
Reprinted from JOURNAL OF COMBINATORIAL THEORY, Series B 
All Rights Reserved by Academic Press, New York and London 

Vol. 43, No.2, October 1987 
Printed in Belgium 

Local k-Colorings of Graphs and Hypergraphs 

A. GYARFAS AND J. LEHEL 

Computer and Automation Institute, Hungarian Academy of Sciences, 
H-1111 Budapest, Kende u. 13-17, Hungary 

J. NESETRIL 

Charles University, Malostranske nam. 25, 
11000 Praha 1, Czechoslovakia 

V. R6DL 

Czech Technical University, Husova 5, 
11000 Praha 1, Czechoslovakia 

R. H. SCHELP* 

Memphis State University, Memphis, Tennessee 38152 

AND 

Zs. TuzA 

Computer and Automation Institute, Hungarian Academy of Sciences, 
H-JJ 11 Budapest, Kende u. 13-17, Hungary 

Communicated by the Managing Editors 

Received January 6, 1986 

A local k-coloring of a graph is a coloring of its edges in such a way that each 
vertex is incident to edges of at most k different colors. We investigate the 
similarities and differences between usual and local k-colorings, and the results 
presented in the paper give a general insight to the nature of local colorings. We are 
mainly concerned with local variants of Ramsey-type problems, in particular, with 
Ramsey's theorem for hypergraphs, the existence of minimal Ramsey graphs and 
further questions from noncomplete Ramsey Theory. © 1987 Academic Press, Inc. 

1. INTRODUCTION 

Many results of graph and hypergraph theory <;an be formulated as edge 
coloring theorems. A coloring of a graph or hypergraph is an assignment of 
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colors (or numbers) to the edges. The basic notion of this paper involves 
local k-colorings. A local k-coloring of a graph G is a coloring of its edges 
such that the edges incident to any vertex of G are colored with at most k 
different colors. · 

The notions of local k-colorings and local Ramsey numbers were 
introduced in [15]. In this paper we pursue the study of local k-colorings, 
investigating similarities and differences between usual and local k­
colorings. Moreover we consider a possible extension of this concept for 
hypergraphs. Our paper is mostly devoted to local versions of some basic 
results of noncomplete Ramsey theory (Sects. 5, 6, 7). 

In Sections 2, 3, and 4, we present three results giving general insight to 
the nature of local k-colorings. The first one is the local version of 
Ramsey's theorem for hypergraphs (Theorem 1) which seems to be a useful 
tool for handling certain graph problems for local k-colorings. 

The second basic result is a density lemma. It says that every local k­
coloring of a graph with average degree d* has a monochromatic subgraph 
with average degree at least d*jk (Theorem 2). 

The third result is of a negative nature. It shows that for all n, there 
exists an n-chromatic graph with a local 2-coloring such that the edges of 
all color classes determine bipartite graphs (Theorem 5 ). This is a striking 
difference between usual and local colorings, since the chromatic number of 
the union of two bipartite graphs is clearly at most four. 

Section 5 deals with minimal Ramsey graphs of forests. It turns out that 
in case of local k-colorings the family of minimal Ramsey graphs of a forest 
F is infinite unless F is an odd star or a two-star (Theorems 7 and 8 ). 

In Section 6, we prove the induced Ramsey theorem for local colorings: 
for all graphs G and positive integers k there exists a graph H such that 
every local k-coloring of H contains a monochromatic induced copy of G 
(Theorem 11 ). 

Further questions and results are mentioned in Section 7 concerning the 
generalization of the Ramsey number and the size Ramsey number for local 
k-colorings. We claim there that the linearity of the Ramsey number of 
graphs with bounded maximum degree (a result of Chvatal et al. [6]) and 
the linearity of the size Ramsey number of the path (a result of Beck 
in [2]) remain true in case of local k-colorings. The proofs of these results 
fall outside of the scope of the present paper. 

2. RAMSEY THEOREM FOR LOCAL k-COLORINGS OF HYPERGRAPHS 

Here we prove the generalization of Ramsey's theorem for hypergraphs 
for local colorings. Let K~ denote the complete r-uniform hypergraph on n 
vertices (the edges are the r-element subsets of an n-element set). A local 
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k-coloring of K~ is a coloring of its edges such that the set of edges 
containing any (r- 1 )-element subset of vertices are colored with at most 
k different colors. A usual k-coloring is obviously a local k-coloring as 
well, and the definition is consistent with the definition given for graphs in 
Section 1. For convenience, we allow r = 1 so that a local k-coloring is a 
vertex coloring with at mo~t k colors. 

THEOREM 1. Let k, r, and n be positive integers, r ~ n. Then there exists 
N = N(k, r, n) such that every local k-coloring of K~ contains a 
monochromatic K;

1
• 

Proof We proceed by induction on r. The initial step, when r = 1, is 
easy. Obviously (n- 1) k + 1 is a suitable choice for N, by the pigeonhole 
principle. 

The inductive step is based on the following observation: 

If the edges of K;n are locally k-colored and x E V(K~J, then the 
edges incident to x in K;n induce a local k-coloring of the 
(r-1)-element subsets of V(K~J\{x}. (*) 

Assume that r~2 and choose x 1 E V(K~). Using (*) and the inductive 
hypothesis, if N is large, then there ~exists Y1 c V(K~) such that I Y11 is 
large, x 1 ¢ Y 1 , and all (r- 1 )-subsets of Y 1 have the same color in the 
coloring induced by x 1 . Let x 2 E Y 1 • Since I Y1 l is large, ( *) and the induc­
tive hypothesis allow one to find a subset Y 2 c Y1 such that I Y 2 1 is still 
large, x 2 ¢ Y 2 and all (r- 1 )-subsets of Y 2 have the same color in the color­
ing induced by x 2 • We continue until x 1 , ... , xr are defined with 
t=k(n-r)+ 1 and let Yr be such that IYrl =r-1, xr¢ Yr. 

Since we have a local k-coloring on K~1 , the edges {xJ u YrEE(K;~), for 
i = 1, ... , t, are colored with at most k colors. By the choice of t, there exists 
a subset lc {1, ... , t} such that III =n-r+ 1 and the edges 
{xJ u YrEE(K;;J for iEl have the same color. Hence (UiE 1{xi})u Yr 
gives a set on n vertices all of whose r-subsets have the same color. 

Note that the condition "I Yil is large" can b.e traced back by choosing 
IYrl=r-1, IYi_ 1I=N(k,r-1,1Yil)+1 for i=t, t-1, ... ,1, where 
IYol =N. I 

3. DENSITY THEOREM FOR LOCAL k-COLORINGS OF GRAPHS 

Assume that a graph is locally k-colored. Denote by G i the subgraph of 
G formed by the set of edges assigned color i. Let d*( G) denote the average 
degree of G, i.e., 

d*(G) = I d(x)/1 V(G)I = 2IE(G)I/I V(G)I. 
XE V(G) 
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The following theorem formulates an important property of local k­
colorings. 

THEOREM 2. If G is locally k-colored, then for some monochromatic sub­
graph G;, d*(GJ ~ d*(G)jk holds. 

Proof Denote by di(x) the number of edges in color j incident to vertex 
x. Clearly, 

and 

d(x) = L di(x) 
j 

L d(x) = d*(G)I V(G)I. 
X 

Using ( 1) and applying (2) with G and Gj, we obtain 

( 1) 

(2) 

d*(G)I V(G)I = L L dix) = L d*(Gj)l V(Gj)l ~ d*(G;) L I V(Gj)l, (3) 
j X j j 

where d*(G;) is the maximum average degree of some monochromatic sub­
graph. Observing that in local k-colorings 

L I V(Gj)l ~ kl V(G)I, 
j 

we obtain by (3) that d*(G;)~d*(G)jk. I 

The fact I V(G;)I > d*(G;) implies IE(G;)I > (d*(G;)) 2/2, so that 
Theorem 2 has the following immediate corollary. 

COROLLARY 3. If G is locally k-colored then E(G;) ~ (d*(G)fj(2k 2
) 

holds for some monochromatic subgraph G;. 

Corollary 3 can be used to show when G has many edges then G; has 
many edges as well, for some i. For example if the complete graph K 11 is 
locally k-colored then at least ckn2 edges have the same color. (It is easy to 
prove that the largest value of c2 is !.) 

Another application of the density theorem shows there exists a 
monochromatic subgraph with O(n 2

) edges in any local k-coloring of the 
complete bipartite graph K 11, n (with n vertices in both color classes). 
Therefore, by using density results, bipartite Ramsey theorems follow for 
local k-colorings (cf. [13, p. 95]). 

Using the fact that a graph of average degree d* contains a subgraph of 
minimum degree at least d* j2, we get another corollary of Theorem 2. 
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COROLLARY 4. If G is locally k-colored then it contains a monochromatic 
subgraph of minimum degree at least d*( G)/2k. 

4. LOCAL k-COLORINGS OF LARGE CHROMATIC GRAPHS 

Let x( G) denote the chromatic number of the graph G. It is an elemen­
tary fact that x( G)~ mk + 1 implies G contains a monochromatic subgraph 
of chromatic number at least m + 1 in every coloring of G with k colors. On 
the other hand, it is easy to k-color any graph G satisfying x( G)= mk in 
such a way that the edges in the same color classes determine an 
m-chromatic graph. These statements belong to folklore (form= 2 see, e.g., 
in [ 1, 16] ). 

Rather surprisingly, a similar result does not hold for local k-colorings. 

THEOREM 5. There exist graphs with arbitrary large chromatic number 
and a local two-coloring such that all monochromatic subgraphs are bipartite. 

Proof The graph G m is defined by Erdos and Hajnal in [ 10] as 
follows: the vertices are the pairs (i, j) satisfying 1 ;£ i <i ;£ m; two vertices 
(i, j) and (k, l) are adjacent if and only if either j = k or l = i. 

Let us color the edge between ( i, j) and (j, k) in color j, for all pairs i 
and k with 1 ;£ i <i < k ;£ m. Edges of color j clearly determine a complete 
bipartite graph for all j, 2 ;£} ;£ m- 1. The edges incident to a vertex (k, l) 
are colored with colors k and l so that this is a local two-coloring for G m. 

In [10], it is proved that x(Gm) tends to infinity with m, thus the graphs 
G m have the required property. I 

It is not clear which graphs G have the following property: G has a local 
two-coloring with bipartite color classes. An obvious necessary condition is 
that K 5 ct. G and a sufficient condition is x( G);£ 4. 

Certain triangle-free large chromatic graphs may have the property (see 
Theorem 5) but there are also triangle-free large chromatic graphs without 
the property, an example is Zykov's constructiop in [29]. It is also possible 
to show that there are graphs with arbitrary, large girth and chromatic 
number with or without the property. 

Hajnal pointed out that a result in [9] implies if a graph G satisfies 
x( G)~ 4logl V( G)l, then G cannot be locally two-colored with bipartite 
color classes. 

Concerning local k-colorings of complete graphs, a sharp theorem can be 
stated. 

THEOREM 6. If the complete graph on mk + 1 vertices is locally k-colored, 
then there exists a color class with chromatic number at least m + 1. 
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We remark that the case m = 2 is a consequence of a result of Katona 
and Szemeredi in [17], and a short proof is given by Tarjan in [26]. The 
method used in Tarjan's proof can be generalized to derive Theorem 6. 
Details are not given here, since a more general extremal result holds for 
set systems (see [28] ). 

We finally note that a theorem of Gallai in [ 12] and Roy in [24] com­
bined with Theorem 6 gives the next result. 

CoROLLARY. If the arcs of a tournament on mk + 1 vertices are locally 
k-colored, then there exists a monochromatic directed path on m + 1 vertices. 

Note that this corollary for usual k-colorings gives the diagonal case of 
path Ramsey numbers of tournaments. It is proved independently in [5 
and 14]. 

5. MINIMAL RAMSEY GRAPHS FOR LOCAL k-COLORINGS 

Let G be a graph and let ~foe(G) denote the set of graphs H without 
isolated points which satisfy the following property: every local k-coloring 
of H- contains a monochromatic copy of G, but for any edge e E E(H) the 
graph H- { e} can be locally k-colored without a monochromatic G. The 
elements of ~foe( G) are called minimal Ramsey graphs of G for local 
k-colorings. 

It is clear from Theorem 1 that ~foe( G) -=1- 0 for all G and k. If we change 
the requirement that the graph H be locally k-colored to require only a 
usual k-coloring, then we obtain the usual set of minimal Ramsey graphs 
for G. This set is denoted by ~k( G). A survey on minimal Ramsey graphs is 
given in [ 4]. 

The basic problem in the theory of minimal Ramsey graphs is to try to 
decide whether ~k( G) is finite or infinite for a given graph G (k is fixed). 
The case when G is acyclic is of particular interest and has not been com­
pletely solved (see [4]). However, if G contains a non-star component, 
then ~k(G) is infinite (see [19]). 

We shall prove in Theorems 7 and 8 that ~foe( G) is infinite for all acyclic 
graphs G except when G = S2 or G = Sm with odd m, where Sm denotes the 
star with m edges. 

As an example where ~foe( G) and ~k( G) differ, note when G is a 
matching ~k( G) is finite while ~faA G) is infinite. On the other hand, 
~k(S2 ) is infinite (odd cycles are in ~2(S2 )) but 9£foe(S2)= {Sk+d· 

When G is a star deciding whether 9£foe(G) (and ~k(G)) is infinite relates 
to a factorization problem. For example, 9f2(S4 ) consists of the graph S7 

together with the set of 6-regular grahs with an odd number of vertices (see 
Murty's result in [ 4] ). The set &lfoe(S4 ) consists of the graph S 7 together 
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with the set of 6-regular graphs with an odd number of vertices with the 
property that their edge set can not be partitioned into 3-regular sub­
graphs. 

It is not trivial to see that the 6-regular graphs of the latter type exist. 
The smallest one we know has 37 vertices and is constructed as follows. 
Take three disjoint copies of K 6 , 6 with one additional vertex z. Delete from 
the ith bipartite graph the single edge xi yi, for i = 1, 2, 3, and add the six 
new edges zxi and zyi. The proof of Theorem 8 will show this 6-regular 
graph can not be partitioned into 3-regular subgraphs. 

THEOREM 7. Let F be a forest which is not a single star. Then f],f~oc(F) is 
infinite for all k ~ 2. 

Proof Let F be a forest which is not a star and let H 1 E 9ff'oc(F). We will 
show that there exists H 2 E 9f~oc(F) such that I V(H2 )1 >I V(H1 )1 which will 
establish the result. 

Let H be a graph of minimum degree 21 V(F)I k such that the shortest 
cycle in His of length at least I V(H1 )1 + 1. The existence of such graphs is 
well known (see [3, p. 104, Theorem 1.1] ). 

First, we show that every local k-coloring of H contains a 
monochromatic copy of F. Since the average degree of H is at least 
21 V(F)I k, we have, by Corollary 4, that H contains a monochromatic 
subgraph with minimum degree at least I V(F)I. This subgraph obviously 
contains a copy of F. 

Next let H 2 be a minimal Ramsey graph for F contained in H. Clearly, 
H 2 must contain a cycle, since an acyclic graph can be locally two-colored 
such that each monochromatic subgraph is a single star. This implies, since 
H 2 has girth I V(Hr)l + 1, that I V(H2 )1 >I V(Hdl. I 

THEOREM 8. Let Sn be a star on n edges. Then 9f~o/Sn) is infinite for n 
even, n ~ 4, and finite for n = 2 or n odd. 

In fact 9ff'oc(Sn)= {Sk(n-ll+r} when n=2 or n is odd. The behavior of 
9fk(S11 ) is similar to that of 9f~oc(Sm) the odd cycle except when n = 2. In 
that case the odd cycle c2m + 1 E 9f2(S2) does ;not belong to f],f~oc(S2) for 
each m ~ 1. 

Proof of Theorem 8. We begin with some observations. If HE 9f~oc(Sn) 
and there is a vertex of H with degree at least k(n- 1) + 1, then 
H = Sk(n- 1 )+ 1 • Thus all members of 9f~oc(Sn)\ {Sk(n- 1l+r} have 
maximum degree at most k(n-1). We show when n=2 or when n is odd 
that all regular graphs of degree k(n- 1) can be locally k-colored with no 
monochromatic S n. This will complete the proof of the second part of the 
theorem (since each graph of maximum degree at most k(n -1) is con­
tained in some k(n- 1 )-regular graph). Thus consider a k(n- 1 )-regular 
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graph H. If n = 2 then simply color all edges of H with a different color. If n 
is odd, then by Petersen's theorem [23] His factorable into ((n -1)/2) k 
2-factors. Therefore H is the union of k (n- 1 )-factors and we can color 
each (n- 1 )-factor with a different color. The argument just given parallels 
the one given in[ 4] when considering the cardinality of ~k(Sn) for odd n. 
For n even, n ~ 4, an entirely different approach is needed as we will now 
see. 

Let n be even, n ~ 4, k ~ 2. We will construct a graph G( m) for all 
m = 3, 4, ... with the following properties: 

(1) the girth of G(m) is at least m; 

(2) the maximum degree of G(m) is at most k(n- 1 ); 

(3) if the edges of G(m) are locally k-colored then it contains a 
monochromatic copy of Sn. 

For the moment assume G(m) has been constructed. For i = 0, 1, 2, ... , we 
define H 0 , H 1 , H 2 , ... , such that I V(HJI <I V(Hi+ dl with each 
HiE~~oc(S,J Let H 0 =Sk(n-i)+i so that H0 E~~oc(S,J Assume that H 0 , 

H 1 , H 2 , ••• ,Hi have been defined for some i~O. Set m=IV(Hi)l+1 and 
consider the graph G(m ). By property (3) we can choose a subgraph 
Hi+! cG(m) such that Hi+i E~f'oc(S,J The graph Hi+l is not acyclic, 
since a forest of maximum degree at most k(n- 1) can be easily locally 
k-colored without monochromatic Sn (see property (2)). Therefore Hi+ 1 

contains a cycle C which implies I V(Hi+ dl ~ I Cl ~ m = I V(H;)I + 1 by 
property ( 1 ). Thus ~~oc(S11 ) is infinite for n even, n ~ 4, when the infinite 
family of graphs G(m ), m ~ 3, exists. 

The construction of G(m) utilizes a result of Neumann-Lara [22]. This 
result is the following: for fixed m ~ 3 and d ~ 2, there exists a d-regular 
bipartite graph of girth at least m. Let B(m) be a k(n- 1 )-regular bipartite 
graph of girth at least m. Let B1 , ••• , B 1 be disjoint copies of B(m), with 
t = ((n- 2) k + 2)/2. We remove an edge (x;, y;) from B; for each i, 
1 ;£ i ;£ t, add a new vertex z, and join the new vertex to both X; andY; for 
all i. We denote the resulting graph by G( m ). 

Obviously the girth of G(m) is not less than the girth of B(m). Moreover 
all vertices of G(m) are of degree k(n- 1) except z whose degree is 
2t ;£ (n- 2) k + 2 ;£ (n- 1) k (k ~ 2). Therefore G(m) satisfies properties (1) 
and (2). 

The graph G(m) also satisfies property (3 ). To see this, assume the con­
trary, that there is a local k-coloring of G(m) which does not contain a 
monochromatic copy of Sw Since G(m) is "almost" k(n- 1 )-regular, the 
edges belonging to any color class in this coloring determine an "almost" 
(n- 1 )-regular subgraph. The only vertex which can have degree less than 
n- 1 is z. However, for some color, say red, the red sub graph is (n- 1 )-
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regular, since the degree of z is larger than k( n- 2 ). But ( n- 1) is odd, so 
there exists an i, 1 ~ i ~ t, such that exactly one of the edges zxi, zyi is red. 
Assume that zxi is red and zyi is not. The red edges in E(Bi)- {xi Yi} 
determine a bipartite graphB* =(X, Y) with one vertex (xJ of degree n- 2 
and all the other vertices of degree n- 1. Counting the edges of B* from X 
toY and from Y to X we obtain (IXI-l)(n-1)+n-2=1YI(n-1), 
i.e., (n- 2) is divisible by (n- 1) which is impossible when n =1=- 2. This 
contradiction proves property (3 ). I 

Remark. For k = 2, the construction just given for G(m) can be sim­
plified. In place of each B(m) one can take any 2(n- 1 )-regular graph. The 
resulting graphs G(m) are easily shown to belong to 9il~oc(S,J By the proof 
just given any such graph, when locally 2-colored, contains a 
monochromatic copy of S 11 • Furthermore, in this case the vertex z has 
degree 2(n- 2) + 2 = 2(n- 1) so that G(m) is 2(n- I)-regular. Thus when 
an edge, say zw, is deleted from G(m ), its edges can be alternately colored 
by two colors along an Eulerian path from x to y, giving a locally 
2-colored graph without a monochromatic s/1. 

Concerning the behavior of 9il 2
( G) for graphs other than forests, it 

follows from constructions of Nesetfil and Rodl [20] that 9i1 2
( G) is infinite 

if x( G)~ 3 and if G is 3-connected. Their method can be used for local 
k-colorings to show that 9il~oc(Km) is infinite for m ~ 3. 

6. INDUCED RAMSEY THEOREMS FOR LOCAL k-COLORINGS 

For usual k-colorings the following basic result is well known 

THEOREM A (Rod/[25], Deuber[7], Erdos, Hajnal, and P6sa [11]). 
For all graphs G and for all k there exists a graph H such that when the 
edges of H are k-colored, then it contains a monochromatic copy of G as an 
induced subgraph of H. 

In this section we generalize Theorem A for lohal k-colorings. We follow 
the idea of [ 18] and prove 

THEOREM 9. For all bipartite graphs B and for all k there exists a bipar­
tite graph B' such that when B' is locally k-colored, then it contains a 
monochromatic copy of Bas an induced subgraph of B'. 

Proof To prove Theorem 9, we need a lemma involving special bipar­
tite graphs. The bipartite graph B( ~) is defined with color classes X, Y as 
follows: lXI = p, I Yl = ( ~) and each vertex of Y is connected to a different 
q-element subset of X. It is easy to see that B( ~) is a universal bipartite 
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graph in the sense that all bipartite graphs appear as an induced subgraph 
of some B( ~ ). Therefore, to prove Theorem 9, it is enough to prove 

LEMMA 10. For all positive integers p, q and k (p ""?:: q) there exists 
M = M(p, q, k) and N = N(p, q, k) with the following property: if B( Zt) is 
locally k-colored then it contains a monochromatic copy of B( ~) as an 
induced subgraph of B( Zt ). 

Proof We choose M = k(q -1) + 1 and locally k-color the graph B( Z) 
for some N ""?:: M. Let H be the complete M-uniform hypergraph on X, i.e., 
H has N vertices and the edges of Hare the M-element subsets of X. We 
can naturally define a coloring on the edges of H as follows. If e E E(H) 
then consider the vertex y( e) E Y adjacent to the vertices of e in B( Z ). 
Among the edges of B( Z) incident to y(e), at least q have the same color 
since lei= M = k(q- 1) + 1 and B( Z) is locally k-colored. We can 
therefore. fix a q-element subset f = f( e) c e such that all edges of B( Z) 
from y(e) tofhave the same color, say color i. We say thatfis the core of e 
and we assign color ito f and to e. This gives a coloring on the edges of H. 
It is easy to see that our coloring is a local k' -coloring for H (in the sense 
defined in Sect. 2) if k' = k( k~q~/l ). (We are very generous in the choice of 
k'.) 

Now we refine our coloring on the edges of H according to the types of 
cores. A type is a q-element subset of { 1, 2, ... , M}. If we imagine X as an 
ordered set, then each e E H has a type determined by the various positions 
of the core f(e) in e. Clearly, the number of types assigned to the edges of 
H is at most ( k(q -qll + 1 ). Combining types and colors, the edges of I-i are 
locally k"-colored, where k" = k'( k(q-qll+ 1 ). We define 

n = (p + 1 )(q -1) k + p. 

Invoking Theorem 1, there exists N = N(k", M, n) such that K';J contains a 
monochromatic K:/ under all local k"-colorings of K';J. Obviously, N 
depends only on k, p, q by the definition of k", M, n. We prove that for this 
choice of N, B( Zt) contains an induced monochromatic B( ~ ). 

The definition of N is such that we can choose an n-element subset A of 
V(H) with the following property: for all e E E(H) satisfying e c A, the 
color and the type of e are the same, say red of type T. Consider the 
elements of A in the order given on X. Let xj be the jk( q- 1) + 1-th 
element of A for j = 1, 2, ... , p. The choice of n implies that between xj and 
xj+ 1 (moreover before x 1 and after xP) there is a "gap" consisting of 
k(q -1) elements of A. Let X' be an arbitrary q-element subset of 
x 1 , x 2 , ... , xP. Due to the large gaps, we can add M -q elements of 
A- {x1 , x2 , ... , xP} to X' in such a way that we get e = e(X') E E(H) and X' 
is of type Tin e. Therefore, by definition, the edges of B( Z) between y(e) 
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and X' are red. Moreover, y( e) is not adjacent to vertices of 
{x 1 ,x2 , ••• ,xP}-X' in B(Zt) from the definition of e. We conclude that 
{ x 1, x 2 , ••• , xP} and {y(e(X')): IX' I = q, X' c { x1 , ... , xP}} induce a red B( ~) 
in B( Z ). I 

Once Theorem 9 is established, the extension of Theorem A for local k­
colorings follows. The argument of [21] (presented as Theorem 1 in [13, 
p. 103]) can be paralleled to give the following stronger result. 

THEOREM 11. For all graphs G and for all k there exists an H having the 
same maximum clique size as G such that if H is locally k-colored, then it 
contains a monochromatic copy of G as an induced subgraph of H. 

Without going into details, we note that some proofs in noncomplete 
Ramsey theory can be similarly paralleled for local k-colorings. In this way 
a couple of results related to Theorem 11 can be obtained (e.g., concerning 
excluded short cycles form G and H). 

7. RAMSEY NUMBERS AND SIZE RAMSEY NUMBERS 

We denote by rk( G) the Ramsey number of a graph G, i.e., the minimum 
m for which Km contains a monochromatic copy of Gin every k-coloring of 
the edges of K 111 • In [15], r~c(G) was introduced as the minimum m for 
which Km contains a monochromatic copy of Gin every local k-coloring of 
K 111 • In the spirit of [6], a result of Chvatal eta!. can be extended for these 
local Ramsey numbers as follows. 

THEOREM 12. Let G be a graph on n vertices and of maximum degree d. 
There is a function c = c(k, d) such that r~c( G)~ en. 

Our proof is similar to that in [ 6] but it is outside the scope of this 
paper. On the other hand, answering a conjecture raised in [15], quite 
recently Truszczynski and Tuza [27] proved the existence of a constant 
c=c(k) such that r~AG)~crk(G) for all connect~d graphs G. This theorem 
implies a straightforward possibility to extend some upper bounds on rk( G) 
for local colorings. For example, Theorem 12 can be deduced from the 
result of [ 6] cited above since every graph G of maximum degree d > 0 is a 
subgraph of a connected graph G' of maximum degree at most d + 1, 
I V(G')I =I V(G)I. 

As another consequence of the existence of c(k), for every k there exists 
an integer k' such that r~c( G)~ rk' (G) for all connected graphs G. We note 
that, though the upper bound fork' in [27] is exponential, it can be shown 
that k' = k 2 is a suitable choice for k' if we consider the restricted family of 
connected graphs containing a triangle. 
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The size Ramsey number fk(G) of a graph G was introduced in [8]. 
Using the notion of minimal Ramsey graphs (see Section 5 ), 
fk(G)=min{IE(H)I:HE~k(G)}. The size Ramsey number for local k­
colorings, f~oc(G), can be defined analogously as min{IE(H)I: HE~~oc(G)}. 
We may ask about the relation of these numbers. It is possible that 
f~oc(G) ~ c(k) fk(G), at least for connected graphs G. A supporting evidence 
is that Beck's theorem [2], which says f 2(P,J ~ 900n, remains true for local 
2-colorings. (To see that rfoc(Pn) ~ 900n, it is enough to apply Theorem 2 
for the locally 2-colored graph of 900n edges defined in [2].) The proof 
method of Beck also shows fk(Pn) ~ c(k) n which is again extendable (by 
using Theorem 2) for local k-colorings. The authors are grateful to J. Beck 
for the discussion on this remark. 
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