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ABSTRACT 

An Cn,k)-color-ing of a complete gr-aph K means a 

coloring of the edges of K with k color-s so that all 

monochr-omatic connected subgr-aphs have at most n vertices. 

We ar-e interested in the maximum number- of ver-tices of 

complete gr-aphs with (n,k)-colorings. We survey r-esults 

concerning this problem and give some new r-esults which lead 

to the complete solution for- k~5. 

0. Introduction. 

Let fCh,k> denote the smallest integer m=m<n,k) 

with the following pr-oper-ty: if the edges of Km ar-e 

col~r-ed with k colors then ther-e exists a monochromatic 

connecte~ subgr-aph of more than n vertices. The function 

fCn,k> has been introduced in C12J and fCn,3> was deter-

mined in C12J and ClJ. The obser-vation fCn,2>=n+l is 

equivalent with a r-emar-k of Er-dos and Rado saying that for

any gr-aph G, either- G or- its complement is connected. The 

second author- has further- r-esults on fCn,k) in C13J. The 

pr-oblem of deter-mining fCn,k> was r-ediscover-ed by the 

first author- and Br-andis in C3J. 

Fr-om the point of view of Ramsey theory, fCn,k)-1 is a 

lower- bound for- the Ramsey number- RCTn,k) wher-e Tn is any 

tr-ee of n edges. Bounds on RCTn,~> have been studied in 

C lOJ. 

We shall use the term Cn,k)-color-ing introduced by 

Bier-bauer- and Brandis in C3J. An Cn,k>-color-ing is a color-

ing of the edges of a complete graph with k color-s 

so that all connected monochromatic subgraphs have at most 
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n vertices. The function f(n,k>-1 clearly give the 

largest number of verices of a complete graph which has an 

<n,k>-coloring. 

An (n,k>-coloring can be viewed as k partitions of a 

ground set· into sets of cardinality at most n, so that all 

pairs of elements appear together is some of the sets. Thus 

resolvable block des,igns with ).=1, k parallel classes and 

with blocksize n are natural examples of Cn,k>-colorings. 

However, <n,k>- colorings are much more "relaxed 11 

strLictures: the "blocks" may have any sizes up to n and the 

pairs of the ground set appear together in at least one 

block. In extremal <n,k>-colorings, i.e. in <n,k)-colorings 

of complete graphs of f(n,k)-1 vertices, the structure of 

connected monochromatic components is often close to the 

block structure of resolvable block designs. 

In section 2 we review results on f(n,k) and present 

some new results. 

We give a new lower bound of f(n,k>: 

f <n,k> ><k-1> 2 (p+l>-w:~. <k-1> 

if n=<k-1)p+k-1-i, O<i~k-1, arid an affine plane of order 

k-1 exists <Theorem 1.5). Here W:1. (q) · denotes the minimum 

number of point.-:> of an affine plane Aq of order q 

which meet every line of Aq in at least points. The 

minimum is taken over all affine planes of order q. The 

bound is always sharp for 3~k~5 <see Theorems 

1.16,1.17,1.18>. If we compare this lower bound with the 

upper bound of n<k-1)+1 <Theorem 1.1), we see that for 

fixed k the function f<n,k>-n<k-1) is smaller than a 

function depending only on k. It is unknown whether a 

similar statement holds if no affine plane of order k-1 

exists <Problem 1.15). The main res~lts of the paper are 

prepared in section 2, where a method is described to get an 

upper bound of f<n,k>. The upper bound n<k-1)+1 <Theorem 

1.1) comes from a joint result of J. Lehel and the second 

author: if the edges of a complete bipartite graph Km.n are 

colored with s colours then there exists a monochromatic 

connected subgraph of at least r<m+n}/sl vertices 

(Corollary 2.2). Our main concern is to push this method to 
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its limit, i.e. to prove that Km.n contains a monochromatic 

connected subgraph of at least rm/sl+rn/sl vertices in 

every s-coloring (Conjecture 2.4). We can prove this for 

2isi4 <Corollary 2.3), which gives an essential part in 

determining f<n,k) for 3~k~5. 

In section 2 the properties of M-extremal graphs play 

an important role. Fqr fixed m,n, we call a bipartite 

graph G M-extremal if the vertex classes of G contain m 

and n vertices, the connected components of G have at 

most M vertices and G has as many edges as possible under 

these conditions. The important properties of M-extremal 

graphs are summarized in Lemma 2.5. The main application of 

M-extremal graphs is the following Theorem <Theorem 2.1>. 

If G is a bipartite graph with m and n vertices in its 

colour classes and G has at least rmn/sl edges, then G 

contains a connected component of at least r (m+n) /s 1 

vertices. Moreover, if 2~s~4 then G contains a connected 

component of at least rm/sl + rn/sl vertices. 

In section 3 we apply our methods to determine f<n,k) 

for 3::;;k ::;;5: 

{

4p+1 if n=2p 

f <n,3) = 

4p+2 if n=2p+1 

f<n,4l= J :::~ :: ~=~:+1 
l9p+5 if n=3p+2 

f ( n, 5):::: l ~ :: :~ 
16p +7 

16p+10 

if n=4p 

if n=4p+1 

if n=4p+2 

if n=4+3 

The authors recently learned that f<n,4) have been 

determined independently by Bialostocki and Dierker. 

1 • _8_~§.bLL"t?__9JJ_ f ( n , k ) • 

In this section we survey results concerning f<n,k) 

and present some new results. We start with upper bounds. 

Theorem 1.1. ( r: 13 J) f<n,k>i<k-1>n+1. l 

We note that Theorem 1.1 immediately follows from the 

following result of J. Lehel and the second author: if the 

edges of a complete bipartite graph G are colored with 

k-1 colors then G contains a monochromatic connected 
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subgrAph of At least fiV<G> ll<k-1>1 vertices. This result 

appears in section 2 as Corollary 2.2. Another proof of 

Theorem 1.1 is obtained if we consider the following 

hypergraph H, determined by an <n,k)-coloring of a 

complete g~aph K. The vertices of H are the vertices 

of K and the edges of H are the vertex sets of the 

connected monochromatic components of K. The dual 

hyper-graph H* of H is a k-partite intersecting 

hypergraph (every two edges of H* have at least one 

common vertex>. A result of Furedi <C11J) says that a k

uniform intersecting hypergraph H has a vertex of degree 

at least fiE<H> ll<k-1>1, unless H is a projective plane of 

order k-1. Since a k-partite hypergraph is never a 

projective plane, H* contains a vertex of degree at 

least fiE<H*) ll<k-1>1 which implies that H contains 

an edge with at least fiV<H> ll<k-1>1 vertices and Theorem 

1.1 follows. 

The following uppe~ bound is due to the first author and 

BrAndi sa 

Theorem 1.2 (C3J). Assume k s K<mod n>, 2~ K <nand let 

~=<k-K)I(k-1). If 4K > 3n+~ -(\n(n+B-'-2~)- ~<s-~>)'Athen 
f <n,k> S: <k-l>n -<k-K>tl. Otherwise 

f ( n , k > ::;: l k < n -1 > + 1 I 2- (n < K- ~ > - K o:::-~- 1 > - < ~ -1 I 4 ~ I/~ J -+ 1 

The cases not covered by Theorem 1.2 are covered by the 

following two results. 

Theorem 1.3 (C3J). If n 2:2, 1<k=1 (mod n>, then 

f <n, k) ::;;k <n-1 > +2. 

Equality holds iff a resolvable block design exists with 

~=1, block size n and replication k. 

Theorem 1.4 ((3J). If ksO(mod n), then 

f<n,k> ::.:; k<n-1>+1, 

And for n>2, f<n,n> S: n<n-1>. 

For comparison~ it is easy to see that for n>k2:2, Theorem 

1.1 is better than Theorem 1.2. 

1.4 Are better than Theorem 1.1. 

If n::;;k then Theorems 1.2-

Concerning lower bounds of f<n,k), first we give a 

construction which uses the existence of an affine plane of 

order k-1. The lower bound is close to the upper bound of 
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Theorem 1.1 and for k=3,4,5 it gives the exact value of 

f<n,k). Let Aq denote an affine plane of order q and 

let Xi, •.• ,Xq+1 be the ideal points of Aq. Assume that we 

have a complete .graph K whose vertex set is partitioned 

into q 2 p~rts, S1,B2, ••• ,Sq2• Consider a one-to-one 

mapping between the points of Aq and the sets 51, ••• ,5q2• 

We color an edge PQ ~f K with color kif P£51,Q£5~,i+J 

and the points corresponding to 51 and 5~ in Aq 

determine a line containing Xk. The. edges of K whose 

endpoints belong to the same set 51 may be colored 

arbitrarily. The colorings of complete graphs obtained by 

this method are called OPL~~l (q+1)-colorings. Note that 

normal (q+1)-colorings are defined only for those values of 

q for which an affine plane of order q exists. 

An i-transversal of an affine plane Aq is a set of 

points in 

points. 

A<=~ which 

Let W1 (Aq) 

meet every line of Aq in at least 

denote the minimum cardinality of an 

i-transversal of Aq and let W1 (q) be min w1CAq>, where 

the minimum is taken over all affine planes of order q. 

The following Theorem gives a lower bound for f<n,k> in 

terms of w1Ck-1). 

Th§LQ..!:.£!11__!..!'....2.'!.. Assume that an affine plane of order k-1 

exists, let n=Ck-1)p+k-1-i, where O<i~k-1. Then 

f < n , k ) > ( k -1 ) 2 
( p + 1 ) -w 1 0::-1 ) • 

Proof. Let A~.=-·1 be an affine plane of order k-1 possess 

-ing an i-transversal T of W1 <k-1) elements. Let 

m=<k-1) 2 (p+1)-w1 Ck-1> and consider a normal k-coloring of Km, 

where we associate a set of p elements to the points of T 

a~d we associate a set of p+1 elements to the points out

side T. By the definition of the normrl coloring and the 

i-transversal, a monochromatic connected component of Km 
has at most pi+Ck-1-i) Cp+l)=n vertices. Thus we have an 

Cn,k)-coloring on Km and the theorem follows. 

Cq_r...Q.J~.€-iCY~ If an affine plane of order k-1 exists, then 

f ( Ck-l>p,k) ><k-1> 2 p for all pi;l. 

This follows as Wk-1<k-1>=<k-1) 2
• Another easy application 

of Theorem 1.5 occurs if i=k-2. Now ~k-2(k-1>=Ck-1) 2-1 is 

obvious which yields 
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Corell ary 1. 7. 

then 

If an affine plane of order k-1 exists, 

f ( ( k -1 ) p + 1 ' k) > ( k -1 ) 2 p + 1 • 

We observe that W1Ck-1)~ 2k-3 since two intersecting lines 

of Ak-1 ·giv~ a !-transversal. Thus we have 

Corollary 1.8. If an affine plane of order k-1 exists, 

then 

f((k-1)p+k-2,k))(k-1) 2 p+(k-2) 2 • 

A fundamental result of Jamison's ([7J) implies that 

!-transversals (also called 11 affine blocking sets 11
) in 

desarguesian Aq have at least 2q-1 points. It is how

ever possible to obtain !-transversals of smaller size in 

other affine planes. Bruen and de Resmini ([8J) use the 

Hughes plane of order 9 to show W1C9) ~16. 

Corollary 1.9. f(9p+8,10))81p+65. 

We note that Corollary 1.6 is sharp for all k and 

corollary 1.7 is sharp for k=3,4,5. 

A resolvable BIBD with blocks of cardinality n, with 

~=1 and with k parallel classes is clearly suitable to 

define an <n,k>-coloring. In this case we have k<n-1)+1 

points. If we substitute t points for all points of this 

design, an <nt,k>-coloring can be defined on t<k<n-1)+1) 

vertices in analogy to normal colorings. Thus we have 

Proposition 1.10. If a resolvable BIBD exists with blocks 

of cardinality n, with ~=1 and with k parallel class~s 

then 

f ( n t , k ) >t < k ( n -1 ) + 1 ) 

An example for the application of Proposition 1.10 is the 

case t=1,n=4,k=9. Now f<4,9)=29 follows from Theorem 1.3 

and Proposition 1.10. This example is taken from [3J. As 

there are resolvable BIBD with bloc~ size 4, with ~=1 and 

replication 4t+1 Ct~l) <see C17,18J>, we get 

f(4a,4t+l>>a<12t+4) (a~1,tl1>. 

We obtain a general lower bound. 

Corollary 1.11. f<n,k>><n-3)(3~c-8)/4. 

The following generalizes a result of [3J, which in 

turn relies upon a construction of L~nstrom in C16J: 

Proposition 1.12. If f(ap,ka>>kp and if there is a set of 
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a-1 mutually orthogonal latin squares of order k, then 

f (ap,ko+k) )c."\p~::. 

As there is a set of five mutually orthogonal latin squares 

of order 12 <C5,9J) and f(6p,3))12p <Theorem 1.16 below) we 

get f(6p,15))7~p. 

Applications of Proposition 1.12 in case p=1 are 

given in C3J. For instance f(4,10+28 t 4..i)>16·4:1. ..... 1 (i;;;:O> 
0 

can be derived by repeated applications of Proposition 1.12 

with u=16·4:~.. Theorem 1.2 implies that the lower bound is 

sharp. The comparison of the upper bound of Theorem 1.1 and 

the lower bound of Theorem 1.5 shows that n<k-1) is close 

to f<n,k) for large n and fixed k. 

!;_g_rollary l.L3. If an affine plane of order k-1 exists, 

then 

f ( n ' k) -n ( k -1 ) -1 iw :1. ( k -1 ) - ( k -1 ) i ::;: o~ -1 ) i ' 

for n=(k-1>p+k-1-i, O<i::;:k-1. 

In particLilar, if i=k-1 then w:~. (k-l)=(k-1) 2 

Coroll§LY~~~ If an affine plane of order 

then 

f((k-1)p,k>=p(k-1) 2 +1. 

and we get 

k-1 e:·:ists, 

It would be interesting to get rid of the existe~ce problem 

of affine planes of order k-1 in a lower bound clo~e to 

n(k-1) for large n. We have the following problem. 

Pro_l;l_~_elu_t!!... . .tQ..~- It is true that f(n,~d-n(k-1) is less than 

a function depending only on k ? 

Now we consider f(n,k) for small values of k. An 

old remark of Erdos and Radc says that a graph or its 

complement is connected. Thus f(n,2)=n+1. The case k=3 

has been settled in C12J and C1J. A new proof is given in 

section 3 based on results of section 2. 

Th_@.!:.§"£.!!LJ-!'_t~-

{

4p+1 if 

f(n,3) = 

4p+2 if 

The following two Theorems are the 

n=2p 

n=2p+1. 

main new results of this 

paper. The proofs are in section 3. 
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f Cn ,4) 

Concerning the values 

following observation 

E'r_QQ...9..?_Lt.J_g_o. __ t~_1~...!-

f <2, k) 

of 

is 

{ 

{ 9p+l if n=3p 

9p+2 if n=3p+1 

9p+5 if n=3p+2 

{ 16p+1 
if m=4p 

16p+2 if n=4p+1 

16p+7 if n=4p+2 

16p+10 if n=4p+~3 

f Cn, k) for small values of n, 

in C3J. 

k+2 if k is odd 

k+l if k is even 

The case n=3 is also completely solved. The following 

results is in [3J. 

Th_g.m::._€?~60. 

l 
2k+2 if k - (mod 3) 

f <3, k) 
lmotA ~) Zk i~ k - 1 

the 

We note that theorem 1.20 follows by combining the upper 

bound of Theorem 1.2 with the lower bound of Proposition 

1.10 and using the existence theorem of D.K. Ray-Chauchuri, 

R.M. Wilson en resolvable triple systems CC17J). For n=3 

and k~O(mod 3), it is easy to see that f(3,k) is either 2k 

or 2k+1. It is easy to prove that fC3,3)=6 <see C3J). Zs. 
Tuza discovered a <3,6) coloring of K12 <4 color classes are 

4K3, one color class is K3 + 3K1.2 and one color class is 

This construction sh~ws that fC3,6)=13. The 

first author used a certain Steiner triple system on 19 

points to show fC3,9)=19 CC4J). If k=<) <mod 3) and k 2:9, 

there exist C3,k)-colorings of K2k such that all but one 

color classes are isomorphic to 2k/3 K3 and the exceptional 

color class is isomorphic to k K2. Such colorings are 

called Nearly Kirkman Triple Systems and their existence 

have been proved in a series of papers CC15J) ,C2J,C6J,[19J 

in chronological order). The authors are grateful to 
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Professor Rosa for this information. Therefore the following 

theorem hc)l ds. 

Th ~~J2L§ll.!Ll• ~1 

fC:3,k) 
{ 

6 if k""•3 

2k+1 if k26 and k:r:O (mod 3). 

2 • tj_::§l_!:Lt..r~I!!~~ .. L_I:?_1P.i:'r t. .. Lt~. __ g..r .. ~.Ph~-~-

Let BCm,n) denote the set of bipartite graphs with 

vertex classes of cardinality m and n. We shall always 

assume that m,n;;::1. The purpose of ths section is to prove 

the f oll cJwi ng 

Th~.Q.r.::.§t.!!L._~ ..... t.~- Assume GE:B(m,n) and G has at least fmn/sl 

edges for some positive integer s. Then G contains a 

connected component of at least r<m+n)/sl vertices. 

Moreover, if 2~s~4 then G contains a connected component 

of at least fm/sl + rn/sl vertices. 

The first part of Theorem 2.1 gives a joint result of 

the second author with J. Lehel: 

If the edges of Km.n are colored 

with s colors, then there exists a monochromatic 

connected subgraph of at least r<m+n)/sl vertices. 

The second part of Theorem 2.1 implies 

Cor..Q.lL~_y---~!...~ If the edg€~S of ~<"'. n are col cJred with s 

colors and 2~s~4, then there exists a monochromatic 

connected subgraph of at least fm/sl + fn/sl vertices. 

We conjecture, that Corollary 2.3 holds for every s. 

Co~c;_.t:.~.§' 2 ...... 'L... If the edges o·f ~·~m. n are colored with s 

colors, then there exists a monochromatic subgraph of at 

least fm/sl + fn/sl vertices. 

It is worth noting, that conject~re 2.4 cannot be 

obtained from a density result since the second part of 

Theorem 2.1 is not true for sz5. To see this for s=5, let 

m=5p+l, n=20p+1. Now 2Kp.4p+1+2Kp+1 0 4p+Kp-1.4p-1 has 

rmn/51 edges, but its components have at most 5p+1=~/5l + 

fn/51 -1 vertices. 

It is convenient to introduce at this point the notion 

of M-extremal bipartite graphs. We shall always assume that 

M is an integer, M>2. A graph GE:BCm,n) is called 
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M-e:.;_'l;r._€ill.)~t if every connected component o·f G has at most 

M vertices and G has the largest number of edges under this 

condition. It is clear, that an M-extremal bipartite graph 

is the union of disjoint complete bipartite graphs and 

possibly some isolated vertices in one of the vertex 

·classes. If we acc~pt K=.t and Kt.= for t~1 as 

degenerat& complete,bipartite graphs, then an M-extremal 

graph of BCm,n) is the vertex-disjoint union of 

~~a 1 • b 1, K ... .a • ~ , •••• K ... ,. . t-',.' wh~i?re the numbers a:~. , b:t. are 

hon~negative integers, at most one of them can be zero, and 

they satisfy 

(1) a:~.+a2+ ••• +a.-=m, b:~.+b2+ ••• b.-=n and a:~.+b:t. ~ M for 

all such that l~i~r and a:~.b:~.+O. 

Thus the description of M-extremal members of B<m,n) 

is equivalent with finding values of r and for the pairs 
T 

<a:~.,bd SLtch that (1) is satisfied and E = f a:~.b:t. is 

maximum. Such a sequence is also called M-extremal. 

M-extremal sequences (or M-extremal bripartite graphs) 

are not necessarily unique, for instance if m=4,n=6,M=4, 

the the following seqLtence define M-extremal graphs: 

(2 '2) ' ( 1 '2) '(1 '2); (2' 2) ' (2 '2)' ((l' 2); (2' 2)' ( 1 '3)' (1' 1). 

bE.!!!.ffi.€:L6_.'!-~.!'.- Let m, n, M be fixed, M>2, r= r Cm+n) /Ml, and 1 et 

' {(a:~.,b:~.> li=1,2, .. ,s}- be an 1"1-e:·:tremal sequence, E=r a:~.b~.· 

Then one of the following holds: 

(i) a=a:~.=am- ••• =at, a+l=at+:t.= ••• =ar-2, a=ar-:~.=ar 

b+1=b:~.=b2=•••=bt, b=bt~l=•••=b..--z, b=br-:t.=b.-, 

m=ra+r-2-t, n=rb+t, m+n~rM-2, E=rab+ta+b(r-2-t>, r=s. 

(ii) a=a:~.=a2= ••• =at, a+1=at+:t.= ••• =ar 

b+1=b:~.=bm= ••• =bt, b=bt•:t.=•••=br 

m=ra+r-t, n=rb+t, m+n=rM, E=rab~ta+Cr-t)b, r=s. 

( i i i ) 

where c:~r+br· < M, a:~. :;:: ar·, b:~. :;:: b.- for all i, 1 ~i ~ r-1, 

m=Cr-l)a+r-1-t+a,..., n=Cr-l)b+t+br, m+n=Cr-1)M+ar+b.- < rM, 

E=Cr-l>ab+ta+Cr-1-t)b+a,...b,..., s=r., 
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l=b1=b2= ••• ~b"' bn•i=U, M-1=ai=a2= ••• =an, an•i > M, 

E== ( M-· 1) Min ( m, n) • 

Here t,a,b are non-negative integers, a+b+l=M. 

We note that M-extremal sequences in forms (i), (ii) and 

( i v) may occur only for SpEH:i al choices of m,n,M. It is 

easy to ct1.eck, that M mLlSt be a divisor of m+n+2 if (i) 

occur·s, M mLlS5t divide m+n if ( i i ) occ:L.lrs. Form ( i v) 

appears if eitt1ew n > <m+U (1'1 .. -1>+1 or m > (n+U <M-U + 

holds. 

A p t:\ i r· < a :1. , b :1. > i s ~l:L!;;J~.P. .. ~~-L!;HJ.~1.. i f 

a:~.+b:~. > M. Clearly a:1. or b:~. is zero for an exceptional pair. 

QJ, __ §.j_rn.._!_. If Ca:~.,bd ar1d (a,j,b,j) are unsaturated, then a:~.=a.J, 

b:~.=b..1 and a:~.+b:~.=M-1. 

I·f eh < a..1 1\.':\nd b:t. 2: b..1 then b:1. =1=0 and then pairs 

(a;. ,b:t.), Ca..1 ,b,j) can be changed into (a:~. ,b:~.-1>, (a_.1 ,b..1+U and 

the value of E increases by this change, contradiction. If 

Assume that a:1. =t=l). Now 

E. The case b,L ::f:O is symmetric. If 

a:~.+b:t. < M-1, then our pairs can be changed to Ca:~.-l,bs-1), 

The claim is proved. 

other pairs are saturated. 

Assume there is an unsaturated pair (ap,bp). Using 

Now the 

three <A,B>-pairs can be changed to CA+1,B), <A,B+l), <A-1,8-1) 

CAB::f:O) and E increases. An exceptional pair (c,O) can not 

occLlf" as otherwi ~se ( c, 0) , (a:~. , b :1.) can ~b~:? changed to 

<c-1 ,C>>, (a:~.+1 ,b:~. >. 

1+2=M+1 which contradicts (1) ... If we change our pairs to 

Ca:~.-1 ,b:~.+U, <a.j+1 ,b,j-1), th~:m E incr·ea~es since Ca:~.-1> 

(b:l. + 1) + ( a,j +1) (b,j-1) = as bi +a,jb .J +c:\:1, -a,j+b,j-bi -2 ::::a :I. b;. +a.jb,j+ 1. 

The claim is proved. 
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To continue with the proof of Lemma 2.5, assume that 

there are two unsaturated pairs in an M-extremal sequence. 

Claim 1 ensures, that both pairs are in the form Ca,b) where 

a+b=M-1. If <~~,b~) is any other pair then a,+b~=M by claim 

2. Clec:o~.rly at:l=I=O and claim 3 implies a~=a or a~=a+l. Now 

we have our M-extremal sequence in form (i), where t denotes 

the number of indic~s for which a~=a and <a~,b~) is 

saturated. Since m+n=sM-2, r=s follows. 

Assume that a M-extremal sequence contains exactly one 

unsaturated pair, (aR,bw>• All other pairs are saturated 

since an exceptional pair (a,,O) would allow the changes 

(a,-1,0), Caw+1,bu) contradicting theM-extremal property. 

It is obvious that r=s. In order to see that our 

sequence is in form (iii), we have to prove asla. and 

b~:;:;b ... for all i, l::;:i::;:r-1. Assume c\\i <a,.... Then bs2b,...+2 

since ca~,b,) is saturated and Ca,...,b,...) is unsaturated. We 

can change the pair·s (aj. ,bj.), Car- ,b,....) to (a,...-1 ,b.-+1), 

<a~+1 ,b~-1) (a,...>O,b~22). We get a contradiction since 

Ca,...-1> Cb,...+U+<a~+U Cb,-1) a~b~+a..-b,....+b~-b .... +a,....-c::h-2 l 

a~b~+a..-b,....+1. 

Finally, assume that there are no unsaturated pairs in 

an M-extremal sequence. If no exceptional pair is present, 

then all pairs are saturated, r•s and the sequence is in 

form Cii) by claim 3. Assume there is exactly one except

ional pair. By symmetry we can choose it as <D,c>. Since 

mll, there exist other pairs. Let (a~,b~> be any such 

pair. Obviously (a,,b~) is saturated and a~>o. Now we 

c:hangf-:? tht-'? pc.dn:s <O,c), (a,,. ,bd to CO,c·-lvl+l>, (l,M-1>, 

(a~-l,bs). If b~ < M-1, the a~bs < 1<M-1)+(a~-1)bs and we 

reach a contradiction. Therefore b\= M-1, i.e. theM

extremal sequence has form Civ). 

P r QQ:f._Q..f.....TtL~_o..r:..g~J!L.~.!'..J.. Let c (G) d €'-:l note t t·1 e rna:·: i me:\ l number of 

vertices in a connected component of G. To prove the first 

part of the Theorem, we have to show: 

If c(G) < r<m+n)/sl, then IECG> I< rmn/sl, equivalently: if 

G isM-extremal, sM < m+n, then siECG) I < mn. Consider M 

as fixed. It suffices to prove siECG) 1 < mn for the maximal 

number s satisfying sM < m+n, i.e. for s=r-1. 
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In case (i) of Lemma 2.5 we have to show 

<r·-t) c:~b+ (r··-1) ta+ <r-1) (r~<:~-·t> b < r:.o~i:.,b+r••~·l:.+r·tJ <r- .. -2·-·'l:) +t <r·-2-t>, 

eqt.li Vii.d. t'?nt 1 y -.::\ ( t+r-b) < <t+b) ( r···<;;~--·t) , wh i c:h is c 1 ee:'\r'l y tr-Lle. 

In case (ii) we have to shew (r--1)rab+Cr-1)'l:a+(r-1) 

Cr--t)b < r- 2 ab+rat+rb<r-t>+t<r-t), equivalently -a<t+r-b) < 
( t·+·b) ( r·-t ). , tr·ue 1 i kr.~ be·for-e. 

In case (iii) we have tc show Cr--1) 2 ab+(r--1)at+ 

( r·-1) ( r·-1-t) b+ ( r-·-1) a,... b.- < ( r·-1) 2 c.~b·H I'" ·-1) a ( t+b,..- H· 

(r--1) b Cr--·1-.. t+a,...) + <t+b,...) <r··-1·-t+a,..-), eqLli val er1tl y <r- .... ·1) a,...b,... < 
( r- ·-1 ) ab .... + ( r -1 ) b a..-+ ( t +b ,..- ) < r- -1- t +a,..-) • 

The inequality is tr-ue as either- a .... ~ a or br~b. 
In case <iv) by symmetr-y we have to consider- only the fir-st case. 

As m+n > (m+l>M, we can choose s~m+l. We have to pr-ove, 

that s<M-1) < n if sM < m+n. This is tr-ue as m<s. 

Let us pr-oceed to the pr-oof of the second par-t of 

Theor-em 2.1. Le-t: s €{2,3,4}, G an M-e:-: t r-em a 1 gr-aph, M < 
rm/s 1 + rn I=! 1. We have to show siECG) I < mn. Because of 
the fir-st part of the theorem, it suffices to consider-

the case m=sx+1, n=sy+1, M=x+y+1. Then m+n=sM+2-s. 

2~s~4 we get s=r-. We inspect the cases of Lemma 2.5. 

(i) As m+n=sM-2=sM+2-s, it follows s=4. FLlr-ther· 

m=4a+2-t=4x+1, n=4b+t=4y+1, hence a=x, b=y, t=l. Thus 

41ECG) 1:16xy+4x+4y=mn-1. 

As 

(ii) m+n=sM, thus s=2. The equations for-m and n yield a=x, 

b=y, t=1, thus 21E<G> I = 4xy+2x+2y=mn-1~ 
(iii) m+n=~s~l)M+a..-+b..-=sM+2-s < sM, thus M+2-s=a..-+b..- < M, s£ 

{3,4}. We have n=<s-l)b+t+b..-=sb+t+b,...-b ~ sb+t+1 ~ s(b+1). 

It follows b~y. The equations for- m yield a~x. As 

M=a+b+1=x+y+1, we get a=x, b=y. The equations for- m and n 

now ('*·) 

We have to show the validity of the fdllowing inequality: 

~:;IE (G) I = s (s-1) :·:y+st:·:+s (s-1-t) y+sa,...b,... < s 2 :·:y+s:·:+sy+l, 

after- simplification -sxy+s(t-l>x+s(s-2-t)y+sa..-b,... < 1. 

This is equivalent to -xy+t-l+(s-2-t>y+a..-b,... < 0. 

It remains to show 

<t-·1) <s·-2···t> lO. 

This is tr-ue as either- t~l or t+2~4;;:s. , 

( i v) We have to consider only the fir-st case. 
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equations for m+n yield s~m. We have to show s IE (G) I 

smCM-1> < mn, equivalently sCM-1) < n=mCM-1)+bm-1, which is 

obviously trw:. 

3 • Y-_{~.J. . .!,.J~.!!L.P:L .. ..:U.D .. J .• ~J .. _f . ..Q.I:' .. ~ .. -~__l_ .... i ... -5. 

In this section we prove Theorem 1.16-1.18. The notation 

CA,BJ is used for the complete bipartite graph with vertex 

classes A and B. ~n the cases n=Ck-1)p cur Corollary 1.14 

does the job. In order to prove f(4p+2,5) > 16p+6 we invoke 

Theorem 1.5 and use w2C4> ~ 10. Indeed, the affine plane of 

order has a 2-transversal of the following type: 

The remaining lower bounds follow from Corollaries 1.7, 1.8. 

We have to prove the upper bounds for f((k-l)p+j,k) 

Ck=3,4,5;J==1, ••• ,k-2). A ((k-l)p+j,k)-coloring of the 

appropriate complete graph K has to be considered. We 

want to derive a contradiction. Let us proceed inductively, 

starting from small values of k and j. As fCCk-1>p+j-1,k) 

is small enough by induction, we can assume that ther: 

exists a red connected subgraph R of K on Ck-1>p+J 

vertices. By definition of an Cn,k>-coloring, there are 

no red edges in CR,K-RJ. Thus CR,K-RJ is colored with k-1 

colors. If Ck,j) €{(3,1>, <4,1>, (5,1>, <5,2)} we get a 

condradiction by Corollary 2.3. Only two cases remain. 

Consider the case k=4,j=2. We have IRI= 3p+2, IK-RI = 

6p+3. Let H b~ a C3p+2)-extremal bipartite graph with 

m=3p+2,n=6p+3. An easy inspection •hews that only case 

<iii) of Lemma 2.5 occurs. The unique extremal sequence 

is Cp+l ,2p+1>, Cp+l ,2p+1>, Cp,2p+1>. Further IE<H> I = 

C2p+l) (3p+2) = IE<CR,K-RJ> l/3. 

This shows, that G has blue connected components of 

cardinalities 3p+2,3p+2,3p+1. Let B be the blue component 

of cardinality 3p+1. Then Corollary,2.3 applied to CB,K-BJ 

yields a condradiction. 
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Finally consider the case k=5,j=3. 

We have IRI = 4p+3, IK-RI = 12p+7. A <4p+3)-extremal 

bipartite graph with m=4p+3,n=12p+7 has 12p 2 +16p+6 = 

( IE<CR,K-RJ) I +3)/4 edges. As CR,K-RJ is colored with four 

colors, one of them, say green leads to a (4p+3)- extremal 

~reen graph on CR,K-RJ. Only type (iii) of Lemma 2.5 occurs 

and the green subgraph of CR,K-RJ is defined by the sequence 

three times Cp+1 ,:·$p+2), once Cp,3p+1). 

Thus the green subgraph of K has four components G1, ••• ,G4 

of the following cardinalities: IG1 I = 4p+3 Ci=1,2,3>, 

IG41=4p+1. Let S=G1V Gz,T=G3V G4. Then [S,TJ is 4-

colored. This time Lemma 2.5 yields equality, i.e. a 

C4p+3)-e>:tremal SLlbgraph has 2C2p+1) C4p+3)= I EC[S,TJ> l/4 

edges. Thus all non-green monochromatic subgraphs of [S,TJ 

are C4p+3)-e>:tremal. Type (i) of Lemma 2.5 does not occur 

as this would yield a color with components C1••• ,c4 of 

sizes C1 1=,1 C2l = 4p+3, IC::!!'I = IC41 = 4p+2, and 

Corollary 2.3 would produce monochromatic connected sub

graphs on at least 4p+4 vertices of cc~~-.c::!!',C2\-.C4J, 

condradiction. Hence only type (iii) occurs, and every 

non-green monochromatic component of [S,TJ is given by one 

of the sequences: 

(~) 3x(2p+2,2p+1) or 

1:-: (2p ,2p+1) 

(,t:j) b: (2p+1 '2p+2) 

2:-: (2p+2' 2p+1) 

h: (2p+1 '2p) 

Thus every complete monochromatic subgraph of V has four 

components, three of size 4p+3, one of size 4p+1. 

Let c be a non-green color of type (~). Then the number 

of c-colored edges of CG1,GzJ is ~ 3Cp+1) 2 +p 2 = 4p 2 + 6p+3 

of CG3,G4J is ~ 4p<p+1>=4p 2 + 4p. 

If c has type <S>, then the number of c-colored edges 

of CG1,G2J is ~ 2Cp+1) 2 +2p(p+1)=4p 2 +6p+2 

of CG3,G4J is ~ Cp+1) 2 +2p(p+1)+p 2 =4p 2 +4p+1. 

As IE< CG1, G2J > I = 16p"o::+24p+9, IE< CG::!!', G4J > I = 16p.,"+16p+3, 

we get the following properties: 

(i) Type <B> occurs three times, type (~) occurs once. 

(ii) If F'e:GJ., QE:Gz Cor PE:G3, Qe:G4), aMd if P and Q are in 

the same c-component, then the edge F'Q is colored c. 
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<iii) If G is a green and H is a c:-component, then 

IGn HI E:{p,p+l}. 

Let us fix notation: the colours are 1,2,3,4,5. Write 

c(PQ)=i if PQ.is colored i, write P ?Q if P and Q are in 

the same i-c:omponen~. As we could have started from any 

color instead of green and from any pairing of its 

components, and as ~e could have compared with any color 

instead of c:, we get 

(*) If P ttQ, F'? Q, then c(PQ)=i, eqLlivalently: 

For any pair P,Q of distinct vertices, c:(PQ)=J, one of the 

following holds: either P ~ Q for every color i, or 

P 1 Q only for the color i=j. 

Thus we get an equivalence relation - on K defined by P - Q 

if and only if P ~Q for every color i. 

This relation has 16 equivalence-classes. By Cii) the 

coloring of K induces a coloring of K/-. Let H be the 

hypergraph with K/- as vertex set and the monochromatic: 

components of K/- as edges. Clearly H is the affine plane 

of order 4. By (iii) every equivalence class has p or p+1 

elem~mts of K. Lf:~t EI={R IRE:~U~, IB l=p}. It is obvious, that 

IB 1=6 and that B is a 1-transversal (an affine blocking set/ 

in H. This contradicts [5J. 
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