COMBINATORICA 5 (1) (1985) 41—52

ON THE SUM OF THE RECIPROCALS OF CYCLE
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1
For a graph G let £ (G)=Y 1—| G contains a cycle of length k}. Frdds and Hajnal [1]

[E(G)]
4@

. k+1 .
Obviously f(1)=0. We prove f (%)E(SOOk log k)~* for all sufficiently large &, showing that

introduced the real function f(«x)=inf {,Q? G)

>cx} and suggested to study its properties.

sparse graphs of large girth must contain many cycles of different lengths.

1. Introduction

Let G=(V,E) be a finite undirected graph. Let #(G)= Z{ there exists

a cycle of length & in G}. The number £(G) is the sum of the reciprocals of cycle

lengths occuring inn G. In a sense, . (G) measures how rich the graph G is with respect

to cycles. E.g. Z(K )———I— L +. +l~(v—~%)+loa n, where y=.5772... 1is
the Mascheroni constant; Z(K, )= + 1 SR ! —j‘(y—i—Hog n). Erdds
and Hajnal [1] introduced the real function f(o)=inf {Z(G) l ﬁg; :a} They

asked about the behaviour of f(z) as o tends to infinity. The complete bipartite graph
K, . shows that f(n)=c-logn for n=2, but originally it was unknown whether
f(e) is bounded or not. Recently Gyarfis, Komlos and Szemerédi [2] showed that
f(@)=a-loga, provided that «=b, where a and b are suitable contants. Obviously
f(@)=0 for w=1. The problem of determining the behaviour of /(&) for «€(1, 1+¢)
has been raised in [2]. It was not even clear whether f(1+¢)=0 for every &=0.

In this paper we prove the following theorem, answerlng this question in the
affirmative:
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a o L k+1} 1
Theorem 1. There exists a positive integer n, such that f [ )= 300k10g 2
G
for all integers k=ny; in other words: for every graph G with IlVE G§]| = k n.‘ follows

that £ (Y= although the girth of G may be arbitrarily large.

1
300k log k °

Basically our proof follows the pattern of [2]: Generalizing the notion of 3/2-
LE@)]
, _ V(G)| ,
sufficiently many cycles of different lengths, so that %(G) can be estimated from
below.

tree [2], we construct a subtree of G. Since =1, eventually we will detect

2. Proof of the theorem

Q)] _k+1

Lemma. Let k be a positive integer and let G be a graph such that ———--=
Ve Tk

Then there exists a graph G* such that

Q) G* does not contain k vertices Xxq, ..., Xp_1, each of which has degree 2 and
which form a path of length k.

|E@GH] _ k+1 DM =

@) o = Tk and ZL(G*) = £ (G).
Proof. We proceed by induction on the number of k-element subsets  {x,, ..., X _1}
of vertices In G such that each x; has degree 2 and X, ..., X;,_; form a path of length
k. Pick any such subset {x,, ..., X,_,} and let G be the graph which is obtained from G
by deleting {x,, ..., Xz _1} and deletmg all edges which are incident with these ver‘uces
Obviously then Z(G)=Z(G), |E(G)|=|E(G)|—k—1 and |V(G)|=|V(G)|—

|[E(G)] _k+1 |E(G)| _k+1
— = lies that al
o) -k implies that also ]V(G)\ %
tion, the assertion foliows.

Now let G=(V, E) be a fixed finite graph such that
EVIV| = (k+ Dk,

The assumption . Hence, by induc-

for some positive integer k.
According to the lemma we may assume that G is connected and satisfies

() G does not contain k vertices X, ..., Xy_y, each of which has degree 2 and
which form a path in G.

We keep on establishing observations about the interior structure of G.
These observations are based on certain reals ¢, 3, y and g. Ultimately we find out:
if these numbers satisfy certain equations (viz. 7.1 and 9.1), then £ (G) is suffici-
ently large (cf. 17). Since g is directly related to G (cf. 3), it remains to choose «;
and y accordingly.

The final result is formulated under (20).
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(2) Notation. A rooted (=2)-tree in G is a triple I=(T,r, F) such that

TCV is a set of vertices in G,

FCE is a set of edges in G,

ré T is a distinguished vertex, called the root of F,

(T, F) is a tree, i.e. a connected graph without cycles, such that every vertex
x€T has degree at most three in (T, F).

For vertices x and y in T let dist (x, ¥) be the number of edges in the (uni-
quely determined) path in (7, F) joining x and y. For nonnegative integers » let

T (n) = {x€T| dist (r, x) = n}
be the n-th level of . The height of  is the maximal integer » such that J(n) 0.

(3) Notation. Let g be the maximal positive integer such that G does not contain any
cycle of length at most g, 1.e. g=girth (G)—1. For a vertex x€V let deg(x)
denote the number of adjacent vertices, i.e. the degree of x.

(4) Observation. Let O0<ua<1 be a real number. There exists a nonnegative integer N
and there exists a rooted (=2)-tree T=(T,r, F) of height at most N+1 satisfying
the following properties:

@.1 T (4] = o —2

i-_—ak-:[T(l)[ for every 0=1= N-k.
Additionally, there exists a set GOODC I (N) and a mapping s: GOOD-~T

such that

4.2) |GOOD|>(1—w)|T (N)|,

4.3) {x, s(x)}EE\F Jfor every x€¢GOOD, i.e. the vertices x and s(x) are joined

by an edge in G not belonging to the rooted tree .

Proof. Such a rooted tree J can be obtained by a straightforward recursive con-
struction. Pick a vertex r€V arbitrarily and put Ty,={r} and Fy=9. Assume that
for some nonnegative integer 7 the rooted (=2)-tree Z,,=(T,,r, F,) has been
constructed such that (4.1) is satisfied for all 0=l=m—*k.

Let
Ay = {x€T,(m)| deg (x) = 2}

be the set of degree 2 vertices of G belonging to the m-th level of 7,
Let
= {yeV\Tl{x, y}€¢E for some xEA,,,}

be the set of neighbours of 4,, not already belonging to Z,,. Let B, S 7,.(m)\4,,
be a set of maximal cardinality such that there exist two mappings b;: B, —
= V\(T,,U4}), i€{0, 1}, satisfying

(44 {x,b(x)}€E for every x€B, and i€{0,1},
4.5 by(x)=b;(y) for every x,y€B, and i,je{0, 1} with: (x, ))#(», /),

le. to every x€B, there are associated two adjacent vertices by(x) and b;(x) not
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already belonging to T,,UA4;t such that {by(x), by (x)} N {Be(»), b1(3)}=0 for any
two different x and y in B,.
Let
B = {by(x)|x€ B, }U {b1(x)|x€ B, }-
Put
' :rm+1 =T,

m

UA4rUB}
and

Erx+l = FmU{{xa J’}gEIXEAm and yEA:z-lu{{x’ bO(X)}]XEBm}U{{X, bl(x)}leBm}

Repeat this construction as long as possible, viz. let N be the minimal integer
such that
(4.6) |4n|+|By| < | Ty (N)),

and put I=(T,r, F):fTN+1, ¥y Fyi1)-
Recall that  has been defined in such a way that

4.7 |4,,| 4+ |B,| = a]7 (m)| for every 0=m <N
and
4.8) |7 (m)| = |4,,-1|+2|B,,_,| for every 0 <m = N.

We show that 4 satisfies assertion (4.1): Let 0=/=N-—k. By (4.7) then
(4.9) 14|+ o1 By = o T (D).
According to (4.7) and (4.8) it follows that
(4.10) Ay o By — o T Ay g g = 205 B = 0

for every 1=i<k.
Summing up the inequalities (4.9) and (4.10) yields

k-2 )
(4.11) |Ap 1]+ |Brag—1]— %—; a1 By = oF| T (D).

As the graph satisfies condition (1), it follows that

k—2
4.12) |4 1-a] = 2[') 2|By4ls
and hence
o1 S
(4.13) ) Ay -]+ 2(; o "By = 0.

Summing up (4.11) and (4.13) yields

2_(xk—1 k—2 'k )
@18 Ml B+ 3 @ a2 B = a7 ),
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thus
(4.15)
: 2k 2 Jomd _ plim1omi |
[Arek-1] = s |7 ()] + - 2(|Bl-‘-k LH‘ 0 (0' -~ VB 4il)
20 2
= I k1 ]7(1)]+ak_1_2 1By c-1ls
as O<a<1.
From (4.8) and (4.15) then finally it follows that
(4.16) [T (I+k)| =

20 2o 1 ?a
= Mpsal+2Brsms] = e O+ 2 =D = 22217 O,

as again O<a=1. Thus assertion (4.1) is valid.

Let us mention that in fact the sets 4, ; and B, ; can be chosen in such a way
that equality holds in (4.1) occasionally.

It remains to define the set GOOD and the mapping s: GOOD -7 such that
(4.2) and (4.3) are satisfied. Put

GOOD = 7 (N)\(4yUBy).

According to (4.6) then (4.2) is valid. Due to the maximality of By for every x€ GOOD
there exists some vertex s(x)€ T=Ty,, satisfying (4.3). §

For the remainder of this proof fix a rooted (=2)-tree I=(T,r, F) of
height N or N+1 and a set GOODZS F(N) as well as a mapping s: GOOD~T
such that the assertions (4.1), (4.2) and (4.3) are satisfied.

(5) Observation. There exists a set BEQPC GOOD and there exists an integer n=g
such that

5.1 dist (x, s(x)) =n for every x€EQP,
.2) [EQP| = |GOOD |/,

k N—k+1
5.3) EQR| = H/z_i,ﬂ] .

Proof. Recall that g=girth (G)—1. Consider the mapping 4: GOOD-~N\{0, ...
...,g—1} which is defined by A(x)=dist(x,s(x)) for every x¢GOOD. Then

|GOOD|= S’ |471(n)] and assuming that (5.2) fails for every n=g and EQP=
=4"(n) it follows that

|GOOD| = 2 |4=1(n)| < |GOOD)] g’iz = |GOOD|(#¥/6—1) < |GOOD),

an obvious contradiction.
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Hence for some nz=g the set 471(n) satisfies (5.1) and (5.2). Assertion (5.3)
is an obvious consequence from (4.2) and (4.1) and (5.2). §

Fix aninteger n=g and a set EQPES GOOD satisfying (5.1), (5 2) and (5 3.
Put n*=[n/2—1].

(6) Notation. For vertices z€T let
C(2) = {ye7 (W)ldist (z, y) = N—dist (v, »)}
be the vertices in the N-th level of 7 belonging to the cone generated by z.

(7) Observation. Let 0<f<1 be a real number such that

1—a
= (9—4)/2
(7.1) o = B

There exists a vertex z€ T (N—n*) such that

k P} ‘u*—~k+1
. |CEINEQR| =+ ﬂ[ 2——7] :

—0
Proof. Call a vertex z€J(N—n*) small iff

k 2 w¥—k-+1
2 — k-1 .

) Ic)| < g~ {a

Without loss of generality we can assume that C(z)=0 for every z€ T (N —n™).
Hence it follows from (4.1) that

’ k 7 w¥—k+1
74 | U C@|<lrw-np [a =
2T 2—u
= sma k k—1—n¥ k n¥—Kk+1
2 " 2
=7 ()| [O‘ P B [“ 2_ak—1]

= [T~

Note that particularly g=2 (since girth (G)is at least 3). From n=g=2 and
(7.1) it follows that

a5 1=

2n2 =

Denote by EQP* the set of vertices in EQP which are not covered by small cones.
According to (7.4), (5.2), (4.2), (7.1) and since n=g it follows that

[EQP'| = [EQP|-| U  C()|= [EQPI-[T(M)p"

z small
& . n*)

—r@lp = el

=p.

(7.6) =g

=17 V)
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Note that C(z)NC(z)=0 for different vertices z and z’ in J(N—n*). Hence

there exist at most
k 2 n¥—k 43
|7 (V)|/p™ [de:]

vertices z€J (N—n*) which are not small. Assuming that every such “large”
vertex fails to satisfy (7.2) yields

1—u
2n?

contradicting (7.6). Hence the observation is proved. J

Fix a vertex z€J(N—n*) satisfying (7.2).

[EQP*| <

|7 (V)1

(8) Notation. Let m<N. A vertex x€J (m) is a cycle vertex iff there exist two verti-
ces yp and y; in I (m+1) such that {x, y}¢ F and {x, y;}€F (i.e. x possesses two
immediate successors in , viz. y, and y,) satisfying

(8.1) C(y9NEQP =0 and C(y)NEQP 0.

(9) Observation. Let y=0 be a real number and assume that «, B, g (as introduced
above) and vy satisfy

k

1— ' , 5 .
0.1 log {—T;—J + [—721—— 1) logf+ (—;—wk—~ 1) log (oc .’T:uc—k;_l] =nylog2

for all n=g. Then there exists an ascending path z==Xxq, X1, ..., Xp_1 in T (ie.
{x;, X;11}€ F and x,€ T (N—n*+i)) which contains at least yn cycle vertices.

Proof, Construct xy, ..., x,»_, by a greedy procedure. If there exists precisely one
vertex y€J (N—n*+m+1) such that {x,, v}¢F, put x,,,=y. If there exist two
vertices y, and y; in (N —n*+m+1) such that {x,, y,}€¢F and {x,,»}€F, put

Xpi1 = Yo iff IC(J’O)HEQPI = IC(yl)ﬂEQPI
=y iff |C(y)NEQP| < |C(y)NEQP|.

We show that z=x,, ..., x,+—; contains at least yn cycle vertices. Let X, , ..., X, _,,
where my<my,<...<m,_,, be the cycle vertices amongst X;, ..., X ¢_q- '
According to the construction and (8.1) it follows that

©.2) |C (X, _,)NEQP| = 2, ‘

{9.3) |C (%, _)NEQP| = 2|C(x,)NEQP| for 0<Il<t
Hence

9.9 |C(x,,)NEQP| = 2.

Note that |C(x,) NEQP|=|C(z) \EQP|, hence it follows from (7.2) that

. . " k P n*-—k+i
9.5 2= p7 o [y
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1. €.

96) 1= 10(1‘“] “log fr(n*— k4 D log [a]/ —2—

9.6) =ios2 g5z +n*log n g g
N . Hﬂ] (11_] ['_l_ _) V_z._
~ log2 [10g(2n2 3 1)iog f+ 2 k—1}log|a 2—gk-1
=7yn

according to (9.1) and the fact that n=g. |}

Fix a path x,,x;, ..., X,«.; containing the cycle vertices X, ..., Xp,_,,
where my<my<...<m,_, and t=yn. Fix a vertex x,,€C(x,, )NEQP. For
every vertex X, let »,, € EQP be such that
10)  »,.€Cx,)NEQP\C(Xpn,+1) for every O0=i<t.

Put y, =x,,. Such vertices y,, exist as the vertices x,, are cycle vertices.
(11) Netation. For vertices x and y in T denote by P(x, y) the (uniquely determined)

pathin J joining x and y. In order to avoid ambiguties say that P(x, y) consists
of edges (in F), determining the path between x and y. Note that |P(x, y)|=dist(x, y).

(12) Observation. Let z*€ T denote the vertex satisfying {z*, zZ}€ P(r, z), i.e. z* is the
(uniquely determined) predecessor of z in T. Then {z*, Z}€ P(¥y,, $(y,)) for every

O=i=tr

Proof. Denote by C(z)= U {y€IJ(N—n*+i)|dist(y,z)=i} the (upper)

0=i=n*+1
cone generated by z. Obviously
(12.1) MAX {dist (3, 2)|y€C(2)} = n*+1,

hence
(12.2) MAX {dist (x, })|y€ C(2), x€C(2)} = n*+n*+1 =2 [—Z— - ll—l-l =n—1.

From (5.1) it follows that s(»,, )¢ C(z) for any 0=i=t. Hence the assertion fol-
lows. |}

(13) Observation. Let 0=i<j=t. Then

(13.1) P (Vs Yu) VP (s (W), s())) = 0.

(132)  Ci; = P> V) UP(Gmds SOGum)) UTmis SGind}s iy s )}
forms a cycle of length at most 2n.

Proof. As the only way of entering or leaving the cone C(z) is to use the edge {z, z*},
assertion (13.1) follows from (12). Consequently C;; is a cycle. As y, € C(x,, )\
NC(xp41) and {x,, X, 41J€F it follows from i<j that

(13.3) dist (Vp;> Vi) = 2(n*—m)).
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From (12) and (5.1) it follows that

(13.4) dist (2%, (V) = dist (P, > SW))-dist (B, » 2 = n—n*—1,
hence by the triangle inequality
(13.5) dist (s (V) $(Vmp) = 2(n—n*-1),

this yields

(13'6) !P(ym,‘ > ym_,') U P(S (ymi)b S (ym]')) U{{ymi b4 S (ym,-)}ﬂ {ymj > D) (ym_,)}}!
=2(n"—m)+2(n—n*—1)+2 =2n—2m; = 2n

showing that C;; is a cycle of length at most 2n. |

(14) Fact. Let T*=(T* r*, F*) be a rooted tree with distance function dist*. For
every nonnegative integer m and every vertex X€J *(m) it follows that

(14.1)  MAX {dist* (%, y)|yeT*(m)} = MAX {diét* s Yy, Y ET*(m)}.
Proof. Obvious by induction on m. |

(15) Observation. For nonnegative integers 0=i<t let i<E(@)=t be such that

(15.1) dist (s (P> $ Vmgey)) = MAX{dist (s (3, s(ym))i < j = 1}
Then ‘
(152) dlSt (S (ym,- +1)? N (ynlg(i +1))) é dlst (S (ymi)> N (ymg(l')))'

Proof. Consider
T* = {yeT| dist (z*, y) <= n—n*— 1N\ C(2)
and for every 0=i<t let
T =T*UfsOuli =) = ).

Denote by 7;* the rooted subtree of J consisting of vertices T;¥ with root z*.
According to (12) and (13.4) then

(15.3) T m—n*—1) = Ol =j = 1}
As TF2T}., it follows that
(15.4) MAX {disty,, (5 93, ' €Toa (n—p*— 1)}

=MAX {distyx(y, )|y, y'€Z:(n—n*—1)}.
According to (14.1) then
(15.5) dist (s Wiy 1)> S Wmsiir)) = disty;x“(s(y,,,m), SVmgqien)
= disty (SO S Omeery)) = Aist (S W) SGmeery))- B
(16) Observation. |C; i .41y <IC | for every 0=i=<t,

Proof. According to (13.3) and since m;<im,;, this follows from (15.2). J

4%
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(17) Observation. Let the real numbers O0<a<1, O0<f<1 and y=0 satisfy (1.1)
and (9.1). Then
LG)=9y/2. K
(18) Observation. Put o=27"1/%; ﬁz[—z——]‘mk; y=0.0011/k. Then (9.1)
V2

2Y2 ~
is satisfied, provided that g=>300k logk, and k=ny, where ny is sufficiently large.

Proof. We write (9.1) for n=g equivalently as
k
2
(18.1) log( 25 ]+(g/2 1)log [aﬂV ] klog[ m] = gylog2
and evaluate each of the three summands on the left hand side of (18.1) separately.

(18.2) log12g = log(1 —2""*)—log2—2logg log[IZIz) —log2—2logg
=—(2log2+logk+2log g).
k

k2 2
(18.3) aV 5 = V -
2V2 -2
- 2k
2 2
(18'4) aﬁl/z__dak~1 = l/ 22
272 — 1/2

(18.5) (8/2— 1)10g[06ﬁ I/ ] (8/2—1)10g[l/ 7 ]
2Y2 —

1 2
= L (g2-1)log [————]
2k 2 VE“ ﬁ
1

=2 e
= 4k0088 5k 0.088

0.044

= g0.022/k———,

k

— ] =log(2)Y2 —1)—log2 =—1log2.
Now, putting (18.2), (18.5), and (18.6) together shows that

_ k k
log [1272“]+(g/2—1) log [czﬂ / rik—_—l]—klog [ozi/ Z_—ikj]

= ¢0.022/k— [-(—)—Oﬁ—l—SlogZ%—log k) 2logg

k
= g0.011/k+g-0.011/k— [—(l%ﬁ+3log2+log k] —2logg
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and thus it suffices to show that

(18.7) ¢-0.011/k— [9%4—4+310g2+1ogkj 2logg = 0.

This follows immediately according to the choices of g and k. To show (9.1) for arbi-
trary n=g it is enough to see

1 1 X 2 (o+1)
18. —log B+— |/ —=—|—vlog2—2log|2 =0

but this also holds by the choices of «, f§,7, g and k. |}

(19) Observation. Put o and § as before, then (7.1) is s&tiqﬁed, provided g=300k log k

and k=ny for some sufficiently large n,.

Proof.

(19.1) log (B7—42) = 2 —4 (21? og 2 ___¢8 ;4 ("2]?
' 20773

thus, according to (18.2) and (19.1), it suffices to show that

log2

—4
ak

o
o

log?2 = (2log2+log k+2log g),

this follows immediately, as g=300klogk and k=n,. J
(20) Observation. There exists a positive integer ng such that for every graph G=(V, E)

with ﬂ>ﬂ’ where kzny, it follows that ff(G)zmin{ 0.00055/k}.

1
14! k 300k log &’
Proof. Recall (17), (18) and (19). |}

3. Concluding Remarks

We have the following upper bound for f(1+¢):

Theorem 2. f[k+ ! ) k-ll—l 7/;

Proof. For the positive mtegers ! and n denote by K} , the graph resulting from the
complete bipartite graph K, , by inserting / additional vertices on each edge of K, ,.
Clearly

for all positive integers A_Z mod 15.

IV(KE,n)l = 2”"{'712 l: IE(Kli n)l = nz(l+1)>

|E(Kq )| 41 L (1 L1, 1)
!V(Kf,n)l - l+2 b g(l(n,n) [—Ll + + 8 ‘F ‘i‘—i;{ .

n
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., k(n—=2)-2 L (k—}-l) 1 n (1 1 1) )
Putting /—_—T— shows that f ) E T +—+..n—|—§-’; dnd‘

this expression is minimized for n=>35, hence f(ﬁ%l—l§k—-lﬁ_%’ provided k=2

mod 15. §

A careful inspection of the proof of our main theorem suggests the following
definition:

v

Definition. For positive reals o and g let

f*(g, &) = inf {J (G)l :5((((?)|I =o and girth(G) = g}

Corollary. There exists a positive integer ny such that

k+ 1) _ 0.00055
k = k

I {SOOk log k,

for all positive integers kz=n,.

Problem. Fix a=1, is f*(g, o) bounded as g tends to infinity?

References

[1] P. ErpGs, Some recent progress on extremal problems in graph theory, Proc. 6th S. E. Con-
ference on graph theory, Utilitas Math. 1975, 3—14.

[2] A. GyArr4s, J. Komroés and E. SzemerEpi, On the distribution of cycle lengths in grapbs,
J. Graph Theory, 4 (1984), 441—462.

A. Gyérfas H. J. Promel and B. Voigt
Computer and Automation Institute of the Fakultdt fiir Mathematik
Hungarian Academy of Sciences Universitdt Bielefeld

Kende u. 13—17, 1111-Hungary Bielefeld 1

4800, West Germany
E. Szemerédj

Mathematical Institute of the
Hungarian Academy of Sciences
Budapest, P.O.B. 127

1364, Hungary





