
Discrete Mathematics 55 (1985) 167-180 
North-Holland 

COVERING AND COLORING PROBLEMS 
FOR RELATIVES OF INTERVALS 

A. GYARFAS and J. LEHEL 

Computer and Automation Institute, Hungarian Academcy of Sciences, Budapest, Hungary 

Received 26 December 1983 
Revised 15 May 1984 

The following generalizations and relatives of interval families are studied in the paper: arcs 
of a circle, multiple intervals, chords of a circle, d-dimensional boxes and multiple boxes. For 
these families we survey results and problems concerning the dependence of the transversal 
number on the packing number and the dependence of the coloring number on the clique 
number. 

The intersection graphs of the underlying set systems are circular arc graphs, multiple interval 
graphs, circle graphs (called also overlap graphs), box graphs and multiple box graphs. Thus 
most of our problems and results concern the relation between the clique-cover number and 
stability number (ft and a), or between the chromatic number and clique number (x and w) of 
these graphs. 

1. Introduction 

In this paper we study the following generalizations and relatives of interval 
families: arcs of a circle, multiple intervals, chords of a circle, d-dimensional 
boxes and multiple boxes. Applications and results on these families and their 
intersection graphs (circular arc graphs, multiple interval ·graphs, circle graphs, 
box graphs) can be found in [7, 8, 10, 15, 17, 18]. Here we focus our attention on 
results and problems concerning the dependence of the transversal number T (or 
the clique cover number it) on the packing number v and the dependence of the 
coloring number q on the clique number w. 

An unpublished result of Gallai states that for' any family of intervals the 
maximum number of pairwise disjoint intervals is equal to the minimum number 
of points meeting all intervals (v = T). Bielicki and Rado proved [3, 14] that the 
maximum number of pairwise intersecting intervals is equal to the minimum 
number of classes in a partition into sub-families containing pairwise disjoint 
intervals (w = q). These results can be summarized in the statement that interval 
hypergraphs are normal or, in terms of intersection graphs, interval graphs are 
perfect (cf. [2]). 

The equality of 7' and v and the equality of q and w is not true for the families 
which we are concerned with here, but it is reasonable to suspect that they are 
'close' to each other or at least that T is bounded by some function of v, and q is 
bounded by some function of w. The question of closeness and boundedness of 
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these numbers was explicitly formulated for convex structures in [5], a hypergraph 
theoretical approach was presented in [11]. 

IfF is a finite family of sets in the d-dimensional Euclidean space Rd, then the 
numbers in question are· defined as follows. 

The packing number v(F) is the maximum number of pairwise disjoint sets in 
F; the clique-cover number ft(F) is the minimum number of classes in a partition 
of F into pairwise intersecting s€ts; the transversal number T(F) is the minimum 
number of points meeting all sets ofF; the clique number w(F) is the maximum 
number of pairwise intersecting sets in F; the coloring number q(F) is the 
minimum number of classes in a partition of F into pairwise disjoint sets. 

These parameters are commonly used in hypergraph theory and all of them but 
T correspond to well-known graph parameters. Let F be a family of sets. If G is 
the intersection graph ofF (the vertices of G are the sets ofF and the edges of G 
correspond to intersecting pairs of sets). Then 

v(F) = a(G), the stability number of G; 
ft(F) = ft( G), the clique-cover number of G; 
w(F) = w(G), the clique number of G; 
q(F) = x(G), the chromatic number of G. 
The order of magnitude of the functions expressing the interdependence of 

these numbers varies according to the different families we are concerned with. In 
some cases the function is linear, for instance, for circular arcs T ~ v + 1 and 
q ~ 2w -1 hold. Sometimes only polynomial bounds are known (e.g., T ~ vd for 
d-dimensional boxes, or q ~ 4w 2

- 3w for two-dimensional boxes) and there are 
cases when only exponential bounds are obtained (e.g., q ~ 2ww 2 (w -1) for chords 
of a circle). 

In certain cases no functional dependence connects these numbers; for in­
stance, T can be arbitrary large while v = 1 if the underlying structure is the family 
of chords of a circle or the family of double boxes in the plane. A highly 
non-trivial example in this direction is a result due to Burling [ 4 ]1: q cannot be 
bounded by any function of w for three-dimensional boxes. Finally, there are 
cases when the existence of functional dependence between two numbers is an 
open question (see Problems 5.7, 5.8 and 5.9). 

2. Arcs of a circle and multiple intervals 

A well-known generalization of interval families is the family of circular arcs: a 
finite collection of closed arcs of a circle. The equality T = v for interval families 
(due to Gallai) immediately implies T(F) ~ v(F) + 1 ifF is a family of circular arcs; 
the inequality is sharp. It is also straightforward that q(F) ~ 2w(F) -1, with 
equality for w = 2. 

1 The authors are grateful to Prof. Branko Griinbaum for communicating this result. 
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Fig. 1. Circular arcs and their intersection graphs; w = 3, x = 4. 

Proposition 2.1. IfF is a family of arcs on a circle C satisfying w(F) = 3, then 
q (F)~ 4 and the bound is tight, as shown in Fig. 1. 

Proof. We may assume that there is an open arc C' c C such that C' is contained 
in exactly two arcs A, B E F and no member of F- {A, B} meets C'. If we cut C' 
from C then we get a family F' where A and B are replaced by two arcs All A 2 

and B 1, B 2 , respectively (see Fig. 2). We may consider F' as a family of intervals 
on a line satisfying w(F') ~ 3. Therefore F' has a 3-coloring, denote by c(I) E 

{1, 2, 3} the color of IE F'. We shall transform this 3-coloring of F' into a good 
4-coloring of F. 

Without restricting generality, we assume that A 1 c B 1 . 

Case 1. c(A1) = c(A2). Color A with c(A1) and color B with 4. (If c(B 1) = 
c(B2) then similarily, define c(B) = c(B 1) and c(A) = 4.) 

Case 2. c(A1) =f c(A2) = c(B 1). Then define c(A) = c(A2) and c(B) = 4. (If 
c(A2) =f c(A1) = c(B2) and A 2 c B 2 , then similarily, define c(A) = c(A1) and 
c(B) =4.) 

Now the only remaining case we have to handle (apart from the permutations 
of colors) is the following (see Fig. 2): 

Case 3. A 2 => B 2 , c(A1) = c(B2) = 1, c(A2) = 2 and c(B1) = 3. Denote by F]_ the 
arcs ofF' -{A1 , A 2 , Bll BJ which meet A 1 and hhve color 2. Let F2 denote the 

·:.·:;::;::: :: ::_­
A 

Fig. 2. 
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arcs of F'-{A1 , A 2 , B 1 , BJ which meet B 2 and have color 3. Now Fi UF2 
contains pairwise disjoint arcs, since D E Fl, E E F2 and D n E =/= 0 would imply 
that A, B, D and E are four pairwise intersecting arcs, contradicting w(F) = 3. 
Now the arcs ofF~ U F~ can be colored with 4. Define c(A) = 2 and c(B) = 3. D 

Proposition 2.1 proves a special case of the following question of Tucker [18]. 

Problem 2.2. Is it true that q(F) ~~w(F) holds for any family F of circular arcs? 
(It is easy to give an F with q = L~w J .) 

Another generalization of interval families is the family of multiple intervals: a 
finite collection of sets of the real line which can be written as the union of c 
closed intervals. If c = 2 then we speak about double intervals. The name double 
and multiple intervals ·were introduced by Harary and Trotter in [17] and by 

·Griggs and West in [8]. It is easy to see that the notion of double intervals extends 
the notion of circular arcs. The relation of 'T and v for multiple intervals has been 
studied by the authors in [ 10 ]. 

Proposition 2.3. If F is a family of double intervals satisfying v(F) = 1 then 
T(F) ~ 3 and the bound is tight as shown in Fig. 3. 

Proof. Let p E nAEF conv(A), where conv(A) is the convex hull of A, i.e., the 

minimal closed interval containing the double interval A. It is enough to show 
that T(F') ~ 2 where F' ={A E F: p¢ A}. 

The interval components of the double interval A E F' lying on the left and 
right side of p are denoted by L(A) and R(A), respectively. If r is a right 
endpoint of L (A) for some A E F' then we define the interval family Ir as follows: 

Ir = {R(A): A E F', L(A) c (-oo, r)}. 

We may assume that Ir is non-empty for some r since otherwise T(F') ~ 1. We 
choose the point s to the extreme right with the property: the intervals of Is have 
non-empty intersection. Now it is easy to check that the interval family 
{R(A): A EF', s¢L(A)} has non-empty intersection, thus T(F')~2. D 

It is proved in [ 10] that any family F of c-intervals satisfies T(F) ~ f(v(F)) with 
a suitable function f depending only on c. The values of f are not known for c ;::: 2 
except the case c = 2 and v = 1 in Proposition 2.3. The smallest unsolved cases are 
considered in the next questions: c = 2, v = 2, and c = 3, v = 1. 

s 6 
--~--

4 .2. --.,--
Fig. 3. Double intervals with v = 1, 7' = 3. 

s 
_L_ _'t_ 

c5 
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Problem 2.4. Let F be a family of double intervals satisfying v(F) = 2. Find the 
smallest integer t such that T(F)::::::; t. 

Problem 2.5. Let F be a family of triple intervals satisfying v(F) = 1. Find the 
smallest t such that T(F) ~ t. 

Now we continue by the coloring problem of multiple intervals. 

Proposition 2.6. If F is a family of double intervals satisfying w (F) = 2 then 
q (F)::::::; 4 and the bound is the best possible as shown in Fig. 4. 

Proof. Let G be the intersection graph of F and direct an edge xy E E(G) as 
follows. If the corresponding double intervals are lx and J.., then at least one of 
their interval components, say Ix and I..,, are intersecting; the edge xy is directed 
from x to y if the right endpoint of Ix is covered by Iy, otherwise, xy is directed 
from y to x. The condition w(F) = 2 implies that each outdegree of the directed 
graph G is at most two. Moreover, it is easy to see that any setS c V(G) induces 
a subgraph of G which contains a vertex of outdegree at most one. Thus a 
subgraph of G induced by S contains at most 2ISI-1 edges. By this observation, 
one can index the vertices of'G by 1, 2, ... , IFI in such a way that~ has indegree 
at most one in the subgraph Gi of G induced by {~, ~+1 , ... , x

1
F

1
}, for all i, 

1::::::; i::::::; IFI. Since all vertices of G have outdegree at most two, xi is adjacent to at 

5 z. 

,. 3, 2.' 4' 't 6 5" --- ----s 3 3' 5 1 ,. 

Fig. 4. Double intervals and their intersection graph; w = 2, X= 4. 
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most three vertices in Gi. Now we can perform a greedy coloring of G with at 
most four colors by taking its vertices in the order x

1
p

1
, ••• , x2 , x1 • That coloring 

implies the 4-coloring of F. 0 

The proof of Proposition 2.6 can be easily generalized to show that q(F) ::s; 
2c(w(F) -1) holds if F is a family of c-intervals (see [9]). This bound on q(F), 
however, is probably not sharp. · 

Problem 2.7. Is it true that q(F) ::s; 2w(F) for any family F of double intervals? 
(This is true for w = 2 by Proposition 2.6.) 

3. Chords of a circle 

· Well-known relatives of interval families are the families of chords of a circle. 

It is usual to assume that no chords share common endpoints. (Another way of 
simplification is to consider open chords.) The intersection graphs defined by 
families of chords are called circle graphs or overlap graphs. An overview of this 
topic can be found in [7]. 

In constrast with the case of circular arcs and multiple intervals, there are 
families of chords Fm, m = 1, 2, ... , such that v(Fm) = 1 and -r(Fm) ~ m. However, 
the clique-cover number is bounded by a function of v. 

Proposition 3.1. If F is a family of chords satisfying v(F) = 2 then it(F) ::s; 3 and 

the circle graph e5 (i.e. the cycle on five vertices) shows that the bound is sharp. 

Proof. Assume that IFI = n and index the distinct endpoints of the chords of F by 
1, 2, ... , 2n, consecutively in clockwise direction. The starting point of a chord of 
F is the endpoint having the smaller index. Let G be the directed graph whose 
vertices correspond to the members of F, (x, y) E E( G) is an edge from x to y if 
and only if the corresponding chords ex and eY do n~t intersect and the starting 
point of ex has smaller index than the index of the stinting point of ey. It is easy 
to check that G has not directed path of four vertices, thus x( G) ::s; 3 by a theorem 
of Gallai [6] and Roy [16].2 Since the (undirected) complement of G is the 
intersection graph of F, it(F) ::s; 3 follows. 0 

The argument of the proof of Proposition 3.1 easily gives 1t(F) ::s; (v(Fd+1
) for any 

family F of chords. The best bound of 1t(F) is probal;'ly linear in v(F). 

Problem 3.2. Let F be a family of chords of a circle. Is there a constant c such 
that it(F) ::s; cv(F)? 

2 If the longest directed path of G has k vertices then x (G) ,;;; k. 
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Concerning the functional dependence of q on w, we start with the very special 
case of all (open) chords generated by a given point set of a circle. 

Proposition 3.3. Let p1 , p2 , ... , Pn be n distinct points on a circle and F = 

{chord(pi, Pi): 1::::;.; i <j::::;.; n}, where chord(pi, Pi) denotes the open line segment be­

tween Pi and Pi· Then w(F) = L,n/2J and q(F) = r n/21' for every n > 3. 

Proof. If k = Ln/2J then the intersection graph of the subfamily 
{chord(pi, PHd: 1::::;.; i::::;.; k} is a clique with k vertices. On the other hand, any chord 
meets at most k -1 chords having no common endpoints. Thus w(F) = Ln/2J. 

If n = 2k + 1 (k > 1) then the intersection graph of the subfamily 
{chord(ph Pi+k): 1::::;.; i::::;.; 2k + 1} is the antihole C2k+l (i.e., the complement of the 
cycle C2 k+1) which has chromatic number k + 1. Thus q(F);:;;:: r n/21 follows for 
every n ;::;:2. 

Now let us consider our family F as a complete graph Kn on the vertex set 
{p1 , p2 , •.. , Pn}. If n = 2k then the decomposition of Kn into k disjoint hamilto­
nian chains given in [2, p. 233] defines a good k -coloring of F, since the initial 
hamiltonian chain and its rotations contain no intersecting chords (see Fig. 5). 

For n = 2k + 1 the previous hamiltonian chain decomposition plus the chords at 
p2 k+t define a (k + 1)-coloring of F. In both cases q(F)::::;.; r n/21 follows. D 

The existence of a function f such that q (F)::::;.; f( w (F)) holds for any family F of 
chords of a circle has been proved in [9]. The function obtained is exponential, 
namely 2ww 2 (w -1). If w = 2 then q::::;.; 5 is known [13]; Fig. 6 shows a construction 
with q(F) = 4 (the proof is left to the reader). 

Problem 3.4. Let F be a family of chords of a circle satisfying w (F) = 2. Is it true 
that q(F)::::;.; 4? 

) 

Fig. 5. 
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Fig. 6. Chords of a circle with w = 2, q = 4. 

Problem 3.5. Give reasonable upper and lower bounds for q(F) in terms of w(F), 
where F is a family of chords of a circle. (The best known lower bound is linear, 
the best known upper bound is exponential.) 

4. Boxes 

The parallelopipeds whose faces are parallel to the coordinate axes of R d are 
called d-dimensional boxes. The intersection graphs of d-dimensional boxes were 
introduced in [15]. 

Proposition 4.1. IfF is a family of two-dimensional, boxes satisfying v(F) = 2 then 
T(F) ~ 3 and the bound is sharp, since Cs is an intersection graph of two­
dimensional boxes. 

Proof. Denote by Fx and FY the interval families defined by the projections of the 
boxes of F into the x and y axes, respectively. Clearly, v(Fx) ~ 2 and v(Fy) ~ 2; 
therefore Fx and Fy possess two-element transversals. Their direct product gives a 
transversal set {p, q, r, s} of F such that p, q, r an4 s are corners of a box in 
clockwise order. Assume that p is the upper right corner. 

Now consider the box family 

FP ={B EF: B n{s, p, q}={p}}. 

If FP =0 then T0 ={q, r, s} is a transversal of F. Assume that FP=/=0 and let B 1 be 
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the box of FP with the uppermost bottom side. The intersection of the bottom line 
of B 1 and the segment pq is denoted by x1 (see Fig. 7). 

Consider the family 

Fq ={BE F: B n {x1, _q, r} = {q}}. 

If Fq = 0 then T1 = {x1 , r, s} is a transversal of F. Assume that Fq =f 0 and let B 2 be 
the box of Fq with the rightmost left side meeting the segment rq in x2 . 

Define the family 

Fr ={BE F: B n{x2, r, s}= {r}}. 

If Fr = 0 then T2 = {x1, x2l s} is a transversal of F. Assume that F;.=f 0 and let B3 be 
the box of Fr with the lowest top side meeting the segment rs in x3 • 

Since B 1 n B2 = 0 and B2 n B3 = 0, it follows from the condition v(F) = 2 that 
B 3 n B 1 =f 0. Thus x3 is placed higher than x1 (or they are at the same height). 
Now we claim that T3 = {xll x2, x3} is a transversal of F. Indeed, the existence of a 
box B E F such that B n T3 = 0 would imply 

B nB3=B2nB3=B nB2=0, 

contradicting the condition v(F) = 2. Thus one of the sets Ti (i = 0, 1, 2, 3) is a 
three-element transversal of F. D 

It is easy to see that T(F) ~ vd(F) holds for any family F of d-dimensional 
boxes (with equality for v(F) = 1, since F has the Helly property). However, very 
few reasonable estimates are known. We formulate the next two problems. 

Problem 4.2. Let F be a family of 3-dimensional boxes satisfying v(F) = 2. What 
is the smallest integer t such that T(F) ~ t? (t ~ 6 comes easily from Proposition 
4.1.) 

Problem 4.3. Let F be a family of two-dimensional boxes. Is there a constant c 
such that T(F) ~ cv(F)? 

t----- ----- -----;:-T 
X;s.l s PI 

I 
I I 
I 

~x. I 
I I 
I 
I I 
I I 

!_!'_ ---------- ct' ---~ X 

Fig. 7. 



176 A. Gyarfas, J. Lehel 

Concerning the functional dependence of q on w, the following results are 
known. Asplund and Griinbaum prove in [1] that if F is a family of two­
dimensional boxes such that w(F) = 2 then q(F)~6 and this bound is sharp. They 
give also the upper bound. q ~ 4w 2

- 3w, for any family of two-dimensional boxes. 
The situation changes radically in the space R 3

• Burling shows in [ 4] that for 
every m = 1, 2, ... , there exists a family F m of three-dimensional boxes such that 
w(Fm) = 2 and q(Fm) = m. · 

5. Multiple boxes 

The notion of multiple boxes is a common generalization of boxes and multiple 
interval structures. A set in Rd which is the union of c closed d-dimensional 
.boxes is called a d-dimensional c-box. The study of families of multiple boxes, 
with given parameters d and c, leads to various interesting questions with a 
geometrical flavor. When c = 2, we speak about double boxes. 

Proposition 5.1. A double box in the plane is called an L-gon if it is the union of 

two boxes having a common comer and common interior points. IfF is a family of 
L-gons such that every three of them have a common point, then T(F) ~ 2 and this 
bound is tight as shown in Fig. 8. 

Proof. Let Fb be the subfamily of L-gons of F having box components with a 
common bottom corner; similarly, let Ftc F be the subfamily containing all 
L-gons with box components having a common top corner. Clearly, F = Fb U f't· 
Let L 0 E Fb be the L-gon with uppermost bottom line Q. Then every two L-gons 
of Fb-{L0} have a common point in L 0 , and by the speciality of Fb, any two of its 
members have a common point on the line Q. Thus T(Fb) = 1 follows by Helly's 
theorem. By a similar argument one obtains T(Ft) = 1. Therefore, 

I 
L __, 

~ 11 

Fig. 8. 



Problems for relatives of internals 177 

Proposition 5 .1 is also sharp in the sense that there are families of pairwise 
intersecting L-gons with arbitrary transversal number (e.g. see Fig. 9). 

To express in a more comprehensive manner the tightness of the results like 
Proposition 5 .1, it is convenient to introduce the notions of Gallai-index and 
Gallai-numbers. 

The kth Gallai-number (k ~ 2) of the d-dimensional c-boxes, g(k, c, d), is the 
minimal integer t with the following property: if F is a family of d-dimensional 
c-boxes such that every k members of F have a nonempty intersection then 
T(F)~t. The smallest k for which g(k, c, d)<oo is called the Gallai-index of the 
d-dimensional c-boxes. 

The definitions given here only for multiple boxes can be obviously interpreted 
on arbitrary structures. As an example, our observations concerning L-gons can 
be summarized in the following way: The Gallai-index of L-gons is three and the 
third Gallai-number of L-gons is two. 

It was proved recently in [12] that the Gallai-index of the d-dimensional 
c-boxes is min{c, d}+ 1, for every c, d ~ 1. There are very few results however on 
the kth Gallai-numbers for k ~min{c, d}+ 1. 

Problem 5.2. Determine g(3, 2, 2), i.e., what is the best upper bound on the 
transversal number of a family of double boxes in the plane such that every three 
members of the family have a common point. (We known only that g(3, 2, 2) ~ 2 
by Proposition 5 .1.) 

The third Gallai-number is not known even in case of very special box families, 
such as crosses or T-gons. 

Problem 5.3. Let F be a family of T -shaped double boxes in the plane such that 
every three of them have a nonempty intersection. Are there two points meeting 
every member of F? 

We use g(k, c) to denote the kth Gallai-numbyr of multiple intervals (i.e., 
g(k, c)= g(k, c, 1)). The lower bound f ck/(k -1)1-' 1 ~ g(k, c) given in [12], to­
gether with the next proposition, yields the Gallai-number g(c + 1, c)= c. 

n 

t l 
I 

.____ r--
~ 

Fig. 9. L-shapes with v = 1, 'T = r n12l. 
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Proposition 5.4. IfF is a family of c-intervals such that every c + 1 of them have a 
common point, then T(F)::;::; c. 

Proof. We use induction on c. Assume that c ~ 2 and the claim is true for c -1. 
(The case c = 1 is Reily's theorem.) Let p0 be the left endpoint of the interval 
nAEFconv(A). Let Po be the left endpoint of conv(Ao) for some AoE F, and 
denote by H the half line at p0 ' containing A 0 • Now clearly 

F'={A nH: p0 ¢A, A EF} 

is a family of (c -1)-intervals such that every c of them have a common point in 
A 0 • Thus by induction, for some points p1 , p2 , ... , Pe-l• 

{Pv ... 'Pe-l} n A' f= 0 for every A' E F'. 

Therefore, the set {p0 , p1, ... , Pe-1} is a c-element transversal of F. D 

The value g(c, c)= c + 1 can be obtained in the same way; thus g(k, c) remains 
to be determined in the range 2::;::; k < c. The smallest unknown value is the second 
Gallai-number of 3-intervals (see Problem 2.5). To close Gallai-type problems, 
we propose a question on the order of magnitude of the second Gallai-numbers of 
multiple intervals. 

¥"' 
Problem 5.5. Is g(2, c) a linear function of c, perhaps g(2, c) = 2c- 1? 

Now we propose further questions on multiple boxes in the plane. If the 
parameter k is less than the Gallai-index then, by definition, the transversal 
number is unbounded. The question arises, what is the behavior of the clique­
cover number -it in this case. Our first example concerns particular families of 
double boxes. 

Assume that four real numbers x, x', y, y' are given and x::;::; x', y::;::; y'. An 
L-shape L(x, x', y, y') is the union of the line segments AB and AC, where 
A= (x, y), B = (x, y') and C = (x', y). The segments AB and AC are called the 
vertical and horizontal sides of the L-shape. 

Proposition 5.6. IfF is a family of L-shapes satisfying v(F) = 2 then -it(F)::;::; 4 and 
the bound is sharp as shown in Fig. 10. 

Proof. In order to avoid the discussion of some special cases, we assume that all 

sides of the L-shapes of F lie on the distinct lines. Choose L', L" E F in such a way 
that L' has the uppermost horizontal side and L" has the rightmost vertical side. 
Let F 1 and F 2 be the subfamilies ofF whose members do not intersect L' and L", 
respectively. Clearly F 1 and F 2 contain pairwise intersecting L-shapes. The mem­
bers of F-(F1 UF2) intersect the horizontal side of L' and the vertical side of L". 
This fact implies that the intersection graph of the L-shapes in F-(F1 UF2) is a 

- p c t... 
:ir ""o I fv\ J o " Lci. ~ h\1 e d..- '} ( 1.. 1 C.. ) ~ CQ'\><t ~ c-
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1 z. 6 1' 2.' S'S 

I 
3 31 It' 

f 
I 

I-- r--t-

-
Fig. 10. L-shapes and their 'disjointness graph' showing v = 2, {} = 4. 

permutation graph (cf. [7]). Permutation graphs are perfect and then the equality 
it = a implies 

that is, F- (F1 U F 2) has a partition into families F 3 and F4 containing pairwise 
intersecting L-shapes. Thus it(F) ~ 4. 0 

Let us remark that by using the same method as in the proof of Proposition 5.6, 
one can obtain an exponential bound on it as a function of v, for the families of 
L-shapes. In case of arbitrary c-boxes in the plane there are no known existence 
results for c ~ 2. 

Problem 5.7. Is there a constant t such that if F is a family of c-boxes in the 
plane satisfying v(F) = 2 then it(F) ~ t? 

The coloring problem on the same structure is also open. 

Problem 5.8. Is there a constant k depending only ~on c such that q(F) ~ k holds 
for any family F of c-boxes in the plane with w(F) = 2? 

The answer to Problem 5.8 is not known even if F consists of L-shapes. 

Problem 5.9. Let F be a family of L-shapes satisfying w (F) = 2. Is there a 
constant k such that q(F) ~ k? 
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