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ABSTRACT 

An Cn,k)-color-ing of a complete gr-aph K means a 

coloring of the edges of K with k color-s so that all 

monochr-omatic connected subgr-aphs have at most n vertices. 

We ar-e interested in the maximum number- of ver-tices of 

complete gr-aphs with (n,k)-colorings. We survey r-esults 

concerning this problem and give some new r-esults which lead 

to the complete solution for- k~5. 

0. Introduction. 

Let fCh,k> denote the smallest integer m=m<n,k) 

with the following pr-oper-ty: if the edges of Km ar-e 

col~r-ed with k colors then ther-e exists a monochromatic 

connecte~ subgr-aph of more than n vertices. The function 

fCn,k> has been introduced in C12J and fCn,3> was deter-­

mined in C12J and ClJ. The obser-vation fCn,2>=n+l is 

equivalent with a r-emar-k of Er-dos and Rado saying that for­

any gr-aph G, either- G or- its complement is connected. The 

second author- has further- r-esults on fCn,k) in C13J. The 

pr-oblem of deter-mining fCn,k> was r-ediscover-ed by the 

first author- and Br-andis in C3J. 

Fr-om the point of view of Ramsey theory, fCn,k)-1 is a 

lower- bound for- the Ramsey number- RCTn,k) wher-e Tn is any 

tr-ee of n edges. Bounds on RCTn,~> have been studied in 

C lOJ. 

We shall use the term Cn,k)-color-ing introduced by 

Bier-bauer- and Brandis in C3J. An Cn,k>-color-ing is a color-­

ing of the edges of a complete graph with k color-s 

so that all connected monochromatic subgraphs have at most 
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n vertices. The function f(n,k>-1 clearly give the 

largest number of verices of a complete graph which has an 

<n,k>-coloring. 

An (n,k>-coloring can be viewed as k partitions of a 

ground set· into sets of cardinality at most n, so that all 

pairs of elements appear together is some of the sets. Thus 

resolvable block des,igns with ).=1, k parallel classes and 

with blocksize n are natural examples of Cn,k>-colorings. 

However, <n,k>- colorings are much more "relaxed 11 

strLictures: the "blocks" may have any sizes up to n and the 

pairs of the ground set appear together in at least one 

block. In extremal <n,k>-colorings, i.e. in <n,k)-colorings 

of complete graphs of f(n,k)-1 vertices, the structure of 

connected monochromatic components is often close to the 

block structure of resolvable block designs. 

In section 2 we review results on f(n,k) and present 

some new results. 

We give a new lower bound of f(n,k>: 

f <n,k> ><k-1> 2 (p+l>-w:~. <k-1> 

if n=<k-1)p+k-1-i, O<i~k-1, arid an affine plane of order 

k-1 exists <Theorem 1.5). Here W:1. (q) · denotes the minimum 

number of point.-:> of an affine plane Aq of order q 

which meet every line of Aq in at least points. The 

minimum is taken over all affine planes of order q. The 

bound is always sharp for 3~k~5 <see Theorems 

1.16,1.17,1.18>. If we compare this lower bound with the 

upper bound of n<k-1)+1 <Theorem 1.1), we see that for 

fixed k the function f<n,k>-n<k-1) is smaller than a 

function depending only on k. It is unknown whether a 

similar statement holds if no affine plane of order k-1 

exists <Problem 1.15). The main res~lts of the paper are 

prepared in section 2, where a method is described to get an 

upper bound of f<n,k>. The upper bound n<k-1)+1 <Theorem 

1.1) comes from a joint result of J. Lehel and the second 

author: if the edges of a complete bipartite graph Km.n are 

colored with s colours then there exists a monochromatic 

connected subgraph of at least r<m+n}/sl vertices 

(Corollary 2.2). Our main concern is to push this method to 
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its limit, i.e. to prove that Km.n contains a monochromatic 

connected subgraph of at least rm/sl+rn/sl vertices in 

every s-coloring (Conjecture 2.4). We can prove this for 

2isi4 <Corollary 2.3), which gives an essential part in 

determining f<n,k) for 3~k~5. 

In section 2 the properties of M-extremal graphs play 

an important role. Fqr fixed m,n, we call a bipartite 

graph G M-extremal if the vertex classes of G contain m 

and n vertices, the connected components of G have at 

most M vertices and G has as many edges as possible under 

these conditions. The important properties of M-extremal 

graphs are summarized in Lemma 2.5. The main application of 

M-extremal graphs is the following Theorem <Theorem 2.1>. 

If G is a bipartite graph with m and n vertices in its 

colour classes and G has at least rmn/sl edges, then G 

contains a connected component of at least r (m+n) /s 1 

vertices. Moreover, if 2~s~4 then G contains a connected 

component of at least rm/sl + rn/sl vertices. 

In section 3 we apply our methods to determine f<n,k) 

for 3::;;k ::;;5: 

{

4p+1 if n=2p 

f <n,3) = 

4p+2 if n=2p+1 

f<n,4l= J :::~ :: ~=~:+1 
l9p+5 if n=3p+2 

f ( n, 5):::: l ~ :: :~ 
16p +7 

16p+10 

if n=4p 

if n=4p+1 

if n=4p+2 

if n=4+3 

The authors recently learned that f<n,4) have been 

determined independently by Bialostocki and Dierker. 

1 • _8_~§.bLL"t?__9JJ_ f ( n , k ) • 

In this section we survey results concerning f<n,k) 

and present some new results. We start with upper bounds. 

Theorem 1.1. ( r: 13 J) f<n,k>i<k-1>n+1. l 

We note that Theorem 1.1 immediately follows from the 

following result of J. Lehel and the second author: if the 

edges of a complete bipartite graph G are colored with 

k-1 colors then G contains a monochromatic connected 
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subgrAph of At least fiV<G> ll<k-1>1 vertices. This result 

appears in section 2 as Corollary 2.2. Another proof of 

Theorem 1.1 is obtained if we consider the following 

hypergraph H, determined by an <n,k)-coloring of a 

complete g~aph K. The vertices of H are the vertices 

of K and the edges of H are the vertex sets of the 

connected monochromatic components of K. The dual 

hyper-graph H* of H is a k-partite intersecting 

hypergraph (every two edges of H* have at least one 

common vertex>. A result of Furedi <C11J) says that a k­

uniform intersecting hypergraph H has a vertex of degree 

at least fiE<H> ll<k-1>1, unless H is a projective plane of 

order k-1. Since a k-partite hypergraph is never a 

projective plane, H* contains a vertex of degree at 

least fiE<H*) ll<k-1>1 which implies that H contains 

an edge with at least fiV<H> ll<k-1>1 vertices and Theorem 

1.1 follows. 

The following uppe~ bound is due to the first author and 

BrAndi sa 

Theorem 1.2 (C3J). Assume k s K<mod n>, 2~ K <nand let 

~=<k-K)I(k-1). If 4K > 3n+~ -(\n(n+B-'-2~)- ~<s-~>)'Athen 
f <n,k> S: <k-l>n -<k-K>tl. Otherwise 

f ( n , k > ::;: l k < n -1 > + 1 I 2- (n < K- ~ > - K o:::-~- 1 > - < ~ -1 I 4 ~ I/~ J -+ 1 

The cases not covered by Theorem 1.2 are covered by the 

following two results. 

Theorem 1.3 (C3J). If n 2:2, 1<k=1 (mod n>, then 

f <n, k) ::;;k <n-1 > +2. 

Equality holds iff a resolvable block design exists with 

~=1, block size n and replication k. 

Theorem 1.4 ((3J). If ksO(mod n), then 

f<n,k> ::.:; k<n-1>+1, 

And for n>2, f<n,n> S: n<n-1>. 

For comparison~ it is easy to see that for n>k2:2, Theorem 

1.1 is better than Theorem 1.2. 

1.4 Are better than Theorem 1.1. 

If n::;;k then Theorems 1.2-

Concerning lower bounds of f<n,k), first we give a 

construction which uses the existence of an affine plane of 

order k-1. The lower bound is close to the upper bound of 
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Theorem 1.1 and for k=3,4,5 it gives the exact value of 

f<n,k). Let Aq denote an affine plane of order q and 

let Xi, •.• ,Xq+1 be the ideal points of Aq. Assume that we 

have a complete .graph K whose vertex set is partitioned 

into q 2 p~rts, S1,B2, ••• ,Sq2• Consider a one-to-one 

mapping between the points of Aq and the sets 51, ••• ,5q2• 

We color an edge PQ ~f K with color kif P£51,Q£5~,i+J 

and the points corresponding to 51 and 5~ in Aq 

determine a line containing Xk. The. edges of K whose 

endpoints belong to the same set 51 may be colored 

arbitrarily. The colorings of complete graphs obtained by 

this method are called OPL~~l (q+1)-colorings. Note that 

normal (q+1)-colorings are defined only for those values of 

q for which an affine plane of order q exists. 

An i-transversal of an affine plane Aq is a set of 

points in 

points. 

A<=~ which 

Let W1 (Aq) 

meet every line of Aq in at least 

denote the minimum cardinality of an 

i-transversal of Aq and let W1 (q) be min w1CAq>, where 

the minimum is taken over all affine planes of order q. 

The following Theorem gives a lower bound for f<n,k> in 

terms of w1Ck-1). 

Th§LQ..!:.£!11__!..!'....2.'!.. Assume that an affine plane of order k-1 

exists, let n=Ck-1)p+k-1-i, where O<i~k-1. Then 

f < n , k ) > ( k -1 ) 2 
( p + 1 ) -w 1 0::-1 ) • 

Proof. Let A~.=-·1 be an affine plane of order k-1 possess 

-ing an i-transversal T of W1 <k-1) elements. Let 

m=<k-1) 2 (p+1)-w1 Ck-1> and consider a normal k-coloring of Km, 

where we associate a set of p elements to the points of T 

a~d we associate a set of p+1 elements to the points out­

side T. By the definition of the normrl coloring and the 

i-transversal, a monochromatic connected component of Km 
has at most pi+Ck-1-i) Cp+l)=n vertices. Thus we have an 

Cn,k)-coloring on Km and the theorem follows. 

Cq_r...Q.J~.€-iCY~ If an affine plane of order k-1 exists, then 

f ( Ck-l>p,k) ><k-1> 2 p for all pi;l. 

This follows as Wk-1<k-1>=<k-1) 2
• Another easy application 

of Theorem 1.5 occurs if i=k-2. Now ~k-2(k-1>=Ck-1) 2-1 is 

obvious which yields 
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Corell ary 1. 7. 

then 

If an affine plane of order k-1 exists, 

f ( ( k -1 ) p + 1 ' k) > ( k -1 ) 2 p + 1 • 

We observe that W1Ck-1)~ 2k-3 since two intersecting lines 

of Ak-1 ·giv~ a !-transversal. Thus we have 

Corollary 1.8. If an affine plane of order k-1 exists, 

then 

f((k-1)p+k-2,k))(k-1) 2 p+(k-2) 2 • 

A fundamental result of Jamison's ([7J) implies that 

!-transversals (also called 11 affine blocking sets 11
) in 

desarguesian Aq have at least 2q-1 points. It is how­

ever possible to obtain !-transversals of smaller size in 

other affine planes. Bruen and de Resmini ([8J) use the 

Hughes plane of order 9 to show W1C9) ~16. 

Corollary 1.9. f(9p+8,10))81p+65. 

We note that Corollary 1.6 is sharp for all k and 

corollary 1.7 is sharp for k=3,4,5. 

A resolvable BIBD with blocks of cardinality n, with 

~=1 and with k parallel classes is clearly suitable to 

define an <n,k>-coloring. In this case we have k<n-1)+1 

points. If we substitute t points for all points of this 

design, an <nt,k>-coloring can be defined on t<k<n-1)+1) 

vertices in analogy to normal colorings. Thus we have 

Proposition 1.10. If a resolvable BIBD exists with blocks 

of cardinality n, with ~=1 and with k parallel class~s 

then 

f ( n t , k ) >t < k ( n -1 ) + 1 ) 

An example for the application of Proposition 1.10 is the 

case t=1,n=4,k=9. Now f<4,9)=29 follows from Theorem 1.3 

and Proposition 1.10. This example is taken from [3J. As 

there are resolvable BIBD with bloc~ size 4, with ~=1 and 

replication 4t+1 Ct~l) <see C17,18J>, we get 

f(4a,4t+l>>a<12t+4) (a~1,tl1>. 

We obtain a general lower bound. 

Corollary 1.11. f<n,k>><n-3)(3~c-8)/4. 

The following generalizes a result of [3J, which in 

turn relies upon a construction of L~nstrom in C16J: 

Proposition 1.12. If f(ap,ka>>kp and if there is a set of 
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a-1 mutually orthogonal latin squares of order k, then 

f (ap,ko+k) )c."\p~::. 

As there is a set of five mutually orthogonal latin squares 

of order 12 <C5,9J) and f(6p,3))12p <Theorem 1.16 below) we 

get f(6p,15))7~p. 

Applications of Proposition 1.12 in case p=1 are 

given in C3J. For instance f(4,10+28 t 4..i)>16·4:1. ..... 1 (i;;;:O> 
0 

can be derived by repeated applications of Proposition 1.12 

with u=16·4:~.. Theorem 1.2 implies that the lower bound is 

sharp. The comparison of the upper bound of Theorem 1.1 and 

the lower bound of Theorem 1.5 shows that n<k-1) is close 

to f<n,k) for large n and fixed k. 

!;_g_rollary l.L3. If an affine plane of order k-1 exists, 

then 

f ( n ' k) -n ( k -1 ) -1 iw :1. ( k -1 ) - ( k -1 ) i ::;: o~ -1 ) i ' 

for n=(k-1>p+k-1-i, O<i::;:k-1. 

In particLilar, if i=k-1 then w:~. (k-l)=(k-1) 2 

Coroll§LY~~~ If an affine plane of order 

then 

f((k-1)p,k>=p(k-1) 2 +1. 

and we get 

k-1 e:·:ists, 

It would be interesting to get rid of the existe~ce problem 

of affine planes of order k-1 in a lower bound clo~e to 

n(k-1) for large n. We have the following problem. 

Pro_l;l_~_elu_t!!... . .tQ..~- It is true that f(n,~d-n(k-1) is less than 

a function depending only on k ? 

Now we consider f(n,k) for small values of k. An 

old remark of Erdos and Radc says that a graph or its 

complement is connected. Thus f(n,2)=n+1. The case k=3 

has been settled in C12J and C1J. A new proof is given in 

section 3 based on results of section 2. 

Th_@.!:.§"£.!!LJ-!'_t~-

{

4p+1 if 

f(n,3) = 

4p+2 if 

The following two Theorems are the 

n=2p 

n=2p+1. 

main new results of this 

paper. The proofs are in section 3. 
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f Cn ,4) 

Concerning the values 

following observation 

E'r_QQ...9..?_Lt.J_g_o. __ t~_1~...!-

f <2, k) 

of 

is 

{ 

{ 9p+l if n=3p 

9p+2 if n=3p+1 

9p+5 if n=3p+2 

{ 16p+1 
if m=4p 

16p+2 if n=4p+1 

16p+7 if n=4p+2 

16p+10 if n=4p+~3 

f Cn, k) for small values of n, 

in C3J. 

k+2 if k is odd 

k+l if k is even 

The case n=3 is also completely solved. The following 

results is in [3J. 

Th_g.m::._€?~60. 

l 
2k+2 if k - (mod 3) 

f <3, k) 
lmotA ~) Zk i~ k - 1 

the 

We note that theorem 1.20 follows by combining the upper 

bound of Theorem 1.2 with the lower bound of Proposition 

1.10 and using the existence theorem of D.K. Ray-Chauchuri, 

R.M. Wilson en resolvable triple systems CC17J). For n=3 

and k~O(mod 3), it is easy to see that f(3,k) is either 2k 

or 2k+1. It is easy to prove that fC3,3)=6 <see C3J). Zs. 
Tuza discovered a <3,6) coloring of K12 <4 color classes are 

4K3, one color class is K3 + 3K1.2 and one color class is 

This construction sh~ws that fC3,6)=13. The 

first author used a certain Steiner triple system on 19 

points to show fC3,9)=19 CC4J). If k=<) <mod 3) and k 2:9, 

there exist C3,k)-colorings of K2k such that all but one 

color classes are isomorphic to 2k/3 K3 and the exceptional 

color class is isomorphic to k K2. Such colorings are 

called Nearly Kirkman Triple Systems and their existence 

have been proved in a series of papers CC15J) ,C2J,C6J,[19J 

in chronological order). The authors are grateful to 
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Professor Rosa for this information. Therefore the following 

theorem hc)l ds. 

Th ~~J2L§ll.!Ll• ~1 

fC:3,k) 
{ 

6 if k""•3 

2k+1 if k26 and k:r:O (mod 3). 

2 • tj_::§l_!:Lt..r~I!!~~ .. L_I:?_1P.i:'r t. .. Lt~. __ g..r .. ~.Ph~-~-

Let BCm,n) denote the set of bipartite graphs with 

vertex classes of cardinality m and n. We shall always 

assume that m,n;;::1. The purpose of ths section is to prove 

the f oll cJwi ng 

Th~.Q.r.::.§t.!!L._~ ..... t.~- Assume GE:B(m,n) and G has at least fmn/sl 

edges for some positive integer s. Then G contains a 

connected component of at least r<m+n)/sl vertices. 

Moreover, if 2~s~4 then G contains a connected component 

of at least fm/sl + rn/sl vertices. 

The first part of Theorem 2.1 gives a joint result of 

the second author with J. Lehel: 

If the edges of Km.n are colored 

with s colors, then there exists a monochromatic 

connected subgraph of at least r<m+n)/sl vertices. 

The second part of Theorem 2.1 implies 

Cor..Q.lL~_y---~!...~ If the edg€~S of ~<"'. n are col cJred with s 

colors and 2~s~4, then there exists a monochromatic 

connected subgraph of at least fm/sl + fn/sl vertices. 

We conjecture, that Corollary 2.3 holds for every s. 

Co~c;_.t:.~.§' 2 ...... 'L... If the edges o·f ~·~m. n are colored with s 

colors, then there exists a monochromatic subgraph of at 

least fm/sl + fn/sl vertices. 

It is worth noting, that conject~re 2.4 cannot be 

obtained from a density result since the second part of 

Theorem 2.1 is not true for sz5. To see this for s=5, let 

m=5p+l, n=20p+1. Now 2Kp.4p+1+2Kp+1 0 4p+Kp-1.4p-1 has 

rmn/51 edges, but its components have at most 5p+1=~/5l + 

fn/51 -1 vertices. 

It is convenient to introduce at this point the notion 

of M-extremal bipartite graphs. We shall always assume that 

M is an integer, M>2. A graph GE:BCm,n) is called 
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M-e:.;_'l;r._€ill.)~t if every connected component o·f G has at most 

M vertices and G has the largest number of edges under this 

condition. It is clear, that an M-extremal bipartite graph 

is the union of disjoint complete bipartite graphs and 

possibly some isolated vertices in one of the vertex 

·classes. If we acc~pt K=.t and Kt.= for t~1 as 

degenerat& complete,bipartite graphs, then an M-extremal 

graph of BCm,n) is the vertex-disjoint union of 

~~a 1 • b 1, K ... .a • ~ , •••• K ... ,. . t-',.' wh~i?re the numbers a:~. , b:t. are 

hon~negative integers, at most one of them can be zero, and 

they satisfy 

(1) a:~.+a2+ ••• +a.-=m, b:~.+b2+ ••• b.-=n and a:~.+b:t. ~ M for 

all such that l~i~r and a:~.b:~.+O. 

Thus the description of M-extremal members of B<m,n) 

is equivalent with finding values of r and for the pairs 
T 

<a:~.,bd SLtch that (1) is satisfied and E = f a:~.b:t. is 

maximum. Such a sequence is also called M-extremal. 

M-extremal sequences (or M-extremal bripartite graphs) 

are not necessarily unique, for instance if m=4,n=6,M=4, 

the the following seqLtence define M-extremal graphs: 

(2 '2) ' ( 1 '2) '(1 '2); (2' 2) ' (2 '2)' ((l' 2); (2' 2)' ( 1 '3)' (1' 1). 

bE.!!!.ffi.€:L6_.'!-~.!'.- Let m, n, M be fixed, M>2, r= r Cm+n) /Ml, and 1 et 

' {(a:~.,b:~.> li=1,2, .. ,s}- be an 1"1-e:·:tremal sequence, E=r a:~.b~.· 

Then one of the following holds: 

(i) a=a:~.=am- ••• =at, a+l=at+:t.= ••• =ar-2, a=ar-:~.=ar 

b+1=b:~.=b2=•••=bt, b=bt~l=•••=b..--z, b=br-:t.=b.-, 

m=ra+r-2-t, n=rb+t, m+n~rM-2, E=rab+ta+b(r-2-t>, r=s. 

(ii) a=a:~.=a2= ••• =at, a+1=at+:t.= ••• =ar 

b+1=b:~.=bm= ••• =bt, b=bt•:t.=•••=br 

m=ra+r-t, n=rb+t, m+n=rM, E=rab~ta+Cr-t)b, r=s. 

( i i i ) 

where c:~r+br· < M, a:~. :;:: ar·, b:~. :;:: b.- for all i, 1 ~i ~ r-1, 

m=Cr-l)a+r-1-t+a,..., n=Cr-l)b+t+br, m+n=Cr-1)M+ar+b.- < rM, 

E=Cr-l>ab+ta+Cr-1-t)b+a,...b,..., s=r., 
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l=b1=b2= ••• ~b"' bn•i=U, M-1=ai=a2= ••• =an, an•i > M, 

E== ( M-· 1) Min ( m, n) • 

Here t,a,b are non-negative integers, a+b+l=M. 

We note that M-extremal sequences in forms (i), (ii) and 

( i v) may occur only for SpEH:i al choices of m,n,M. It is 

easy to ct1.eck, that M mLlSt be a divisor of m+n+2 if (i) 

occur·s, M mLlS5t divide m+n if ( i i ) occ:L.lrs. Form ( i v) 

appears if eitt1ew n > <m+U (1'1 .. -1>+1 or m > (n+U <M-U + 

holds. 

A p t:\ i r· < a :1. , b :1. > i s ~l:L!;;J~.P. .. ~~-L!;HJ.~1.. i f 

a:~.+b:~. > M. Clearly a:1. or b:~. is zero for an exceptional pair. 

QJ, __ §.j_rn.._!_. If Ca:~.,bd ar1d (a,j,b,j) are unsaturated, then a:~.=a.J, 

b:~.=b..1 and a:~.+b:~.=M-1. 

I·f eh < a..1 1\.':\nd b:t. 2: b..1 then b:1. =1=0 and then pairs 

(a;. ,b:t.), Ca..1 ,b,j) can be changed into (a:~. ,b:~.-1>, (a_.1 ,b..1+U and 

the value of E increases by this change, contradiction. If 

Assume that a:1. =t=l). Now 

E. The case b,L ::f:O is symmetric. If 

a:~.+b:t. < M-1, then our pairs can be changed to Ca:~.-l,bs-1), 

The claim is proved. 

other pairs are saturated. 

Assume there is an unsaturated pair (ap,bp). Using 

Now the 

three <A,B>-pairs can be changed to CA+1,B), <A,B+l), <A-1,8-1) 

CAB::f:O) and E increases. An exceptional pair (c,O) can not 

occLlf" as otherwi ~se ( c, 0) , (a:~. , b :1.) can ~b~:? changed to 

<c-1 ,C>>, (a:~.+1 ,b:~. >. 

1+2=M+1 which contradicts (1) ... If we change our pairs to 

Ca:~.-1 ,b:~.+U, <a.j+1 ,b,j-1), th~:m E incr·ea~es since Ca:~.-1> 

(b:l. + 1) + ( a,j +1) (b,j-1) = as bi +a,jb .J +c:\:1, -a,j+b,j-bi -2 ::::a :I. b;. +a.jb,j+ 1. 

The claim is proved. 
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To continue with the proof of Lemma 2.5, assume that 

there are two unsaturated pairs in an M-extremal sequence. 

Claim 1 ensures, that both pairs are in the form Ca,b) where 

a+b=M-1. If <~~,b~) is any other pair then a,+b~=M by claim 

2. Clec:o~.rly at:l=I=O and claim 3 implies a~=a or a~=a+l. Now 

we have our M-extremal sequence in form (i), where t denotes 

the number of indic~s for which a~=a and <a~,b~) is 

saturated. Since m+n=sM-2, r=s follows. 

Assume that a M-extremal sequence contains exactly one 

unsaturated pair, (aR,bw>• All other pairs are saturated 

since an exceptional pair (a,,O) would allow the changes 

(a,-1,0), Caw+1,bu) contradicting theM-extremal property. 

It is obvious that r=s. In order to see that our 

sequence is in form (iii), we have to prove asla. and 

b~:;:;b ... for all i, l::;:i::;:r-1. Assume c\\i <a,.... Then bs2b,...+2 

since ca~,b,) is saturated and Ca,...,b,...) is unsaturated. We 

can change the pair·s (aj. ,bj.), Car- ,b,....) to (a,...-1 ,b.-+1), 

<a~+1 ,b~-1) (a,...>O,b~22). We get a contradiction since 

Ca,...-1> Cb,...+U+<a~+U Cb,-1) a~b~+a..-b,....+b~-b .... +a,....-c::h-2 l 

a~b~+a..-b,....+1. 

Finally, assume that there are no unsaturated pairs in 

an M-extremal sequence. If no exceptional pair is present, 

then all pairs are saturated, r•s and the sequence is in 

form Cii) by claim 3. Assume there is exactly one except­

ional pair. By symmetry we can choose it as <D,c>. Since 

mll, there exist other pairs. Let (a~,b~> be any such 

pair. Obviously (a,,b~) is saturated and a~>o. Now we 

c:hangf-:? tht-'? pc.dn:s <O,c), (a,,. ,bd to CO,c·-lvl+l>, (l,M-1>, 

(a~-l,bs). If b~ < M-1, the a~bs < 1<M-1)+(a~-1)bs and we 

reach a contradiction. Therefore b\= M-1, i.e. theM­

extremal sequence has form Civ). 

P r QQ:f._Q..f.....TtL~_o..r:..g~J!L.~.!'..J.. Let c (G) d €'-:l note t t·1 e rna:·: i me:\ l number of 

vertices in a connected component of G. To prove the first 

part of the Theorem, we have to show: 

If c(G) < r<m+n)/sl, then IECG> I< rmn/sl, equivalently: if 

G isM-extremal, sM < m+n, then siECG) I < mn. Consider M 

as fixed. It suffices to prove siECG) 1 < mn for the maximal 

number s satisfying sM < m+n, i.e. for s=r-1. 
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In case (i) of Lemma 2.5 we have to show 

<r·-t) c:~b+ (r··-1) ta+ <r-1) (r~<:~-·t> b < r:.o~i:.,b+r••~·l:.+r·tJ <r- .. -2·-·'l:) +t <r·-2-t>, 

eqt.li Vii.d. t'?nt 1 y -.::\ ( t+r-b) < <t+b) ( r···<;;~--·t) , wh i c:h is c 1 ee:'\r'l y tr-Lle. 

In case (ii) we have to shew (r--1)rab+Cr-1)'l:a+(r-1) 

Cr--t)b < r- 2 ab+rat+rb<r-t>+t<r-t), equivalently -a<t+r-b) < 
( t·+·b) ( r·-t ). , tr·ue 1 i kr.~ be·for-e. 

In case (iii) we have tc show Cr--1) 2 ab+(r--1)at+ 

( r·-1) ( r·-1-t) b+ ( r-·-1) a,... b.- < ( r·-1) 2 c.~b·H I'" ·-1) a ( t+b,..- H· 

(r--1) b Cr--·1-.. t+a,...) + <t+b,...) <r··-1·-t+a,..-), eqLli val er1tl y <r- .... ·1) a,...b,... < 
( r- ·-1 ) ab .... + ( r -1 ) b a..-+ ( t +b ,..- ) < r- -1- t +a,..-) • 

The inequality is tr-ue as either- a .... ~ a or br~b. 
In case <iv) by symmetr-y we have to consider- only the fir-st case. 

As m+n > (m+l>M, we can choose s~m+l. We have to pr-ove, 

that s<M-1) < n if sM < m+n. This is tr-ue as m<s. 

Let us pr-oceed to the pr-oof of the second par-t of 

Theor-em 2.1. Le-t: s €{2,3,4}, G an M-e:-: t r-em a 1 gr-aph, M < 
rm/s 1 + rn I=! 1. We have to show siECG) I < mn. Because of 
the fir-st part of the theorem, it suffices to consider-

the case m=sx+1, n=sy+1, M=x+y+1. Then m+n=sM+2-s. 

2~s~4 we get s=r-. We inspect the cases of Lemma 2.5. 

(i) As m+n=sM-2=sM+2-s, it follows s=4. FLlr-ther· 

m=4a+2-t=4x+1, n=4b+t=4y+1, hence a=x, b=y, t=l. Thus 

41ECG) 1:16xy+4x+4y=mn-1. 

As 

(ii) m+n=sM, thus s=2. The equations for-m and n yield a=x, 

b=y, t=1, thus 21E<G> I = 4xy+2x+2y=mn-1~ 
(iii) m+n=~s~l)M+a..-+b..-=sM+2-s < sM, thus M+2-s=a..-+b..- < M, s£ 

{3,4}. We have n=<s-l)b+t+b..-=sb+t+b,...-b ~ sb+t+1 ~ s(b+1). 

It follows b~y. The equations for- m yield a~x. As 

M=a+b+1=x+y+1, we get a=x, b=y. The equations for- m and n 

now ('*·) 

We have to show the validity of the fdllowing inequality: 

~:;IE (G) I = s (s-1) :·:y+st:·:+s (s-1-t) y+sa,...b,... < s 2 :·:y+s:·:+sy+l, 

after- simplification -sxy+s(t-l>x+s(s-2-t)y+sa..-b,... < 1. 

This is equivalent to -xy+t-l+(s-2-t>y+a..-b,... < 0. 

It remains to show 

<t-·1) <s·-2···t> lO. 

This is tr-ue as either- t~l or t+2~4;;:s. , 

( i v) We have to consider only the fir-st case. 
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equations for m+n yield s~m. We have to show s IE (G) I 

smCM-1> < mn, equivalently sCM-1) < n=mCM-1)+bm-1, which is 

obviously trw:. 

3 • Y-_{~.J. . .!,.J~.!!L.P:L .. ..:U.D .. J .• ~J .. _f . ..Q.I:' .. ~ .. -~__l_ .... i ... -5. 

In this section we prove Theorem 1.16-1.18. The notation 

CA,BJ is used for the complete bipartite graph with vertex 

classes A and B. ~n the cases n=Ck-1)p cur Corollary 1.14 

does the job. In order to prove f(4p+2,5) > 16p+6 we invoke 

Theorem 1.5 and use w2C4> ~ 10. Indeed, the affine plane of 

order has a 2-transversal of the following type: 

The remaining lower bounds follow from Corollaries 1.7, 1.8. 

We have to prove the upper bounds for f((k-l)p+j,k) 

Ck=3,4,5;J==1, ••• ,k-2). A ((k-l)p+j,k)-coloring of the 

appropriate complete graph K has to be considered. We 

want to derive a contradiction. Let us proceed inductively, 

starting from small values of k and j. As fCCk-1>p+j-1,k) 

is small enough by induction, we can assume that ther: 

exists a red connected subgraph R of K on Ck-1>p+J 

vertices. By definition of an Cn,k>-coloring, there are 

no red edges in CR,K-RJ. Thus CR,K-RJ is colored with k-1 

colors. If Ck,j) €{(3,1>, <4,1>, (5,1>, <5,2)} we get a 

condradiction by Corollary 2.3. Only two cases remain. 

Consider the case k=4,j=2. We have IRI= 3p+2, IK-RI = 

6p+3. Let H b~ a C3p+2)-extremal bipartite graph with 

m=3p+2,n=6p+3. An easy inspection •hews that only case 

<iii) of Lemma 2.5 occurs. The unique extremal sequence 

is Cp+l ,2p+1>, Cp+l ,2p+1>, Cp,2p+1>. Further IE<H> I = 

C2p+l) (3p+2) = IE<CR,K-RJ> l/3. 

This shows, that G has blue connected components of 

cardinalities 3p+2,3p+2,3p+1. Let B be the blue component 

of cardinality 3p+1. Then Corollary,2.3 applied to CB,K-BJ 

yields a condradiction. 
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Finally consider the case k=5,j=3. 

We have IRI = 4p+3, IK-RI = 12p+7. A <4p+3)-extremal 

bipartite graph with m=4p+3,n=12p+7 has 12p 2 +16p+6 = 

( IE<CR,K-RJ) I +3)/4 edges. As CR,K-RJ is colored with four 

colors, one of them, say green leads to a (4p+3)- extremal 

~reen graph on CR,K-RJ. Only type (iii) of Lemma 2.5 occurs 

and the green subgraph of CR,K-RJ is defined by the sequence 

three times Cp+1 ,:·$p+2), once Cp,3p+1). 

Thus the green subgraph of K has four components G1, ••• ,G4 

of the following cardinalities: IG1 I = 4p+3 Ci=1,2,3>, 

IG41=4p+1. Let S=G1V Gz,T=G3V G4. Then [S,TJ is 4-

colored. This time Lemma 2.5 yields equality, i.e. a 

C4p+3)-e>:tremal SLlbgraph has 2C2p+1) C4p+3)= I EC[S,TJ> l/4 

edges. Thus all non-green monochromatic subgraphs of [S,TJ 

are C4p+3)-e>:tremal. Type (i) of Lemma 2.5 does not occur 

as this would yield a color with components C1••• ,c4 of 

sizes C1 1=,1 C2l = 4p+3, IC::!!'I = IC41 = 4p+2, and 

Corollary 2.3 would produce monochromatic connected sub­

graphs on at least 4p+4 vertices of cc~~-.c::!!',C2\-.C4J, 

condradiction. Hence only type (iii) occurs, and every 

non-green monochromatic component of [S,TJ is given by one 

of the sequences: 

(~) 3x(2p+2,2p+1) or 

1:-: (2p ,2p+1) 

(,t:j) b: (2p+1 '2p+2) 

2:-: (2p+2' 2p+1) 

h: (2p+1 '2p) 

Thus every complete monochromatic subgraph of V has four 

components, three of size 4p+3, one of size 4p+1. 

Let c be a non-green color of type (~). Then the number 

of c-colored edges of CG1,GzJ is ~ 3Cp+1) 2 +p 2 = 4p 2 + 6p+3 

of CG3,G4J is ~ 4p<p+1>=4p 2 + 4p. 

If c has type <S>, then the number of c-colored edges 

of CG1,G2J is ~ 2Cp+1) 2 +2p(p+1)=4p 2 +6p+2 

of CG3,G4J is ~ Cp+1) 2 +2p(p+1)+p 2 =4p 2 +4p+1. 

As IE< CG1, G2J > I = 16p"o::+24p+9, IE< CG::!!', G4J > I = 16p.,"+16p+3, 

we get the following properties: 

(i) Type <B> occurs three times, type (~) occurs once. 

(ii) If F'e:GJ., QE:Gz Cor PE:G3, Qe:G4), aMd if P and Q are in 

the same c-component, then the edge F'Q is colored c. 
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<iii) If G is a green and H is a c:-component, then 

IGn HI E:{p,p+l}. 

Let us fix notation: the colours are 1,2,3,4,5. Write 

c(PQ)=i if PQ.is colored i, write P ?Q if P and Q are in 

the same i-c:omponen~. As we could have started from any 

color instead of green and from any pairing of its 

components, and as ~e could have compared with any color 

instead of c:, we get 

(*) If P ttQ, F'? Q, then c(PQ)=i, eqLlivalently: 

For any pair P,Q of distinct vertices, c:(PQ)=J, one of the 

following holds: either P ~ Q for every color i, or 

P 1 Q only for the color i=j. 

Thus we get an equivalence relation - on K defined by P - Q 

if and only if P ~Q for every color i. 

This relation has 16 equivalence-classes. By Cii) the 

coloring of K induces a coloring of K/-. Let H be the 

hypergraph with K/- as vertex set and the monochromatic: 

components of K/- as edges. Clearly H is the affine plane 

of order 4. By (iii) every equivalence class has p or p+1 

elem~mts of K. Lf:~t EI={R IRE:~U~, IB l=p}. It is obvious, that 

IB 1=6 and that B is a 1-transversal (an affine blocking set/ 

in H. This contradicts [5J. 
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