parallel classes
then
fint,k) >t (k(n=-1)+1)

An example for the application of Froposition 1.10 is the
case t=1,n=4,k=9, Now +F(4,9)=29 follows from Theorem 1.3
and Proposition 1.10. This example is taken from [31. As
there are resolvable BIED with block size 4, with =1 and
replication 4t+1 (t:z1) (see [17,181), we get

f (4a,4t+1) >a(12t+4) (azi,t:1).
We obtain a general lower bound.
Corollary 1.11. fln,k)>(n=3) (3k-8) /4.

The following generalizes a result of (31, which in

turn relies upon a construction of Linstrom in [161:
Proposition 1.12. If f(ap,ka)>kp and if there is a set of
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a-1 mutually orthogonal latin squares of order k, then
flap,katk) raphk.

As there is a set of five mutually orthogonal latin squares

of order 12 ([3,91) and +(6p,3)>»12p (Theorem 1.146 below) we

get f(bp,15) »72p.

Applications of Proposition 1.12 in case p=1 are
given in [3]. For instance f(4,10+28 é 44) #1642+ (i 20)
can be derived by repeated applications of Froposition 1.12
with u=16-4*. Theorem 1.2 implies that the lower bound is
sharp. The comparison of the upper bound of Theorem 1.1 and
the lower bound of Theorem 1.5 shows that n(k-1) is close
to fin,k) for large n and fixed k.

Corollary 1,13, If an affine plane of order k-1 exists,
then

flnyk)=n(k=1)=1dw, (k=1)—(k-1)1ii(k-1)1,
for n=(k-1)p+k—-1-i, O<igk—-1.

In particular, if i=k-1 then wil(k=1)=(k-1)% and we get

Corollary 1.14. 1If an affine plane of order k-1 exnists,
then

fF(k—1)p,yk)=p (k=~1)=+1,
It would be interesting to get rid of the existence problem
of affine planes of order k-1 in a lower bound close to
n(k-1) for large n. We have the following problem.

Problem 1.15. It is true that Ff(n,k)-n(k-1) is less than

a function depending only on k 7

Now we consider f(n,k) for small values of k. An
old remark of Erdos and Rado says that a graph or its
complement is connected. Thus f(n,2)=n+1. The case k=3
has been settled in [12] and [1l. A new proof is given in

-~

section 3 based on results of section 2.
4p+1 if n=2Zp
fFin,3) = )
4p+2 if n=2p+1.
The following two Theorems are the main new results of this

paper. The proofs are in section 3.
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Theorem 1.17.

Pp+l if n=3Ip

fin,4) = Gp+2 if n=3p+1

Ip+S 1 n=3p+2

Theotrem 1.18. ‘ lép+1 it m=4p
fin,3) = lop+2 if n=4p+i

1ép+7  if n=4p+2

1ép+1i0 if n=4p+3
Concerning the values of f(n,k) for small values of n, the
following vbservation is in [31.

Froposition 1.19.

k+2 if k is odd
FO2,k) =
k+1 if k is even
The case n=3% is also completely solved. The following

results ig in L[31.

L-.}
+
+J
-
.
=
H

1 (mod 3)

2 (mod 3)

ut

2k i k
We note that theorem 1.20 follows by combining the upper
bound of Theorem 1.2 with the lower bound of Proposition
1.10 and using the existence theorem of D.k. Ray~Chauwahuwri,
ReM. Wilson on resolvable triple systems ([171). For n=3
and k=0(mod 3), it is easy to see that F(3,k) is either 2k
or Zk+l. It is easy to prove that (3,3 =6 (see [31). Is.
Tuza discovered a (3,46) coloring of Kie (4 color classes are
4=, one color class is Kx + ZHi,=2 and one color class is
2K= 4+ 3E2). This construction shqws that f(3,6)=13, The
first author used a certain Steinar:triple system on 19
points to show fF(3,2)=19 ([41). If k=0 (mod 3) and k 9,
there exist (3,k)-colorings of Ko such that all but one
color classes are isomorphic to 2k/3 K=  and the exceptional
color class is isomorphic to k Kz. Such colorings are
called Nearly Kirkman Triple Systems and their existence
have been proved in a series of papers (L151),021,061,01%91

in chronological order). The authors are grateful to
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Professor Rosa for this information. Therefore the following
theorem holds.
‘ b if k=3
5, k)

i

Zk+1 if kb6 and k=0 (mod 3).

ZuM-evtremal bipartite graphe.

et B(m,n) denote the set of bipartite graphs with
vertex classes of cardinality m and n. We shall always
assume that m,nzl. The purpose of ths section is to prove
the following .
Theorem 2.1. Assume GeR(m,n) and G has at least [mn/s]
edges for some positive integer s. Then B contains a
connected component of at least [{m+n) /8] vertices.
Moreaver, if 2is:i4 then 6 contains a connected component
of at least [m/s7 + [n/s]l vertices.

The first part of Theorem 2.1 gives a joint result of
the second author with J. Lehel:
Corpllary 2.2 (L131). If the edges of K.,~ are colored
with s colors, then there exists a monochromatic
connected subgraph of at least [(m+n)/s71 vertices.
The second part of Theorem 2.1 implies

Cormllary 2.3 If the edges of Kn,~ are colored with =

colors and 2is:4, then there exists a monochromatic
connected subgraph af at least [m/s1 + [n/sl1 vertices.
We conjecture, that Corollary 2.3 holds for every s.

Conjecture 2.4, If the edges of Ka,» are colored with s

colors, then there exists a monochromatic subgraph of at
least [m/s1 + [n/s] vertices.

It is worth noting, that conjecture 2.4 cannot be
obtained from a density result since the second part of
Theorem 2.1 is not true for si5. To see this for s=5, let
m=8p+1, n=20p+i. Now 2K, ap+1+2¥ge1 ,apta—1,ap—1 has
[mn/357 edges, but its components have at most Sp+l=[m/57 +
[n/37 -1 vertices.

It is convenient to introduce at this point the notion
of M-extremal bipartite graphs. We shall always assume that

M is an integer, M:2. A graph GeR(m,n) is called
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M-extremal if every connected component of G has at most
M vertices and 6 has the largest number of edges under this
condition. It is clear, that an M-extremal bipartite graph

is the union of disjoint complete bipartite graphs and
possibly %omﬁ.iﬁolated vertices in one of the vertex
classes. If we accept Fo.e and Ke,o for t:l as

degengrate complete bipartite graphs, then an M-extremal
graph of B(m,n) is the vertex-disjoint union of

Ka'_h” H,z,hh,....ﬂmr,ﬂﬁ where the numbers ai,b. are
© non-negative integers, at most one of them camn be zero, and
they satisfy ,

(1) az+azmte..+a-=m, bBi+bat...b-=n and a,+b, L M for
all i such that 1£i4r and aiby F0,

Thus the description of M-extremal members of E(m,n)
is equivalent with finding values of r and for the pairs
(a:4bs) such that (1) is satisfied and E = § asb, is
maximum. BSuch a sequence is also called M-extremal.

M—-extremal sequences (or M-extremal bripartite graphs)
are not necessarily unique, for instance if m=4,n=6,M=4,
the the following sequence define M-extremal graphs:
2y, (1,2, (1, @y (2,2),(2,2),0,2)3 (2,2),01,3),(1,1).
Lemma 2.%. Let m,n,M be fixed, Mr2, r=[{(m+n) /M1, and let
{{as,bs) |li=1,2,..,8> ~ be an M-extremal sequence, E=§ asba.

Then one of the following holds:

(i) AR FR2™e 0 s Fley AT]1FALL 1T TR mn,y, AFA~—1¥R
h+i=bi=ba=...=be, D=hei1=uee=Dreny, b=be.ai=b,

mEratr=2-t, n=rb+t, mtn=rM-2, Esrab+ta+b (r-2-t), r=s.

(i1) a=a,"an=...%8c, artl=acs17...2a&-
bil=hi=ha=..."be,y b=bew1™=a =,

m=ra+r-t, n=rb+t, m+tn=rH, E*rab;ta+(r—t)b, P,

(iii) ABALERRT, 0 Tle, AFIFREe1T.0 TR o1
b+ l=by=he=. . o =be, b=bew1=use=be—1,
where a-+b.- « M, & * a-, by =z b~ for all i, 1i4is r-1,
m=(r-1)a+r-i-t+a.-, n=(r-1)b+t+b-, mtn={r—-1)M+a-+b.- < rM,

E=(r—1)ab+ta+ (r-i-t)b+a b, s=r.:
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(iv) 1=8:%82%. 4+ ®28my 8m+1=0, M-1=b,=ba...=0mn, bm+ws > M ar
l=bambo=. . mha, Daea=0, M-l=a;=8z%...%8n0, &n+a +» M,
Ee (M-1)Min(m,n) .
Here t,a,b are non-negative integers, atbh+l=M.
We note that M-extremal gequences in forms (1), (i1) and
}iv) may occur only for special choices of m,n,M. It is
easy to check, that M’mugt be a divisor of m+n+2 if (i)
occuwrs, M must divide m+n if (ii) ococuwrs. Form (iv)
appears if either n > (m+1) (M-D)+1 or m » (n+l1) (M~-1) + 1
holds.
Froof. Let (ai,bi),..., (8m,bw) be a M-extremal sequence.
A pair (a.,b:) is called gaturated if a.+b. = M and
unsatiurated if a.+b, < M. A pair (a.,bs) is exceptional if
as+bys » M. Clearly a. or b: is zero for an exceptional pair.
bai=b, and a.-+b.=M-1.
If as < a,y and bae » by then bisF  and then pairs
(a.,4,bs), (as,bs) can be changed inta (a,,b.:-1),(a,,bs+1) and

Claim 1. If (a.,b.) and (as,b,y) are unsaturated, then a,=a,,

the value of E increases by this change, contradiction. If
by < by, then either a;+0 or by#0. Assume that a;+. Now
our pairs can be changed to (a.—1,bs),las+1,by) to increase
E. The case b, #) is symmetric. Thus aji=as,bi=b,. If
Aastby, < M—1, then ow pairs can be changed to (a.-1,b.-1),
(as+1l,by+1), increasing BE. The claim is proved.

Claim 2. If (ai,ba) and (a,s,bs) are unsaturated, then all
other pairs are saturated.

Assume there is an unsaturated pair (ap.,be). Using
claim 1, a:r=a;=a,=A, bi=bs=b,=R and A+B=M-1. Now the
three (A,R)-pairs can be changed to (A+1,B), (A,B+1), (A-1,B-1)
(AlF0) and E  increases. AN exceptional pair (c,0) can not
occur as otherwise (c,0), (ai,04) can be changed to
(e—1,0) y (as+l,bs),

Claim 3. Let (a:,b:) and (as,bs) be two pairs such that
ays+bhy 2M-1, a,+by:M=-1, asbsasbyF0. Then laci—aslillba-balil.

Assume a,~ay = 2. Now by-b.l 1 as otherwise a,;+bs iz M-
1+2=M+1 which contradicts (1).  If we change our pairs to
(as—~1,byi+1), tas+1,by—1), then E increagses since (a.—1)
(ha+1)+(ay+1) (by~1) = aiba+tasbi+tas—as+b,-ba~2 zasb,+asb,y+1l.

The claim is proved.
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To continue with the proof of Lemma 2.5, assume that
there are two unsaturated pairs in an M-extremal sequence.
Claim 1 ensures, that both pairs are in the form (a,b) where
a+tb=M-1. If (as,b.) is any other pair then a.+h,=M by claim
2. Clearly ab+0 and claim 3 implies as=a or a.=a+l, Now
we have ouwr M-extremal seguence in form (1), where t denotes
the number of indicgs 1 for which as=a and (ai,bs) is
saturated., Since m+n=gM-2, r=e follows.

Assume that a M-extremal sequence contains exactly one
unsaturated pair, (ds,bw). All other pairs are saturated
since an exceptional pair (a:,0 would allow the changes
(ai=1,0)y(awt+l,bw) contradicting the M-extremal property.

It is obvious that r=¢, In order to see that our

sequence is in form (iii), we have to prove a.za. and
bisbe for all i, 14i4r-1. AssUume ai + ar-. Then b sb-+2
since (a.,b.) is saturated and (a-,b-) is unsaturated. We
can change the pairs (a;,bi),(a-,b) to (a-—1,b-+1),
(as+1,b.s-1) (a-»0,by:2). We get a contradiction since

(ar-—1) (b-+)+(a+1) (by~1) = aib,+ta-b-+by~b-ta-—~a,~-2
aibi+a-be-+1,

Finally, assume that there are no unsaturated pairs in
an M-extremal sequence. If no exceptional pair is present,
then all pairs are saturated, r=s and the sequence is in
form (ii) by claim 3. Assume there is exactly one except-
ional pair. By symmetry we can choose it as (0,c). 8Since
mzl, there exist other pairs. Let (a,,b.) be any such
pair. Obviously (ai,bs) is satuwrated and a.x0. Now we
change the pairs (0yc), (&, ,bs) to (O,c-M+1), (1,M-1),
(as—1,bs). If by < M-1, the aib, < 1M-L)+(a:~-1)b. and we
reach a contradiction. Therefore by= M-1, i.e. the M-
extremal sequence has form (iv).‘ '

Froof of Theorem 2.1 Let c(6) denote the maximal number of

vertices in a connected component of G. To prove the first
part of the Theorem, we have to show:

If c(B) < [(m+n)/s7, then [EMG) ] < [mn/s1, equivalently: if
G is M-extremal, sM < m+n, then s|EM@G | < mn. Consider M
as fixed. It swffices to prove s|EWMG | < mn for the maximal

,

number s satisfying sM < m+n, i.e. for s=r-1.
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In case (1) of Lemma 2.9 we have to show
(r-1)ab+ (r-ta+(rFr=1) (F=2=t)b < rab+rat+rb (F-2-0) +L (F-2-1) ,
equivalently =—a(t+rb) « (t+b) (r-2-t), which is clearly true.
In case (ii) we have to show (r-D)rab+(r-1)ta+(r—1)
(F=t)bh < r= ab+ﬁat+rb(r~t)+t(r»t), equivalently =-a(t+rb) <
(t+h) (r-t)y, true like before.
In case (iii) we have to show (r—1)®ab+(r—1)at+
(1) (==t ) b+ (1) a;bw 4 {r-10F abt{(r~1)a(t+b.)+
(F—1)b (Fr=1=-t+a,)+(t+b.) (r—-l-t+a-), equivalently (r-1)a-b. <
(r=1) ab-+(r=1)ba~+(t+be) (r=1-t+ar-).
The inequality is true as either a-3 a or b.ib.
In case (iv) by symmetry we have to consider only the first case.

",

As m+n > (m+1)M, we can choose s:@m+l. We have to prove,
that s(M-1) < n if sM < m+n. This is true as mis.

Let us proceed to the proof of the second part of
Theorem 2.1. Let s €{2,3,4), 6 an M-extremal graph, M <
fm/s7 + In/g7. We have to show s|E(G) | < mn. EBecause of
the first part of the theorem, it suwffices to consider
the case m=sx+l, n=ay+l, M=x+y+l. Then m+n=sM+2-s. As
24544 we get s=r. We inspect the cases of Lemma 2.5.

(i) As min=gM-A=sM+2-85, it follows s=4. Further
m=4a+2-t=4x+1, n=4b+t=4y+1l, hence a=x, b=y, t=1l. Thus
41E(B) |=1bry+4nu+4y=mn—1.
(ii) m+n=aM, thus s=2, The eguations for m and n vield a=u,
b=y, t=1, thus 2JE(G) | = 4xy+2x+2y=mn—1.
(iii) mtn=(s~-1)Mra-+b,.=gM+2~-s < sM, thus M+I-s=a.+h.- < M, s€
{3,4}. We have n=(g-1)b+t+b.=sb+t+b.-~b 4 sb+t+1l 2 s(b+l).
It follows bry. The equations for m vield am. As
M=a+b+1l=x+y+l, wae get a=x, b=y. The equations for m and n
now (%) bem=y+i-t, aes=xttrl-s,
We have to show the validity of the Fﬁllowing inequality:
% JE(G) | = sl{s—-1)xy+stuts(s—1l-t)y+sar-b- 4 8% xytsu+sy+l,
after simplification -—sxy+s(t-1)u+s(s~2-t)y+sa-b- * 1.
This is emguivalent to =uy+t~l+(s-2-t)y+a.b. < 0O,
We substitute () for a-,b.. It remains to show

(t=1) {s~2-t) 20.
This is true as either til or t+234:s. |

(iv) We have to consider only the first case. The
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equations for m+n yield sim. We have to show sIE(BG) ]| =
sm(M-1) < mn, equivalently s(M~1) < n=m(M-1)+bm+:, which is
obviously true.

3. Values of f(n,k) for 3 4 k < 5.

In this éection we prove Theorem 1.16-1.18. The notation
[A,B] is used for the complete bipartite graph with vertesx
classes A and B. In the cases n=(k-1)p our Corollary 1.14
doss the job., In order to prove £ (4p+2,9) » 1ép+é we invoke
Theoraem 1.3 and use w={(4) £ 10. Indeed, the affine plane of

arder has a 2-transversal of the following types:

0
C%\\‘*CL\qD

The remaining lower bounds follow from Corollaries 1.7, 1.8.
We have to prove the upper bounds for f((k-1)p+j,k)
(h=3,4,%;j=1,...,k=2). A ((k=D)p+j,k)—coloring of the
appropriate complete graph K has to be considered. We
want to derive a contradiction. Let us proceed inductively,
starting from small values of k and j. As f{((k-1)p+i~-1,k)
ig small enough by induction, we can assume that ther
exists a red connected subgraph R of K on (k-1)p+j
vertices. By definition of an (n,k)-coloring, there are
no red edges in [R,K~-R1. Thus [R,k~R]1 is colored with k-1
colors. If (k,3) €(3,1),(4,1),(5,1),(5,2)3 we get a
condradiction by Corollary 2.3, 0Only two cases remain.
Consider the case k=4,j=Z. We have |R|= 3p+2, |E~-R]| =
ép+3. Let H be a (Zp+2)-extremal bipartite graph with
m=3p+2,n=6p+3F. An easy inspection shows that only case
(iii) of Lemma 2.9 occurs. The unigue extremal sequence
is (p+1,2p+1), (p+1,2p+l1), (p,2p+l). Further [|EH]| =
(2p+1) (Zp+2) = |E(LR,k-R1) | /5.

This shows, that G has blue connected components of
cardinalities 3p+2,35p+2,3p+1. Let R be the blue component
of cardinality 3p+1. Then Corollary,2.3 applied to L[B,K~-E]
yields a condradiction.
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Finally consider the case k=3, j=3.
We have |R| = 4p+3, |E-R| = 12p+7. A (4p+3) -extremal
bipartite graph with m=4p+3,n=12p+7 has 12p= +lbép+s =
CIE(IR,E-R1) | +2)/4 edges. As L[R,E-R] is colored with four
colors, one of them, say green leads to a (4p+3)- entremal
green graph on [R,FE~-R1. 0Only type (iii) of Lemma 2.5 occurs
and the green subgraph of [R,K~R] is defined by the sequence
three times (p+1,3p+2), once (p,3p+l).

Thus the green subgraph of K has four components Giy«..y0a
of the following cardinalities: Gy | = 4p+3 (i=1,2,3),
|Ga l=4p+1. Let S=61V Bm,T=6=\" Ba. Then [S5,T1 is 4-
colored. This time Lemma 2.5 yields equality, i.e. a
(4p+3) ~extremal subgraph has Z(2p+1) (4p+3)=| E(LS5,T1) |/4
edges. Thus all non—-green monochromatic subgraphs of [(5,T]
are (4p+3)-extremal. Type (i) of Lemma 2.9 does not occur
as this would yield a calor with components Ci.w.yCa of
sizes | Cal=| Czl = 4p+3, IC=| = |Cal = 4p+2, and
Corollary 2.3 would produce monachromatic connected sub-
graphs on at least 4p+4 vertices of [Ci;WCx,CalCal,
condradiction. Hence only type (iii) occurs, and every
non-green monochromatic component of [8,T) is given by one
of the sequences:
(o) In (2p+2,2p+1) or () 1x (2p+1,2p+2)

1 (2p,2p+1) 2 (2p+d, 2pt+l)

1 (2p+1,2p)
Thus every complete monochromatic subgraph of K has four
components, three of size 4p+3, one of size 4pt+l.
Let o be a non-green color of type (o). Then the number
of c-colored edges of [G.,62] is & 3(p+1)®+p® = 4p= + bp+3
of [Bx,6al is & 4p(p+1)=4p= + 4p.

If « has type (8), then the number éf c~colored edges

of [G1,6=]1 is 4 Z2(p+1)=+2p (p+1)=4p=+b6p+2

of [Bz,64] is £ (p+1)=+2p(p+1)+p==4p=+4p+1.
As |E(LB:,B=1) | = 16p©+24p+9, |E(LG=,G41) | = 16p@+16p+3,
we get the following properties:
(i) Type (8) occurs three times, type (o) occurs once.
(ii) If FeG,, Re€Ge (or FEG=z, (€6a), amd if P and @ are in

the same c~component, then the edge FRE is colored c.
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(iii) If 6 is a green and H is a c—component, then

16 HI e{p,p+ld.
Let ws fix notation: the colows are 1,2,3,4,5. Write
c(PM =i if FR.is colored i, write F 30 if F and 0 are in
the same i-component. As we could have started from any
color instead of green and from any pairing of its
components, and as we could have compared with any color
instead of ¢, we get
(*) If PHQ, P ¥ 0, then c(F=i, equivalently:
For any pair P, of distinct vertices, c(F@)=j, one of the
following holds: either P ¥ 0 for every color i, or

F Y G only for the color i=j.

Thus we get an equivalence relation ~ on K defined by F ~ @
if and only if F 0 for every color i.
This relation has 1é equivalence-classes. By (ii) the
coloring of K  induces a coloring of K/~ Lef H be the
hypergraph with K/~ as vertex set and the monochromatic
components of K/~ as edges. Clearly H is the affine plane
of order 4. By (iii) every equivalence class has p or p+1t
elements of K. Let B={R|Re¢k/~, |Bl=p). It is obvious, that
|IBl=6 and that B is a l-transversal (an affine blocking set’

in H. This contradicts [31.
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