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Abstract. A family Q of graphs is callcd X-bound with binding function f if x(G‚Äô) s f (w(G‚Äô))
holds whcncvcr G' is an induced subgraph of Ge Q. Hcrc x(G) and w(G) dcnctc thc chromatic
number and the clique number of G, respectively. The family of perfect graphs appears in this
setting as the family of X-bound graphs with binding function f (x) = x. The paper exposes open
problems concerning X-bound families of graphs.
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0. INTRODUCTION

Our aim is to introduce and proposea systematic study of X-bound (and
8-bound) families of graphs and their binding functions. These families are
natural extensions of the world of perfect graphs. Recall that the family Q? of
perfect graphs contains the graphs G which satisfy x(G‚Äô) = w(G') for all
induced subgraphs G' of G. Here x(G) and w(G) denote the chromatic
number and the clique number of a graph G, respectively.

A family ff of graphs is called X-bound with binding function f if
x(G‚Äô) s f (w(G‚Äô)) holds whenever Ge Q and G' is an induced subgraph of G.
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Without restricting generality, we may assume that a binding function is an
N ‚Äî¬ª N function, where N denotes the set of positive integers; moreover, f (1)

1 and f (x) 2 x for all xe N. Under these natural assumptions the smallest
binding function is f (x) = x and the family of graphs which is X-bound with
binding function f (x) = x is the family of perfect graphs. The complementary
notion of X-bound families is the notion of 0-bound families. A family Q of
graphs is 6-bound with binding function f if Q is a x‚Äîbound family with
binding function f (here Q denotes the family containing the complements of
the graphs of Q).

Section 1 introduces the notion of x‚Äîbound and 9-bound families of
graphs with several examples. The most frequently occurring problems
concerning binding functions are formulated and illustrated there, namely:

1. Does there exist a binding function for a given family Q of graphs?
2. What is the smallest binding function for Q`?
3. Does there exist a linear binding function for Q'?
4. Does there exist a polynomial binding function for Q'?
The examples in 1.2 (e.g., circular arc graphs, multiple interval graphs,

box graphs, polyomino graphs, overlap graphs) show that the behaviour (or
at least the known properties) of these families concerning their binding
functions are quite different. Although these families are usually X-bound and
9-bound (the exception is the family of box graphs for more than two
dimensions), in most cases the order of magnitude or linearity of their
smallest binding function is not known.

The significance of binding functions from algorithmic point of view is
discussed in 1.3. The idea is that families having ‚Äúsmall" gg-binding functions
(9-binding function) are natural candidates for approximation algorithms
with a "good" performance ratio for the coloring problem (clique cover
problem). The smaller is a binding function of a family, the better perform
ance ratio is to be expected from an approximation algorithm operating on
the graphs of the family.

Perfect families of graphs are often characterized by a set of forbidden
induced subgraphs. The family of P4-free graphs, split graphs, threshold
graphs, triangulated graphs, Meynel graphs are examples of such families.
Analogous questions are discussed in Sections 2, 3 and 4 for x‚Äîbound families
of graphs: which forbidden induced subgraphs make a family X-bound?
Section 2 presents problems and results concerning the following conjecture:
the family of graphs which does not contain a fixed forest as an induced
subgraph is X-bound. In Section 3 we discuss problems when the set of
forbidden induced subgraphs is infinite. The Strong Perfect Graph Conjec
ture fits into this problem area. It is surprising that a much weaker conjecture,
namely that the family of graphs without odd holes and their complements is
X-bound, seems to be difficult. We should call this conjecture the Weakened
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Strong Perfect Graph Coniecture. In Section 4 we consider the case where
the set of forbidden subgraphs is closed under taking complementary graphs.

In Section 5 we study the effect of taking the union and intersection of
graphs on binding functions. It is straightforward that the union of ;g‚Äîbound
families is again a X-bound family. However, the intersection of two X-bound
families (even the intersection of two perfect families) is not necessarily X
bound.

The situation of having the notion of X-bound and 0‚Äîbound families
resembles the time B.P.G.T. (Before Perfect Graph Theorem) when two types
of perfectness had to be defined. It is easy to construct families which are X
bound but not 8-bound although "natural" graph families are usually both X
bound and 9-bound. In Section 6 we try to find analogous of the Perfect
Graph Theorem for certain X-bound families of graphs. Let ‚Ç¨9, denote the
family of graphs 9‚Äîbound with 0‚Äîbinding function f_ If {ff is X-bound, then
the smallest gg-binding function of gf is called the complementary binding
function of f It turns out that the only self‚Äîcomplementary binding function
is f (x) = x, that is the Perfect Graph Theorem is stable in a certain sense.
Only ‚Äúsmall" binding functions may have complementary binding functions:
if f has a complementary binding function, then inf f (x)/x = 1. However, it
remains an open problem even to prove that f (x) == x+1 has a comple
mentary binding function.

All results appearing here with proofs are unpublished elsewhere. They
are expository in nature and serve mainly as background material and status
information for the open problems. In fact, the main motivation of the
author for writing this paper is his desire to see some of these 44 problems to
be solved. I am indebted to my friend and colleague J. Lehel for several
discussions which helped these ideas to take shape.

l. x-BOUND AND 8-BOUND FAMILIES AND THEIR BINDING FUNCTIONS

1.1. Basic concepts. Let w(G) and x(G) denote the clique number and the
chromatic number of a graph G, i.e., w(G) is the maximal number of pairwise
adjacent vertices of G, and ;g(G) is the minimal number k such that the
vertices of G can be partitioned into k stable sets. A subset of vertices in a
graph is called stable if it contains pairwise non-adjacent vertices.

A function f is a X-binding function for a family Q of graphs if

x(G‚Äô) < f (w(G))
holds for all induced subgraphs G' of Gs {9. We shall always assume that
f : N -‚Äî¬ª N, where N denotes the set of positive integers; moreover, f (1) = 1,
f(x)2 x for all xeN.
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A family Q of graphs is X-bound if there exists a ;g‚Äîbinding function
for Q.

The above definitions can be formulated for the complementary parame
ters of graphs. Let at(G) and 9(G) denote the stability number and the clique
cover number of a graph G, i.e., cx(G) is the maximal number of vertices in a
stable set of G, and 8(G) is the minimal number k such that the vertices of G
can be partitioned into k cliques.

A function f is a 9-binding function for a family Q of graphs if
etc') < f (stm)

holds for all induced subgraphs G' of Ge Q. A family Q of graphs is 9-bound
if there exists a 9-binding function for Q.

Since w(G) = ¬§t(G) and X(G) = 9(G) hold for any graph G by definition
(where G denotes the complement of G), we observe that

f is a X-binding function for Q gf and only # f is a 8‚Äîbinding function
for Q;

Q is pg-bound 5 and only K Q= {G: Ge; is 9-bound.
If a family Q is X-bound, then it has obviously a smallest x‚Äîbinding

function defined by
f*(x) == max -{X(G'): G' c Ge o>(G‚Äô) = x}

Similarly, a 9-bound family has a smallest 9‚Äîbinding function.
Due to the assumptions on binding functions, the smallest binding

function a family may have is the identity function f (x) = x. The family of
graphs with X-binding function f (x) = x is the important family of perfect
graphs. The family of perfect graphs is denoted by Qt The Perfect Graph
Theorem of Lovasz [27] states that .Q‚Äô= 9, which implies that Q can be
equivalently defined as the family of graphs with 8-binding function f (x)

are:

The basic problems in our approach concerning a family Q of graphs

Is Q a x‚Äîbound (or 6¬ bound) family?
What is the order of magnitude of the smallest gg-binding (or 8-binding)

function for Q?

Determine the smallest X-binding (or 6-binding) function for Q.
Before looking at some examples of X-bound or 6-bound families, let us

have a glance at the outside world. Let G, be a graph such that w(G,) = 2
and ;g(G,) =i for each integer i ,2 2. The existence of G, is well known (see,
e.g., [30]). Now the family {G2, G3, is obviously not gg-bound since it is
impossible to define the value of a X-binding function f (x) for x == 2. A more
surprising example of a family which is not x‚Äîbound is provided by the
intersection graphs of boxes in the three-dimensional Euclidean space (see
1.2).



1.2. Some examples 0f X-bound and 8-bound families. Now let us have a
look at some well-known families of graphs and their binding functions. We
start with three classical subfamilies of W which we frequently need later.

Interval graphs: the intersection graphs of closed intervals on a line.
Yriangulated graphs: the graphs containing no Ck (a cycle of k vertices)

for k 2 4 as an induced subgraph.
Comparability graphs: the graphs G whose edges can be oriented transi

tively (ab, bca E (G) implies aceE(G)).
The proof of the perfectness of the above families can be found in [16].

We continue with some well-known non-perfect families of graphs defined as
intersection graphs of geometrical objects. Proof techniques and results
concerning their binding functions have been surveyed in [22].

Circular arc graphs (see [16], p. 188): the intersection graphs of closed
arcs of a circle. The family of circular arc graphs is 9‚Äîbound, its smallest G
binding function is f (x) = x+ 1. The family is X-bound as well, the function
f (x) = 2x is a suitable gg-binding function for x 2 2. Both of these statements
follow immediately from the perfectness of interval graphs. It is easy to
construct circular arc graphs G, for all k, satisfying w(G,,) = k, x(G,,)

L3k/2_|. Tucker conjectured (see [37]) and Karapetian [25] proved that
x(G) < L(3/2)w(G)J

holds for all circular arc graphs G. In our terminology, this result states:
THEonEM 1.1. The smallest X-binding function for the family of circular

arc graphs is f (x) = L(3/2)x.l.
Multiple (or t-) interval graphs: intersection graphs of sets which are the

union of t closed intervals on a line. In the special case where t = 1, we get
interval graphs. These graphs were introduced in [17] and [24]. The results
of [21] imply that the family of t-interval graphs is 6-bound for all fixed t.
The order of magnitude of the smallest 9-binding function is not known even
for t = 2.

Pnoauam 1.2. Determine the order of magnitude of the smallest 9
binding function for double interval graphs. In particular, does there exist a
linear 6-binding function for double interval graphs?

It was proved in [20] that the family of t‚Äîinterval graphs is X-bound
with a linear binding function 2t (x‚Äî1) for x 2. 2.

Box graphs (introduced in [34]): intersection graphs of sets of boxes in
the d-dimensional Euclidean space. A box is a parallelepiped with sides
parallel to the coordinate axes. For d = 1 we have the family of interval
graphs.

It is easy to see that the family of d-dimensional box graphs is 8-bound
with 6-binding function x" (see Proposition 5.5). The order of magnitude of
the smallest 0-binding functions/i¬ß lmiown even for d = 2.
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Pnoauzm 1.3. Determine the order of magnitude of the smallest 6
binding function for two‚Äîdimensional box graphs.

Concerning X-binding functions, it was proved by Asplund and
Grtinbaum in [1] that two-dimensional box graphs are X-bound with an
O(x2) gpbinding function. The order of magnitude of the smallest pbinding
function is not known, its value at x == 2 is 6 as proved in [1].

Paonuzm 1.4. Determine the order of magnitude of the smallest X
binding function for two-dimensional box graphs. In particular, decide
whether it is linear or not.

A surprising construction of Burling [4] shows that the family of three
dimensional boxes in not X-bound.

Polyomino graphs. This subfamily of two‚Äîdimensional box graphs has
received some attention in the last few years. A polyomino is a finite set of
cells in the infinite planar square grid. With a polyomino P we may associate
a hypergraph H (P) whose vertices are the cells of P and whose edges are the
set of cells in maximal boxes contained in P. The intersection graph G(P) of
H (P) may be called a polyomino graph. Obviously, G(P) is a subfamily of
two-dimensional boxes, thus it is both 0-bound and X-bound. Answering a
question of Berge et al. [3], Shearer [36] proved that G(P) is perfect if P is
simply connected. It would be interesting to know whether the family of
polyomino graphs has linear binding functions; these questions are attributed
to P. Erdos.

Pnoauam 1.5. Does there exist a linear 0-binding function for polyomino
graphs?

Pizonusm 1.6. Does there exist a linear X-binding function for polyomino
graphs?

Overlap graphs (alias circle graphs, stack sorting graphs; see [16], p.
242). These graphs are defined by closed intervals on a line as follows: the
vertices are the intervals and two vertices are joined by an edge if the
corresponding intervals overlap, i.e., they are intersecting but neither contains
the other. An equivalent definition is obtained by considering the intersection
graphs of chords of a circle. Golumbic calls these graphs "not so perfect" (see
[16], p. 235). A measure of "non-perfectness" can be the order of magnitude
of the smallest binding functions. It is easy to give an O(x2) 0‚Äîbinding
function for the family of overlap graphs (see Proposition 5.4). It is harder to
prove that the family is X-bound, the smallest known X-binding function is
exponential (see [20]).

PROBLEM 1.7. Does there exist a linear 0-binding function for the family
of overlap graphs?

PROBLEM 1.8. Does there exist a linear x‚Äîbinding function for the family
of overlap graphs?



Intersection graphs of straight-line segments in the plane. This family of
graphs was introduced in [7]. The problem whether this family is X-bound
(0-bound) arose during a conversation with P. Erdos. Denote this family by
gsrs

PRoin.EM 1.9. ls {fm a X-bound family?
Pizoarnm 1.10. Is {Em a 9-bound family?

1.3. Algorithmic aspects of binding functions. For various classes of
perfect graphs there are fast polynomial algorithms to determine a largest
stable set (of size a(G)), a largest clique (of size co(G)), a good coloring of
V(G) with X(G)=w(G) colors or a vertex-cover by O(G) =a(G) cliques.
Many examples of such algorithms can be found in [16]. lt turned out (see
[18]) that all of these problems can be solved by polynomial algorithms for
the family Q? of perfect graphs.

Families of X-bound graphs are natural candidates for polynomial
approximation algorithms for the vertex coloring problem. Similarly, polyno
mial approximation algorithms may work for the clique-cover problem in
case of classes of 9-bound graphs. It is typical that the proof of the existence
of a X-binding function f for a family {9 of graphs provides a polynomial
algorithm for a good coloring of the vertices of Ge $6 with at most f (a>(G))
colors. In this case we have a polynomial approximation algorithm with
performance ratio at most f (w(G))/w(G), which may or may not be statisfac
tory in a particular situation. A very favourable case occurs when a family {i
has a linear pbinding function. Then the performance ratio of the algorithm
is constant. The polynomial approximation algorithm can be useful if the
coloring problem is known to be NP-complete for the family Q which is
again a typical case. A similar reasoning shows the role of 0-binding
functions in approximation algorithms for the clique-cover problem. (The
basic notions on computational complexity are used here as defined in [14].)

To see some examples, consider the coloring problem for circular arc
graphs. This problem is NP-complete (see [15]); on the other hand, it is easy
to give a polynomial approximation algorithm with performance ratio at
most 2. The algorithm comes from the proof of the fact that 2x is a X
binding function for the family of circular arc graphs. It is possible to color
better, the proof of Theorem 1.1 yields a polynomial approximation algo
rithm with performance ratio 3/2.

The situation is similar if the coloring problem is considered for multiple
interval graphs. The problem is NP-complete since the family of 2‚Äîinterval
graphs contains the family of circular arc graphs and the latter is NP
complete. The proof of the existence of the gpbinding function 2t (x‚Äî1) for
the family of t‚Äîintervals (x 2 2) provides a very simple polynomial approxi
mation algorithm with performance ratio less than 2t (see [20]).
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he above reasoning might convince the reader of the importance of the
following vaguely formulated problem

PROBLEM 1.11. Find some applicable sufficient condition which implies
that a family has a linear X-binding function.

The existence of a linear binding function is an open problem for many
X-bound and/or 9-bound families. Problems 1.2-1.8 provide examples and we
shall see others later.

Concerning potential applications, we note that the coloring problem of
circular arc graphs and multiple interval graphs occurs in scheduling prob
lems (see [39], [24], [16]), applications of the coloring problem of overlap
graphs are discussed in [16]. The clique-cover problem of polyomino graphs
is motivated by the problem of picture processing as noted in [3].

2. BINDING FUNCTIONS ON FAMILIES WITH ONE FORBIDDEN SUIIGRAPH

Let H be a fixed graph and consider the family %(H) of graphs which
does not contain H as an induced subgraph

‚Ç¨‚Ç¨(H) = {G: H qi G}
What choices of H guarantee that ‚Ç¨9(H) is a gg-bound family? Assume

that H contains a cycle, say of length k. Let G, be a graph of chromatic
number i and of girth at least k+ 1. The existence of such graphs was proved
by Erdos and Hajnal in [10]. Clearly, G,e‚Ç¨‚Ç¨(H) for i=1, 2,..., showing
that ‚Ç¨‚Ç¨(H) is not X-bound. I conjectured that ‚Ç¨¬¢(H) is X-bound in all other
cases, i.e., the following holds

Comacruxa 2.1 ([19]). <¬¢(F) is X-bound for every fixed forest F.
Let S,, denote the star on n vertices and let R(p, q) be the Ramsey

function, that is the smallest m = m(p, q) such that all graphs on m vertices
contain either a stable set of p vertices or a clique of q vertices. The following
result shows that ‚Ç¨‚Ç¨(S,,) is pbound and its smallest x‚Äîbinding function is close
to the Ramsey function.

THEOREM 2.2. The family ‚Ç¨9(S,,) is X-bound and its smallest pbinding
function f * satisfies

R(n‚Äî1, x+1)‚Äî1

for all fixed n, n 2 3.
n‚Äî2

<f*(x)< R("_1‚Äô X)

Proof. Let G be a graph on R(n‚Äî1, x+1)‚Äî1 vertices such that G
contains neither a stable set of n‚Äî1 vertices nor a clique of x+1 vertices.
Clearly,

Ge @(5..) and x(G) > lV(G)|/(*1-2),
which gives the lower bound for f



To show the upper bound, let Ge@(S,,), co(G) = x. We claim that the
degree of any vertex of G is less than R(n‚Äî‚Äî 1, x). If some vertex P es V(G) has
at least R(n‚Äî 1, x) neighbours, then the neighbourhood of P contains either
a stable set of n‚Äî1 vertices or a clique of x vertices. The first possibility
contradicts Ge@(S,,) and the second contradicts w(G) =x, and the claim
follows. Therefore, the chromatic number of G is at most R(n‚Äî 1, x).

Note that for n = 3 the lower and upper bounds are the same showing
that f * (x) = x, i.e., @(S3) is a perfect family. It is easy to see that @(83)
consists of graphs which can be written as the union of disjoint cliques.

Pnonuam 2.3. Improve the estimates of Theorem 2.2 for the smallest X
binding function of @(8,,).

The next special case where Conjecture 2.1 is solved occurs if the
underlying forest is a path.

THEoREM 2.4. Let P,, denote a path on n vertices, n 2. 2. Then @(P,,) is X
bound and j,(x) =. (n‚Äî1)"" is a suitable X-binding function.

Proof. Considering n 2 1 fixed, we prove by induction on w(G). To
launch the induction, note that the theorem trivially holds for graphs G with
w(G) = 1. Suppose that (n‚Äî1)"` 1 is a binding function for all G‚Äôe @(P,,) such
that co(G‚Äô) <t for some 12 1.

Let Ge@(P,,) and w(G) = t+1. Assuming that x(G) >(n‚Äî1)‚Äò, we shall
reach a contradiction by conbtructing a path (Q,, Q3, ..., Q,) induced in G.
Technically, we define nested vertex sets

and vertices

V(G) ID V(G,) ID :2 V(G,)

Qi G V(Gi), Qze 1/(G2), . Qre V(Gr)

for all i satisfying 1 s is n with the following properties
(i) G, is a connected subgraph of G;

(ii) x(Gr)>(¬§¬ ¬ i)(~-1)"‚Äô;
(iii) if 1 <j <i and Qs V(G,), then Q,Q is an edge of G if and only ifj

= i -1 and Q = Q,
For i=l we choose G, as a connected component of G with x(G,)

>(n‚Äîl)' because X(G) > (n‚Äî‚Äîl)' was assumed. Let Q, be any vertex of G,
Assume that G,, G3, ..., G, and Q,, Q3, ..., Q, are already defined for

some i < n; moreover, (i)‚Äî(iii) are satisfied. Define 6,+, and Q,+, as follows.
Let A denote the set of neighbours of Q, in G,. Let

B = V(Gr)‚Äî(A w {Qr})

The graph GA induced by A in G satisfies w(GA) St because the presence of
a (t+ 1)-clique in GA would give a (t+2)-clique in the subgraph induced by
A U {Q,}. Now the inductive hypothesis implies ;g(GA) <(n‚Äî‚Äîl)'
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Assume that B as (D. New x(Gi) Q x(G,i)+ MGB) since a good coloring of
G A with x(GA) colors, a good coloring of Gi, with );(Gi,) new colors and an
assignment of any color used on I/(Gi,) to Qi define a good coloring of Gi
Therefore

MGB) 2 x(Gi)-MGA) > (¬§‚Äîf)(¬§ ¬ ¬ - 1)" ‚Äò ‚Äî-(¬§¬ ¬  l)‚Äò
(n‚Äî(i+1))(n‚Äîl)"‚Äò,

which allows us to choose a connected component H of G, satisfying
x(H) > (n‚Äî‚Äî(i+ l))(n‚Äî1)'"‚Äò. Since Gi is connected by (i), there exists a vertex
Qi..,ieA such that V(H)¬§ {Qiii} induces a connected subgraph which we
choose as Giii. It is easy to check that Gi, Gi, ..., Giii and
Qi, Q2, ..., Qiii satisfy the requirements (i)‚Äî(iii).

Assume that B = (Z). Now X(Gi) Q x(GA)+1, which implies
(n‚Äî‚Äîi)(n‚Äî‚Äî1)"‚Äò <(n‚Äîl)'‚Äú‚Äò+1

Consequently, i = n- 1. Since A q © (Z) by properties (i) and (ii) of Gi, Qi, can
be defined as any vertex of A, Gi, = {Q,}

The proof of Theorem 2.4 shows that for triangle‚Äîfree graphs a stronger
statement holds.

COROL1.ARY 2.5. If G is a connected trianglefree graph of chromatic
number n, then every vertex of G is an endpoint of an induced Pi, in G.

1 ( )

Let ff (x) denote the smallest X-binding function of ‚Ç¨*}(P,,). Then

R(|_n/2`I, x+ 1)-1
I-n/2‚Äîi_l .. Q ,.* Q -1 * ‚Äò. f (X) (M )

where the upper bound comes from Theorem 2.4 and the lower bound
follows easily from the observation that an induced Pi, in a graph G contains
a stable set of size fn/2‚Äîl. The truth is probably close to the lower bound.
For example, for n = 4 the lower bound is sharp, since the family ‚Ç¨¬¢(P,,) is
known to be perfect (see [35]).

Pnonusm 2.6. Improve the lower or the upper bound of (1). for the
smallest X-binding function f,,* (x) of ‚Ç¨‚Ç¨(P,,).

Pxonusm 2.7. What is the order of magnitude of f5*(x)?
Pnonuzm 2.8. Determine

c = lim f,,*(2)/n.

(It is easy to see that 1/2 Q c Q 1.)
Combining the ideas of the proofs of Theorems 2.2 and 2.4, it is possible

to prove that @(8) is pg-bound, where B denotes a broom. A broom is a tree
defined by identifying an endvertex of a path with the center of a star. The
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broom is the maximal forest for which Conjecture 2.1 is known to be true in
the following sense: if F is a forest which is not an induced subgraph of a
broom, then Conjecture 2.1 is open. In particular, the following three special
cases of Conjecture 2.1 are open problems:

Pnoauzm 2.9. Prove that ‚Ç¨‚Ç¨(F) is X-bound for

Pnonuzm 2.10. Prove that ‚Ç¨‚Ç¨(F) is X-bound for

Pnonuzm 2.11. Prove that ‚Ç¨‚Ç¨(2K,_3) is X-bound.
It seems hard to attack the following special case of Conjecture 2.1: a X

binding function f (x) for ‚Ç¨¬ß(F) can be defined at x = 2 if F is a forest. To
settle this problem it is clearly enough to consider the case where F is a tree
since every forest is an induced subgraph of some tree. Thus we have

CoNJEcrU1u=; 2.12. Let T be a tree and let G be a trianglejree graph
which does not contain T as an induced subgraph. Then ;g(G) Q c, where c is a
constant depending only on T

Conjecture 2.12 was proved for trees of radius two in [23]. The smallest
tree for which Conjecture 2.12 is open looks like:

Pnonuzm 2.13. Prove Conjecture 2.12 for the tree above.
In what follows we consider problems concerning the smallest gg-binding

functions of some special forests. The first example is mK2, the union of m
disjoint edges. Note that mK2 is an induced subgraph of P3,,,-,, therefore
‚Ç¨6(mK2) is X-bound by Theorem 2.4. Theorem 2.4 gives an exponential X
binding function for @(mK2). The methods used in [40] give better results.

2""Tmzorum 2.14 (Wagon [40]). The family %(mK2) hasian O(x‚Äò") gg
binding function.

Tmzonmvi 2.15 (Wagon [40]). The function

is a x¬ binding function for ?(2K2).

5 ‚Äî Zastos. Mat. 19.3-4

x+1( 2 )
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Pkonrnivi 2.16. What is the order of magnitude of the smallest X-bindin
function for ‚Ç¨‚Ç¨(2K2)

roblem of Erdos and El-Zahar [9]. Wagon notes in [40] that 3x/2 is a
lower bound for the smallest X-binding function of ‚Ç¨‚Ç¨(2K2). A much better
lower bound is

R(C4, Kin)

where R(C4, Kx,.1) denotes the smallest k such that every graph on k
vertices contains either a clique of size x+1 or the complement of the graph
contains C4 (a cycle on four vertices). The above lower bound is non-linear
because R(C4, K,) is known to be at least t"`¬  for some a > 0 as proved by
Chung in [5]. Concerning particular values of the smallest X-binding function
f * for %(2K2), it is easy to see that f * (2) = 3. Erdos offered 203 to decide
whether f *(3) = 4. The prize went to Nagy and Szentmiklossy who proved
[31] that f*(3) =4.

Now we turn our attention to the smallest ;g‚Äîbinding function of ‚Ç¨‚Ç¨(F),
where F is a forest on four vertices. The number of such forests is six and
three of them (P4, S4 and 2K 2) have been discussed before. The smallest
X-binding function of ‚Ç¨¬¢(4K 1) is asymptotically ¬ßR(4, x+1) as the next
proposition shows.

Pnoposmow 2.17. Let f *(x) be the smallest X-binding function for
@(4K1). Then

R(4,x+1)‚Äî1
<fWM<

R4,x+1+2R(3,x+1) ( )

Proof. The lower bound is obvious. Let p be the maximal number of
disjoint three-vertex stable sets in Ge ‚Ç¨6(4K1). Let )V(G)| = 3p+q; then
q S R(3, x+1)‚Äî1 and

x(G) < p+q
|V(G)|+2q _, R(4, x+1)‚Äî1+2 R(3, x+ 1)-1 (

R(4, x+1)+2R(3, x+1)

The smallest x-binding function of the family @(P, U K 1) is asymptotically
-¬ß‚ÄîR (3, x+ 1).

Tmsonsm 2.18. Let f * (x) be the smallest X-binding function of
‚Ç¨¬ß(P3 UK,). Then

R(3, x+1)‚Äî1 < f*(x) S
R(3, x+1)+x‚Äî¬ 2
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The lower bound is obvious. The proof of the upper bound is based on
the following lemma

LEMMA 2.19. Assume that Ge ‚Ç¨¬¢(P3 U Kl) and cz(G) 2 3. Let S be a
largest stable set of G, i.e., |S| = cz(G). Then w(G‚ÄîS) = w(G)-‚Äî-1.

Proof. Let

S = {sl, sz, ..., sl} and ve V(G)‚ÄîS
Since Ge <¬ß(Pl U Kl), v is adjacent either to exactly one vertex of S or to all
vertices of S. Therefore, V(G)‚ÄîS = IQ U Vz, where ve Vl is adjacent to
exactly one vertex of S and ve Vz is adjacent to all vertices of S. Let W be a
clique of V(G)‚ÄîS. Assume that wl, wze Wm IQ, wl ge wz, and wlsleE(G),
wz slesE(G), iz ©j. Since |S| 2 3, we can choose sleS such that k ge i, k ¬¢
Now {wl, wz, sl, sl} (or {wl, wz, sl, sl}) induces P, UKl in G, which contra
dicts Ge ‚Ç¨6(Pz U K l). We conclude that all vertices of Wn IQ are adjacent to
the same vertex, say sleS. Clearly, sl is adjacent to all vertices of Wn IQ
Therefore, any clique of V(G)‚ÄîS can be augmented to a larger clique by
adding a suitable vertex of S.

Proof of Theorem 2.18. The theorem is trivial if cx(G) = 1. Assume
that cz(G) = 2 and let xl yl, xz yz, ..., xl, yl, be a largest matching of G. Let q

|V(G)|‚Äî2p; then x(G) <p+q and w(G) Bq. Thus

x(G) S p+q =

as stated in the theorem.

|V(G)|+q R 3, w(G)+1 -1+q ‚Äô ( )

Now we can proceed by induction on w(G). The case w(G) = 1 is trivial.
The inductive step follows from Proposition 2.17 and from the fact that the
Ramsey function R(x, 3) is strictly increasing. Let cz(G) 2 3 and let S be a
stable set of size cx(G). The inductive hypothesis can be applied to G' = G‚ÄîS.
Thus

x(G)<x(G,)+l S
2 R 3 -‚Äî (3 x)+x

+l<
R 3 1 1 J _- ( x+ )+x

The sixth four‚Äîvertex forest which was not discussed yet is Pz U 2Kl
Pnosmam 2.20. What is the order of magnitude of the smallest x‚Äîbinding

function for ‚Ç¨‚Ç¨(PzU2Kl)? The lower bound

R(3, x+ 1)-1

is obvious and it is easy to prove that

is an upper bound.

1(X; )+x‚Äî1
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3. BINDING FUNCTIONS ON FAMILIES
WITH AN INFINITE SET OF FORBIDDEN SUBGRAPHS

Let .9f be a set of graphs and let @(2%) denote the family of graphs
containing no graph of JF as an induced subgraph:

@(2f) = {G: H ¬¢G for all He.9@}.
In Section 2 we have dealt with X-binding functions of @(2f) for the case
(fl = 1. Now we are concerned with the case

.9@= {Hi, H2, ..., Hi,
If His if were acyclic for some i, then Conjecture 2.1 would imply that

@(.9f) is a X-bound family. Assume that, for some fixed k, g(Hi) < k for all i,
where g(Hi) denotes the girth (the length of the smallest cycle) of Hi. By the
basic result of Erdiis and Hajnal (see [10]), one can define Gi as a graph of
chromatic number i and girth of at least k+1 for all i. Consequently, the
family

gg:-" {G1, G2, ..., Gi,
is not X-bound. Since Gie@(.9f) for all i, we observe that

Pnoposmon 3.1. If @(2f) is pbound, then

Sup a(Hl = <>¬§
HEX

The most challenging open problem concerning perfect graphs is the
Strong Perfect Graph Conjecture. Let us define .9% as

{C5: C7: ¬ ‚Ä¢‚Ä¢s C2i+1s
The Strong Perfect Graph Conjecture states that @(.9% U .9%) is the family
of perfect graphs, i.e.,

@0% KJ fo) =

Using our terminology, the Strong Perfect Graph Conjecture is equivalent to
thc statement that @(.9% U .9tF) is a X-bound family with X-binding function
f (x) = x. Surprisingly, it is not even known if @(9%U9%) is X-bound.

CONJEcTURE 3.2 (Weakened Strong Perfect Graph Conjecture). The family
@(.9% U .9%) is X-bound.

The Strong Perfect Graph Conjecture gives a necessary and sufficient
condition for perfectness in terms of forbidden subgraphs. To state similar
conjectures for families having binding functions different from f (x) = x
seems to be difficult. Consider, for example, the family of graphs with 0
binding function f (x) = x+1. Graphs of that family do not contain the
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(disjoint) union of G , and G2 as an induced subgraph, where
G1, G2e.;f0U.;¬ F0. The following proposition shows that ‚Äúcritical" graphs
can be much more complicated. Since its proof is based on case analysis, we
state it without proof.

Fig. 1

PROP0smoN 3.3. Let G be a graph shown in Fig. 1. Then 0(G) = a(G)
+2 and every induced proper subgraph G' C G satisfes 9(G‚Äô) S a(G‚Äô)+1.

A natural way to show Conjecture 3.2 is to prove the following stronger
conjecture:

Comracrums 3.4. The family <.9(J‚Ç¨‚ÄôO) is X-bound.
Perhaps Conjecture 3.4 can be strengthened further:
Cowscrune 3.5. The family %(.9f'5‚Äò) is X-bound for all m 2 2, where

ld ={Czm+1¬ª Cz¬ª.+s¬ª
A weaker version of Conjecture 3.5 seems to be also interesting:
CONJECTURE 3.6. The family @(6,) is X-bound for all I2 4, where

(61:lCh CI+1s Cl+2s
Note that {9%,,) is the family of triangulated graphs which is perfect.

However, for I; 5 the conjecture is open.
Special cases of the Strong Perfect Graph Conjecture are known to be

true. Some of these. results say that {HJ?) is perfect if

where H is a four-vertex graph. J. Lehel was curious about the four‚Äîvertex
graphs H for which the perfectness of ‚Ç¨4(.%"0 u fo u {H }) is not known. The
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Perfect Granh Theorem reduces the eleven cases to six. The perfectness of
Q(.}Q0u.J?`_Ou {H}) is known in the following cases:

co

H = K4 (Tucker [38]);
H = K4¬ ‚Äî-e (Parthasarathy and Ravindra [33]);
H = K 1.3 (Parthasarathy and Ravindra [32]);
H =K3ue, where e is an edge which has exactly one vertex in

mmon with K3 (a consequence of Meyniel‚Äôs theorem [29], and a direct
proof follows from Lemma 2.19);

H = P4 (Seinsche proved [35] that Q(P4) is perfect).
It remains to solve

Cownacrums 3.7 (J. Lehel). The family

is perfect.

@(1% U #0 U {Citi`) = g(¬ #0 U {(:4})

4. BINDING FUNCTIONS ON FAMILIES

HAVING A SELF-COMPLEMENTARY SET OF FORBIDDEN SUBGRAPHS

A family Q of graphs is sey-complementary if Q = Q, i.e., Ge Q if and
only if Ge Q. A self-complementary family Q is X-bound if and only if Q is 0
bound. Moreover, if Q is gg-bound, then the smallest X-binding function of Q
is the same as the smallest 0‚Äîbinding function of Q. Therefore, we can speak
about binding functions of Q without referring to X or to 6. We mention two
well-known families of perfect self-complementary graphs.

Permutation graphs (see [16]): graphs G such that both G and G are
comparability graphs.

Split graphs (see [16]): graphs G such that both G and G are triangu
lated graphs. Equivalently, split graphs are graphs whose vertices can be
partitioned into a clique and a stable set.

Let JF be a family of graphs. Obviously, Q(.2Q) is self-complementary if
and only if JV is self-complementary. In what follows, we investigate binding
functions of Q (JQ) for self-complementary JQ. To see some perfect families
first, note that Q(P4) is perfect [35], Q(C4, 2K 2, C,) is perfect and coincides
with the family of split graphs as proved by Ftildes and Hammer [13]. A
slightly more general result is in [21] (Theorem 3). The family
Q(C4, 2K,, P4) is a subfamily of both previous families, thus it is perfect.
The family contains the so-called threshold graphs (see [16]).

Concerning the existence of binding functions, the main open problem is
a special case of Conjecture 2.1.

Comrzcrumz 4.1. The family Q(F, F) has a binding function for every
fixed forest F.



It seems useful to look at some special cases of Coniecture 4.1. A
straightforward attempt is to settle the following weaker versions of Prob
lems 2.9~2.11

Pnonuzm 4.2. Prove Conjecture 4.1 for F from Problem 2.9.
Pnouusm 4.3. Prove Conjecture 4.1 for F from Problem 2.10.
Pnouuam 4.4. Prove Conjecture 4.1 for F == 2K 3_3
Another problem is to determine or estimate the smallest binding

function of @(F, F) when @(F) is known to be X-bound. The test of the
section is devoted to problems and results of this kind.

Pxontem 4.5. Estimate the smallest binding function of @(S,,, S-,,). (S,, is
a star on n vertices.)

Concerning special cases of Problem 4.5, note that the case n = 3 is
trivial since @(S3, S3) contains only cliques and their complements. The case
n = 4 is settled by the following theorem (cf. Theorem 2.2):

Tmzoiuzm 4.6. The smallest binding function of @(84, S4) (the claw and
co-claw free graphs) is

f (x) = L3x/2.l
Proof. Let G be a non-perfect member of @(S4, S4). The result of

Parthasarathy and Ravindra [32] implies that G contains an induced odd
cycle or its complement. By symmetry we may assume that

C2k+1={v1s V2, ¬ ¬ ¬ ¬ª v2k+1
is an induced subgraph of G for some k ,2 2.

We claim that any vertex xe V(G)‚Äî V(C3,,+ 3) is adjacent to all or to no
vertices of C2k+1

To prove the claim assume that x is adjacent to v3. If x is not adjacent
to v3..3 and x is not adjacent to v,43 (indices are taken modulo 2k+ 1), then
{v3-3, v3, vial.], x} induces S4 in G, a contradiction. We may assume that v3
and v3+3 are both adjacent to x. If there exists a vertex v, in

C, = `ivt+s¬ª vi+4¬§ -¬ ¬ ¬ª va‚Äîa¬ª vi-2
such that 03 and x are not adjacent, then {vi, v3, :23+ 3, x} induces S4 in G, a
contradiction. Thus x is adjacent to all vertices of C'. Assume that x is not
adjacent to v3- 3 or to v,+3, say x and v,- 3 are not adjacent. If k = 2, then x
and 123+3 are adjacent (otherwise, {11,-3, v3+ 3, v3+2, x} would induce S4);
therefore {v3-3, v3+3, v3+3, x} induces S4. If k 2 3, then {v,-3, v3_3, v3-4, x
induces S4. In all cases we have obtained a contradiction. Therefore x is
adjacent to all vertices of CZH3 and the claim is proved.

Let V(G)-V(C3,,+3) = A UNA, where A (NA) denotes the set of ver
tices adjacent (non-adjacent) to C33,3. We claim that either A or NA is
empty.
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Assume that ae A, beNA and abe;E(G). Let vi vi¬¢E(G); now
{a, b, vi, vi} induces S4. Similarly, if ab¬¢E (G), then we choose i and j such
that vi vis E (G), and now {a, b, vi, vi} induces S4. Thus the claim is true.

The theorem follows by induction on the number of vertices of
Ge ‚Ç¨‚Ç¨(S4, S4). The inductive step goes as follows.

Let Ge‚Ç¨‚Ç¨(S4, S4). If G is perfect, then

x(G) = w(G) <
3w(G)

2

Otherwise G = Cziiii UA or G = Cziiii uNA as was proved above. In the
first case we use the inductive hypothesis for A:

;g(G)=x(A)+3<
3 A w()

2
+3= 3 G -2 (w() )

2
+3=

3 G w()
2

In the second case we use the inductive hypothesis for NA: x(G) = x(NA)
and w(G) = w(NA), so

x(G} = x(NA) <
3w(NA) 3w(G)

2 I I 2

We have proved that f (x) = L3x/2.] is a binding function for ‚Ç¨6(S4, S4).
To see that it is the smallest one, let G,,, be defined as follows. Consider Km
and remove the edges of Lm/5,I vertex disjoint C5. Now it is easy to
see that G,,,e‚Ç¨¬¢(S4, S4) for all m; moreover,

w(G5¬ª.) = 2k, x(G$¬ª.) == 3k, w(G$i+1) = 2k+1. x(G5¬ª.+r) = 3k+1
Pkoauzm 4.7. Estimate the smallest binding function of @(P,,, I-5,,) (cf.

Theorem 2.4 and Problem 2.6).
Pnonuzm 4.8. What is the order of magnitude of the smallest binding

function for ‚Ç¨9(P,, Pi)? (Cf. Problem 2.7.)
Pnoauzm 4.9. What is the order of magnitude of the smallest binding

function for ‚Ç¨*}(mK2, mK2)? (Cf. Theorem 2.14.)
The case m == 2 in Problem 4.9 is settled by the following theorem:
THEQREM 4.10. The smallest binding function for ‚Ç¨‚Ç¨(2K2, 2Kz) is f (x)

x+1. (Cf. Problem 2.16.)

cx(G). Assume that x, ye V(G)‚ÄîS, xy¬¢E(G). The definition of S and
2K, 9tG imply that I`(x)rwS and I`(y)nS are non‚Äîempty sets and one
contains the other, say

I`(x)rwS ;['(y)r\S
(I" (p) denotes the set of neighbours of pe V(G)). Now 2Kz Qt G implies
[F (x) rwS| = l.
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K1: {x: xeV(G)‚Äî-S,lI`(x)¬§S|>1}r;
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then K1 is a clique in G by the argument above. We proceed to show that
V(G)‚Äî‚Äî(SU K1) is again a clique of G. Assume that p, qe; V(G)‚Äî(S U K1) and
pq¬¢E (G). By definition,

l1`(p)oSI =I1"<q)oSl =1

However, I` (p) rwS = I`(q)rwS contradicts the maximality of S, and
I`(p) rwS ¬¢ I`(q) rwS contradicts the assumption 2K2 gt G.

We have shown that the deletion of a stable set S of G results in a
perfect graph (the complement of a bipartite graph). Thus

x(G) < x(G‚ÄîS)+1 = w(G-‚ÄîS)+1 < w(G)+ 1,

showing that f (x) = x+1 is a binding function for ‚Ç¨‚Ç¨(2K2, 2K 2 ). To see that
f (x) = x+1 is the smallest binding function, it is enough to consider
complete graphs from which the edges of a C5 are deleted.

The proof of Theorem 4.10 gives
CoRou.A1zv 4.11. If Ge ‚Ç¨¬ß(2K2, 2K2), then V(G) can be partitioned into

two cliques and a stable set. By symmetry, V(G) can be also partitioned into
two stable sets and a clique.

Using Lemma 2.19 it is easy to prove
Tmzonem 4.12. Let F denote the forest P5 UK ,. Then ‚Ç¨6(F, F) contains

complete multipartite graphs and their complements, and moreover the graph C5.
Using the result of Parthasarathy and Ravindra [33] which proves the

Strong Perfect Graph Conjecture for ‚Ç¨¬¢(K4‚Äîe) (or, equivalently, for
@(K2 U2K 1)), it is easy to derive

Tmzoksivi 4.13. Let F denote the forest K 2 U 2K 1. Then the non-perfect
members of ‚Ç¨9(F, F) are

1. the graph of Fig. 2 and its non-perfect subgraphs;
2. a clique K whose vertices are adjacent to two consecutive vertices

of a C5;
3. the complements of the graphs defined in 1 and 2.

Fig. 2
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Putting ,,,,2,,,,},,,,- me- p
COIOZEELL
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revious two theorems, we have the followiq

LLARY 4.14. Let F denote either P3wK, or K2 U2K,, Then ih
mallest binding function of Q(F, F) is

ie 3 X = 2, }. ,...2.
Before completing this section, note that the smallest binding function o

Q(F, F) was found for four-vertex forests F with one exception. The excep
tional case occurs when F = K,,, i.e., F is a stable set of four vertices. Th¬
family Q(K,,, K,) is very eccentric since it is finite (like Q (12,,,, K,,,) in genera
for fixed m). Its smallest binding function f *(x) is determined by the value
f *(2) and f *(3). It is easy to deduce that f *(2) = 3 from the facts tha
R(3, 4) = 9 and that a graph G with w(G) = 2, ;g(G) ,2 4 satisfies |V(G)| > 9
(In fact, |V(G)| 2 11 is true as proved by Chvatal in [6].) Is it possible tc
determine f * (3) without brute force'?

s. BINDING FUNCTIONS ON UNION AND INTERSECTION OF GRAPHS

For graphs G,, G2, ..., G,, the graphs U G, and f) G, are usually
defined as follows:

i= 1 i= 1

V(U Gi) = U V(Gi), E (U Gi) = U E(Gi).
VU) Gi) = f) V(Gi), E(l)Gi) = f)E(Gi)

If Q,, Q2, ..., Q, are families of graphs, then their union is the family
{U G,: G,e Q,} and their intersection is the family {()G,: G,e Q,}. By defini
tion, () Q, is a X-bound family if and only if UQ, is a 8-bound family. Thi:
fact combined with x(G1UG2)S X(G1)x(G2) gives the following obvious
observation:

PROPOSITION 5.1. (a) If Q,, Q2, ..., Q, are X-bound families with binding

functions f,, f2, ..., A, then U Q, is a X-bound family and H L is a suitable
i=i

gg-binding function.
(b) If Q,, Q2, ..., Q, are 8-bound families with binding functions

f,, fz, ...,A, then () {Z is a 6¬ bound family and H A is a suitable 9-binding
function.

i=l

Proposition 5.1, trivial as it is, can sometimes be conveniently applied to
prove the existence of binding functions.

COIz0I.1AIzY 5.2. Let 9* denote the family of all perfect graphs. The unior
(intersection) of k copies of 9 is gg-bound (9-bound) with binding function x"
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Pizoeuam 5.3. What is the smallest X-binding function for Qu Q?
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PRoPostTt0N 5.4. The family of overlap graphs is 9‚Äîbound with H‚Äîbindi
function x

Proof. Let Q, denote the family of co-interval graphs, and let Q,
denote the family of interval inclusion graphs. Since Q, and gz are perfect
families, xz is a ;g‚Äîbinding function for Q, ti gz by Corollary 5.2. The family
of overlap graphs is a subfamily of Q, u Q2.

PROP0sm0N 5.5. The family of d¬ dimensional box graphs is 9-bound with
9-binding function x'.

Proof. The family in question is the intersection of d families of
interval graphs and we can apply Corollary 5.2.

It is tempting to think that O Q, is x‚Äîbound provided that Q, is X
a= 1

bound for i = 1, 2, ..., k. However, this is not the case. It may happen that
Q, n gz is not X-bound although Q, and gz are perfect families. A surprising
construction of Burling [4] gives three-dimensional box graphs B,, for all
positive integers n such that w(B,,) = 2 and x(B,,) = n. The result shows that
J n J n J is not X-bound, where J denotes the family of interval graphs.
The analysis of Burling‚Äôs construction shows moreover that J n j is not X
bound, where } is the family of "crossing graphs" of boxes in the plane. The
vertices of crossing graphs are boxes in the plane and two vertices are
adjacent if and only if the corresponding boxes cross each other. It is
immediate to check that j is a subfamily of the family of comparability
graphs. Note that J n J is X-bound with an 0(x2) X-binding function as
proved by Asplund and Griinbaum [1]. Therefore the results in [4] and in
[1] imply

Tmzonrsm 5.6. Let J and Q denote the family of interval graphs and
comparability graphs, respectively. Then

(a) J nJ is X-bound;
(b) Jn Jn J is not X¬ bound;
(c) J nQ is not X-bound.
Perhaps part (a) holds in a stronger form.

Pnouum 5.7. Let J denote the family of triangulated graphs. Is .9* n .7
;g‚Äîbound? In particular, is J nJ x‚Äîbound‚Äòl

Since the graphs of J can be represented as subtrees of a tree (see [16]),
Problem 5.7 can be viewed as a geometrical problem.

The following result shows a pleasant property of comparability graphs.
PnoPosmoN 5.8. Let Q denote the family of comparability graphs. The

blintersection of k copies of Q is X-bound and xzis a suitable X-binding
function.
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Proof. Let Gi, G2, ..., Giie and assign a transitive orientation to the
edges of Gi for all i (1 S i © k). Assume that

xyeE({)Gi)
_1

The edge xy is oriented according to its orientation in Gi; moreover, we
assign a type to it as follows. The type of xy is a 0-1 sequence of length k- 1.
For all j (1 < j < k- 1) the j-th element of the sequence is 0 if xy is oriented
in Gi from x to y, and it is 1 otherwise. It is immediate to check that the
edges of a fixed type of () Gi define a transitively oriented graph. The

¬§=i

number of possible types is at most 2"", which implies that f) Gi can be
""

i=i

written as the union of at most 2comparability graphs. Now the
proposition follows from Corollary 5.2.

PROBLEM 5.9. Estimate the smallest gg-binding function of ‚Äò‚Ç¨n‚Äò‚Ç¨.
A subfamily of perfect graphs, the permutation graphs, occur in many

applications. Permutation graphs can be defined as graphs G such that both
G and G are co_mparability graphs. Corollary 5.2 and Proposition 5.8 give

PROi>osm0N 5.10. Let k be fixed and consider the family E6 of graphs
obtained by at most k applications of intersections and unions from permutation
graphs. Then {6 is X-bound and 8-bound.

Now we want to determine the smallest 0-binding function of a family
obtained as the union of k bipartite graphs. Observe that this family contains
exactly the graphs of chromatic number at most 2*. Therefore, we are
interested in finding the smallest 0-binding function for the family {fm of at
most m-chromatic graphs.

Pnovosmon 5.11. Let f,¬ß," (x) denote the smallest 9-binding function for
{6,,,. Then

(al f.;"(><) S L(m+1)/2Jx;
(b) f,,‚Äô¬ß‚Äò(x) 2 (m/2)x for x > xi, = x0(m).
Proof. It is trivial to cover the vertex set of an at most m-chromatic

graph G by the vertices of at most L(m+1)/2.} = s bipartite graphs
Bi, B2, ..., B,. Now

and (a) follows.

9(G) < Z 0(Bi) = X ¬§¬§(Bi) <S¬ <¬§(G)
i=1 i=1

The lower bound is pointed out by Erdiis, remarking that for n ,2 n
and for arbitrary m there is a graph G = G(n, m) on kn vertices satisfyin
a(G) = n, eo(G) = 2, and x(G) = m (see [8]).
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Pnoposmow 5.12. The smallest binding junction f3* (x) of g3 satis/ies;
(3) f3* (X} S ix;
(b) f3* (x) zgx x is divisible by 5.
Proof. First we prove (a). We may assume that Ge @3 is 3-chromatic.

Let A1, A2, A3 be the color classes of G in a good 3 coloring of V(G). Let
Gu, G13, G23 be the subgraphs of G induced by A1 UAZ, A1 uA3, A2 UAB,
respectively. Since GU is a bipartite graph, 9(GU) = a(GU), which shows that
V(G,,) can be covered by at most ct(G) cliques (vertices or edges) of GU for
1<i<j<3

We may assume that the clique cover of V(GU) covers all vertices of
V(G,,) exactly once. The cliques in the covers of V(G12), V(G13), V(G23) form
a clique cover of G with at most 3¬¢1(G) elements and all vertices of G are
covered exactly twice by these cliques. This cover can be partitioned into
components where the cliques (edges and vertices) of each component are
either the edges and the two endvertices of a path (allowing two identical
vertices as a degenerate case) or the edges of a cycle of length divisible by 3.
It is easy to check that the vertices of a component of m cliques can be
covered by at most 5m/9 cliques. These cliques are edges and vertices except
for a component which forms a triangle; in this case the triangle is used
instead of three edges. Therefore, we get a clique cover of V(G) with at most

cliques.

5 5a(G)
3a (G) -‚Äî9 3

The lower bound (b) was guessed by Erdos who devised to fmd a grapn
G with |V(G)| == 15, a(G) = 5, ;g(G) = 3, and w(G) = 2. Really, such a graph
G exists as a subgraph of a 17-vertex graph H containing neither triangles
nor six independent vertices (see H in [26]). The graphs containing disjoint
copies of G form a family with 9-binding function 8x/5 for the cases where x
is divisible by 5.

Pnonuam 5.13. Let f3* (x) be the smallest binding function of Q,. Deter
mine

lirj¬§ f5"(x)/><
_

(It is at least 2- and at most ¬ß by Proposition 5.12.)

6. COMPLEMENTARY BINDING FUNCTIONS
AND STABILITY OF THE PERFECT GRAPH THEOREM

We say that a binding function f has a complementary binding function if
the family {df of graphs with 0-binding function f is X-bound. The smallest
X-binding function of gf is called the complementary binding function of f
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Note that 0 and gg can change rolcs in thc definitions. We are interested in
the following general problem

PROnLEM 6.1. Which binding functions have complementary binding
functions and what are their mmplementary binding functions

Using the notion of complementary binding function, the Perfect Graph
Theorem states that f (x) = x is a self-complementary binding function. (The
converse statement is also true, see Theorem 6.7.)

One feels that only "small" functions may have complementary binding
functions. This is really the case as the next theorem shows.

Tuzonnm 6.2. If f (x) has a complementary binding function, then
inf f (x)/x = 1

Proof. To prove the theorem, it is enough to show that L(x) ; (1+s)x
has no complementary binding function if e is a real number satisfying
0 < z Q l. The proof is based on graphs defined by Erdos and Hajnal in [I 1]
for every ae(0, 1] and for every natural number k there exists a graph Gi
with the following properties
(1) x(Gi) = k,

*;5;](2) < 2+e for all induced subgraphs G Q Gi:
Note that (2) implies that Gi is a triangle-free graph. Therefore, (1) implies
that the family ff, = {Gi, G3, is not ;g‚Äîbound. We are going to prove that
Q, is a 8-bound family with 9-binding function jQ(x).

(1+a)cx(G). Since G is triangle-free, 9(G) = |V(G)|‚Äîv(G), where v(G) is the
cardinality of a maximal matching in G. We can express v(G) by the Tutte‚Äî
Berge formula (see [39] and [2]) as follows

|V(G)I+lA|‚Äî¬§(H)(3) NG) __: min
xevrcp

where H denotes the subgraph induced by V(G)‚ÄîA in G and <r(H) denotes
the number of odd components of H. Using (3) and 9(G) = |V(G)| ‚Äîv(G), we
can write 9(G) s (1+s)a(G) equivalently as

""'*"*‚Äú‚Äò*"
for an H ga(4) ne) s

2(l+e)
In order to prove (4), let

components H1, H2, ..., H,,,
I 2, I3 defined as follows

ie], if H,
(5) ielz if H;

i‚Ç¨13 if H;

H be an induced subgraph of G with connected
Consider the partition of {1, 2, ..., m} into I1,

is bipartite and |V(H,)| is even,
is bipartite and |V(H,)| is odd,
is not bipartite.



(6)

We claim that

a(H,)2

ct(H;)2

a(H,) >

Perfect graphs

V H- | ( ')

V H- 1 | ( ')|+

V H- 1 | (9¬£2(lg

if iell,

if ic-212.

. . if 1613

The first two inequalities are obvious. To prove the third one, let C2,+ 1
be a minimal odd cycle of H, for some i esl,. Using (2) for CMH, we get

which implies

(7)

t = cx(C2,+1) >
2 1

Observing that (7) is equivalent to

and

gig , 1.e., t > ‚Äî~,

|V(Hi)i 2 2t+1>{+1

lV(Hi)|_ |V(Hi)|+1
2+:2

I-]. a( ') >

2(1+t-:)

IV(Hi)l
2+e

by (2), we get the third inequality of (6).
Now we use (6) to estimate <x(G). Clearly,

(G) 2 X ¬§¬§(Hi) = Z ¬§¬§(HJ+ E ¬§¬§(Hi)+ Z ¬§¬§(Ht}
i=1 idgiell ieI2

IV(H)I+|Iz¬§I3l , V(H)+¬§(H)
2(l+e) 2(l+.¬ :)

since |V(H,)| is even for ie], by (5). Thus we have proved (4) and the
theorem follows.

Theorem 6.2 gives a necessary condition for the existence of comple
mentary binding functions. Concerning sufficient conditions, the main open
problem is the following

Comncrunn 6.3. The function f (x) = x+c has a complementary binding
function for any fixed positive integer c.
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Conjecture 6.3 is open even in the case c = l. Probably this case alread;
contains all the difficulties. An evidence supporting Conjecture 6.3 is th
following result

PROP0sm0N 6.4. If g is the family of graphs with G-binding function f (x
x+c, then, for all Gag, w(G) = 2 implies x(G) S 6c+2.

Proof. Assume that Ge‚Ç¨¬ß, w(G) = 2. Clearly,

which implies

(8)

V G I ( N
S 9(G) <¬§¬§(G)+c,

MG) Z
V G -‚Äî‚Äî2c ! ( )|

Let C1 be an odd cycle of minimal length in G, let C 2 be an odd cycle 0
minimal length in the subgraph induced by V(G)‚Äî‚ÄîV(C,) in G, etc. We
continue to define C1, C2, ..., C,,, until the subgraph induced by

V(G)‚Äî llV(Ci)
l

in G does not contain odd cycles. Applying (8) to the subgraph C induced by
U V(C,) in G, we get

z=i

V C -2 ' "' ‚Äú "' V <¬§to<;¬§<c.>=!‚Ç¨‚Äî‚Äî.l
_1

from which m < 2c follows. A good coloring of V(G) can be defined by
coloring V(C) with 3m colors and using two additional colors for the
bipartite graph induced by V(G)‚Äî V(C). Therefore,

;g(G) S 3m+2 S 60+2.

By a deep result of F olkman [12] which answers a conjecture of Erdos
and Hajnal, condition (8) implies x(G) < 2c+2. Therefore, Proposition 6.4
holds with 20+2 instead of 6c+2.

The existence of complementary binding functions is known only for
‚Äòvery small" functions. We mention a modest result of this type.

PROPOSITION 6.5. Let t be a fixed positive integer. If f (x) is a binding
function such that f (x) = x for all x 2 t, then f (x) has a complementary
binding function.

lt does not seem to be a trivial problem to determine the complement
ary binding functions of any function different from f (x) = x. Perhaps the
simplest problem of this type is

Pnomsem 6.6. Let f be the binding function defined as
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f(x)*
x if x ; © 2
3 ifx=2.

439

What is the complementary binding function of f ? Perhaps l.3x/2_l is the
truth.

The following result shows that the Perfect Graph Theorem is stable in
a certain sense:

Tmzonam 6.7. If f (x) is a seU-complementary binding function, then f (x)
x for all positive integers.

Proof. Assume that f is self-complementary.
Case 1. Assume that f(2) = 2. If f(x) ¬¢ x for some xe N, then we can

choose keN such that k 2 3, f (k) > k and f (x) = x for x < k. Clearly, f is
a 0-binding function for {(72,,+1} but fails to be a X-binding function for
{Cu., 1}, i.e., f is not self-complementary. The contradiction shows that f (x)

x for all xe N.

Case 2. Assume that

f(2) > 2 and f(k) < l`(3k‚Äîl)/2-l for some k.
Consider the graph Gk whose complement is Lk/2.I disjoint C5 and, for odd
k, an additional isolated vertex. Now f is a 0-binding function for {Gk}
(rx(G,,) = 2, 0(Gk) == 3) but fails to be a X-binding function for {G,} (w(G,,)

k, ;g(G,,) = l‚Äî(3k‚Äîl)/2-l).
Case. 3.f(k)>|¬ª(3k‚Äî-1)/2-l for all ke N. In this case Theorem 6.2

implies that f (x) has no complementary binding function, again a contradic
tion.

A generalization of the Perfect Graph Theorem (proved also by Lovasz
in [28]) states that a graph G is perfect if cx(G‚Äô)¬ w(G') ,2 IV(G‚Äô)| holds for all
induced subgraphs G' of G. The first step in searching analogous properties
would be to settle

Pnoauzm 6.8. Let ‚Ç¨‚Ç¨ be a family of graphs G satisfying

ot(G')¬ w(G') 2 |V(G')| ‚Äîl

for all induced subgraphs G' of G. Is it true that ‚Ç¨¬ß is a X-bound (or,
equivalently, 9-bound) family? If yes, what is the smallest binding function
for Q?

Acknowledgment. I should like to express my gratitude to the referee,
to the technical editor and to all others whose work improved my
manuscript.

Added in proof. Problems 1.7 and 1.8 are answered by A. Kostochka.
Problems 2.11 and 4.4 are easy.

6 ‚Äî Zustos. Mai. I9.3‚Äî4



440

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[I6]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

A. G y ©rfeis

References

E. Asplund and B. Grlinbaum, On a coloring problem, Math. Scand. 8 (1960), pp. 181
188.

C. Berge, Sur le couplage maximum d‚Äôun graphe, C. R. Acad. Sci. Paris 247 (1958), pp.
258-259.

C. C. Chen, V. Chvatal and C. S. Seow, Combinatorial properties of polyominoes,
Combinatorica 1 (1981), pp. 217-224.
J. P. Burling, On coloring problem of families of prototypes, Ph. D. Thesis, University of
Colorado, 1965.
F. R. K. Chung, On the covering of graphs, Discrete Math. 30 (1980), pp. 89-93.
V. Chvatal, The minimality of the M ycielski graph, pp. 243-246 in: Graphs and Combina
torics, Lecture Notes in Math. 406, Springer-Verlag, Berlin 1974.
G. Ehrlich, S. Even, R. E. Tarjan, Intersection graphs of curves in the plane, J. Combin.
Theory Ser. B 21 (1976), pp. 8-20.
P. Erdiis, Some new applications of probability methods to combinatorial analysis and graph
theory, pp. 39-51 in: Proc. 5-th Southeastern Conf. on Combinatorics, Graph Theory and
Computing, Boca Raton 1974, Congress. Numer. No. 10, Utilitas Math., Winnipeg, Man.,
1974.

P. Erdiis, personal communication.
and A. Hajnal, On chromatic number of graphs and set systems, Acta Math. Acad. Sci.

Hungar. 17 (1966), pp. 61-99.
On chromatic graphs (in Hungarian), Mat. Lapok 18 (1967), pp. 1-4.

J. H. Folk man, An upper bound on the chromatic number of a graph, Coll. Math. Soc. J.
Bolyai, 4. Combinatorial Theory and its Applications (1969), pp. 437-457.
S. Ftildes and P. L. Hammer, Split graphs, pp. 311-315 in: Proc. 8-th Southeastern
Conf. on Combinatorics, Graph Theory and Computing, Congress. Numer. No. 19,
Utilitas Math., Winnipeg, Man., 1977.
M. R. Garey and D. S. Johnson, Computers and Intractability, W. H. Freeman and C0.,
1979.

G. L. Miller and C. H. Papadimitriou, The complexity ofcoloring circular arcs and
chords, SIAM J. Algebraic Discrete Methods 1 (1980), pp. 216-227.
M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, 1980.
J. R. Griggs and D. B. West, Extremal values of the interval number of a graph, SIAM J.
Algebraic Discrete Methods 1 (1980), pp. 1-7.
M. Grotschel, L. Lovasz and A. Schrijver, The ellipsoid method and its consequences
in combinatorial optimization, Combinatorica 1 (2) (1981), pp. 169-197.
A. Gyarfas, On Ramsey covering numbers, Coll. Math. Soc. J. Bolyai, I0. Infinite and
Finite Sets (1973), pp. 801-816.

On the chromatic number of multiple interval graphs and overlap graphs, Discrete Math.
55 (1985), pp. 161-166.

and J. LeheL A Helly type problem in trees, Coll. Math. Soc. J. Bolyai, 4. Combinatorial
Theory and its Applications (1969), pp. 571-584.

Covering and coloring problems for relatives of intervals, Discrete Math. 55 (1985), pp.
167-180.
A. Gy ©rfas, E. Szemer ©di and Zs. Tuza, Induced subtrees in graphs of large chromatic
number, ibidem 30 (1980), pp. 235-244.
F. Harary and W. T. Trotter, Jr., On double and multiple interval graphs, J. Graph
Theory 3 (1979), pp. 205-211.
I. A. Karapetian, On coloring circular arc graphs (in Russian), Dokl. Akad. Nauk
Armjan. SSR 5 (1980), pp. 306-311.
G. K ©ry, On a theorem of Ramsey (in Hungarian), Mai- Lapok 15 (1964), pp. 204-224,



[27]

[28]
[29]

[30]
[3]]
[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

441Perfect graphs

L. Lov ©sz, Normal hypergraphs and the Perfect Graph Conjeczure, Discrete Math. 2
(1972), pp. 253-267.

A characterization of perfect graphs, J. Combin. Theory 13 (1972), pp. 95-98.
H. Mcynicl, The graphs whose odd cycles have at least two chords, in: Topics on Perfect
Graphs, Ann. Discrctc Math. 21 (1984), pp. 1l5‚Äî1l9.
J. M ycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955), pp. 161-162.
Zs. Nagy and Z. Szcntmikl ©ssy, personal communication.
K. R. Parthasarathy and G. Ravindra, The Strong Perfect Graph Conjecture is true
for K ,_,¬¢ree graphs, J. Combin. Theory Ser. B 21 (1976), pp. 2l2‚Äî‚Äî223.

The validity of the Strong Perfect Graph Conjecture for K,‚Äîe free graphs, ibidem 26
(1979), pp. 98-1w.
F. S. Roberts, On the boxicity and cubicity of a graph, pp. 301~310 in: Recent Progress
in Combinatorics, W. T. Tuttc (ed.), Academic Press, 1969.
D. Seinsche, On a property ofthe class of n-colorable graphs, J. Combin. Theory Ser. B 16
(1974), pp. 191-193.
J. B. Shearer, A class of perfect graphs, SIAM J. Algebraic Discrete Methods 3 (1982), pp.
281-284.

A. Tucker, Coloring a family of circular arcs, SIAM J. Appl. Math. 3 (1975), pp. 493-502.
Critical perfect graphs and perfect 3-chromatic graphs, J. Combin. Theory Ser. B 23

(1977), pp. 143-149.
W. T. Tuite, The factorization of linear graphs, J. London Math. Soc. 22 (1947), pp. 107
111.

S. Wagon, A bound on the chromatic number of graphs without certain induced subgraphs,
J. Combin. Theory Ser. B 29 (1980), pp. 345-346.

COMPUTER AND AUTOMATION INSTITUTE
HUNGARIAN ACADEMY OF SCIENCES
BUDAPEST


