ON THE SUM OF THE RECIPROCALS OF CYCLE LENGTHS IN SPARSE GRAPHS

A. GYÁRFÁS, H. J. PRÖMEL, E. SZEMERÉDI and B. VOIGT

Received 9 September 1983

For a graph G let $\mathscr{L}(G) = \sum \left\{ \frac{1}{k} \middle| G \right\}$ contains a cycle of length k. Erdős and Hajnal [1] introduced the real function $f(\alpha) = \inf \left\{ \mathscr{L}(G) \middle| \frac{|E(G)|}{|V(G)|} \ge \alpha \right\}$ and suggested to study its properties. Obviously f(1)=0. We prove $f\left(\frac{k+1}{k}\right) \ge (300k \log k)^{-1}$ for all sufficiently large k, showing that sparse graphs of large girth must contain many cycles of different lengths.

1. Introduction

Let G = (V, E) be a finite undirected graph. Let $\mathscr{L}(G) = \sum \left\{ \frac{1}{k} \right|$ there exists a cycle of length k in G}. The number $\mathscr{L}(G)$ is the sum of the reciprocals of cycle lengths occuring in G. In a sense, $\mathscr{L}(G)$ measures how rich the graph G is with respect to cycles. E.g. $\mathscr{L}(K_n) = \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{n} \approx \left(\gamma - \frac{3}{2}\right) + \log n$, where $\gamma = .5772...$ is the Mascheroni constant; $\mathscr{L}(K_{n,n}) = \frac{1}{4} + \frac{1}{6} + \ldots + \frac{1}{2n} \approx \frac{1}{2}(\gamma - 1 + \log n)$. Erdős and Hajnal [1] introduced the real function $f(\alpha) = \inf \left\{ \mathscr{L}(G) \mid \frac{|E(G)|}{|V(G)|} \ge \alpha \right\}$. They asked about the behaviour of $f(\alpha)$ as α tends to infinity. The complete bipartite graph $K_{n,n}$ shows that $f(n) \le c \cdot \log n$ for $n \ge 2$, but originally it was unknown whether $f(\alpha)$ is bounded or not. Recently Gyárfás, Komlós and Szemerédi [2] showed that $f(\alpha) \ge a \cdot \log \alpha$, provided that $\alpha > b$, where a and b are suitable contants. Obviously $f(\alpha) = 0$ for $\alpha \le 1$. The problem of determining the behaviour of $f(\alpha)$ for $\alpha \in (1, 1+\varepsilon)$ has been raised in [2]. It was not even clear whether $f(1+\varepsilon) > 0$ for every $\varepsilon > 0$.

In this paper we prove the following theorem, answering this question in the affirmative:

AMS subject classification (1980): 05 C 38; 05 C 05

Theorem 1. There exists a positive integer n_0 such that $f\left(\frac{k+1}{k}\right) \ge \frac{1}{300k \log k}$ for all integers $k \ge n_0$; in other words: for every graph G with $\frac{|E(G)|}{|V(G)|} \ge \frac{k+1}{k}$ it follows that $\mathscr{L}(G) \ge \frac{1}{300k \log k}$, although the girth of G may be arbitrarily large.

Basically our proof follows the pattern of [2]: Generalizing the notion of 3/2-tree [2], we construct a subtree of G. Since $\frac{|E(G)|}{|V(G)|} > 1$, eventually we will detect sufficiently many cycles of different lengths, so that $\mathscr{L}(G)$ can be estimated from below.

2. Proof of the theorem

Lemma. Let k be a positive integer and let G be a graph such that $\frac{|E(G)|}{|V(G)|} \ge \frac{k+1}{k}$. Then there exists a graph G^* such that

(1) G^* does not contain k vertices x_0, \ldots, x_{k-1} , each of which has degree 2 and which form a path of length k.

(2)
$$\frac{|E(G^*)|}{|V(G^*)|} \ge \frac{k+1}{k}$$
 and $\mathscr{L}(G^*) \le \mathscr{L}(G).$

Proof. We proceed by induction on the number of k-element subsets $\{x_0, ..., x_{k-1}\}$ of vertices in G such that each x_i has degree 2 and $x_0, ..., x_{k-1}$ form a path of length k. Pick any such subset $\{x_0, ..., x_{k-1}\}$ and let \hat{G} be the graph which is obtained from G by deleting $\{x_0, ..., x_{k-1}\}$ and deleting all edges which are incident with these vertices. Obviously then $\mathscr{L}(\hat{G}) \leq \mathscr{L}(G), |E(\hat{G})| = |E(G)| - k - 1$ and $|V(\hat{G})| = |V(G)| - k$. The assumption $\frac{|E(G)|}{|V(G)|} \geq \frac{k+1}{k}$ implies that also $\frac{|E(\hat{G})|}{|V(\hat{G})|} \geq \frac{k+1}{k}$. Hence, by induction, the assertion follows.

Now let G = (V, E) be a fixed finite graph such that

$$|E|/|V| \ge (k+1)/k,$$

for some positive integer k.

According to the lemma we may assume that G is connected and satisfies

(1) G does not contain k vertices x_0, \ldots, x_{k-1} , each of which has degree 2 and which form a path in G.

We keep on establishing observations about the interior structure of G. These observations are based on certain reals α , β , γ and g. Ultimately we find out: if these numbers satisfy certain equations (viz. 7.1 and 9.1), then $\mathscr{L}(G)$ is sufficiently large (cf. 17). Since g is directly related to G (cf. 3), it remains to choose α , β and γ accordingly.

The final result is formulated under (20).

42

(2) Notation. A rooted (≤ 2)-tree in G is a triple $\mathcal{T}=(T, r, F)$ such that $T \subseteq V$ is a set of vertices in G, $F \subseteq E$ is a set of edges in G,

 $r \in T$ is a distinguished vertex, called the *root* of \mathcal{T} .

(T, F) is a tree, i.e. a connected graph without cycles, such that every vertex $x \in T$ has degree at most three in (T, F).

For vertices x and y in T let dist (x, y) be the number of edges in the (uniquely determined) path in (T, F) joining x and y. For nonnegative integers n let

$$\mathcal{T}(n) = \{x \in T \mid \text{dist}(r, x) = n\}$$

be the *n*-th level of \mathcal{T} . The height of \mathcal{T} is the maximal integer *n* such that $\mathcal{T}(n) \neq \emptyset$.

(3) Notation. Let g be the maximal positive integer such that G does not contain any cycle of length at most g, i.e. g = girth(G) - 1. For a vertex $x \in V$ let deg (x) denote the number of adjacent vertices, i.e. the degree of x.

(4) Observation. Let $0 < \alpha < 1$ be a real number. There exists a nonnegative integer N and there exists a rooted (≤ 2)-tree $\mathcal{T}=(T, r, F)$ of height at most N+1 satisfying the following properties:

(4.1)
$$|\mathscr{T}(l+k)| \ge \alpha^k \frac{2}{2-\alpha^{k-1}} |T(l)| \quad for \ every \quad 0 \le l \le N-k.$$

Additionally, there exists a set $\text{GOOD} \subseteq \mathcal{T}(N)$ and a mapping s: $\text{GOOD} \rightarrow T$ such that

 $|\text{GOOD}| > (1-\alpha) |\mathcal{T}(N)|,$ (4.2)

(4.3) $\{x, s(x)\} \in E \setminus F$ for every $x \in \text{GOOD}$, i.e. the vertices x and s(x) are joined by an edge in G not belonging to the rooted tree \mathcal{T} .

Proof. Such a rooted tree \mathcal{T} can be obtained by a straightforward recursive construction. Pick a vertex $r \in V$ arbitrarily and put $T_0 = \{r\}$ and $F_0 = \emptyset$. Assume that for some nonnegative integer m the rooted (≤ 2)-tree $\mathscr{T}_m = (T_m, r, F_m)$ has been constructed such that (4.1) is satisfied for all $0 \le l \le m-k$.

Let

 $A_m = \{x \in \mathcal{T}_m(m) | \deg(x) = 2\}$

be the set of degree 2 vertices of G belonging to the *m*-th level of \mathcal{T}_m .

Let

$$A_m^+ = \{ y \in V \setminus T_m | \{x, y\} \in E \text{ for some } x \in A_m \}$$

be the set of neighbours of A_m not already belonging to \mathscr{T}_m . Let $B_m \subseteq \mathscr{T}_m(m) \setminus A_m$ be a set of maximal cardinality such that there exist two mappings $b_i: B_m \rightarrow b_i$ $\rightarrow V \setminus (T_m \cup A_m^+), i \in \{0, 1\}, \text{ satisfying}$

(4.4) $\{x, b_i(x)\} \in E$ for every $x \in B_m$ and $i \in \{0, 1\}$,

(4.5) $b_i(x) \neq b_i(y)$ for every $x, y \in B_m$ and $i, j \in \{0, 1\}$ with $(x, i) \neq (y, j)$,

i.e. to every $x \in B_m$ there are associated two adjacent vertices $b_0(x)$ and $b_1(x)$ not

already belonging to $T_m \cup A_m^+$ such that $\{b_0(x), b_1(x)\} \cap \{b_0(y), b_1(y)\} = \emptyset$ for any two different x and y in B_m .

Let

$$B_m^+ = \{b_0(x) | x \in B_m\} \cup \{b_1(x) | x \in B_m\}.$$

Put

$$T_{m+1} = T_m \cup A_m^+ \cup B_m^+$$

and

 $F_{m+1} = F_m \cup \{\{x, y\} \in E | x \in A_m \text{ and } y \in A_m^+ \} \cup \{\{x, b_0(x)\} | x \in B_m\} \cup \{\{x, b_1(x)\} | x \in B_m\}.$

Repeat this construction as long as possible, viz. let N be the minimal integer such that

$$(4.6) |A_N| + |B_N| < \alpha |\mathcal{T}_N(N)|,$$

and put $\mathscr{T}=(T, r, F)=(T_{N+1}, r, F_{N+1})$. Recall that \mathscr{T} has been defined in such a way that

(4.7)
$$|A_m| + |B_m| \ge \alpha |\mathcal{T}(m)|$$
 for every $0 \le m < N$

and

$$(4.8) \qquad |\mathscr{T}(m)| = |A_{m-1}| + 2|B_{m-1}| \quad \text{for every} \quad 0 < m \le N.$$

We show that \mathscr{T} satisfies assertion (4.1): Let $0 \leq l \leq N-k$. By (4.7) then

(4.9)
$$\alpha^{k-1}|A_l| + \alpha^{k-1}|B_l| \ge \alpha^k |T(l)|.$$

According to (4.7) and (4.8) it follows that

(4.10)
$$\alpha^{k-1-i}|A_{l+i}| + \alpha^{k-1-i}|B_{l+i}| - \alpha^{k-i}|A_{l-1+i}| - 2\alpha^{k-i}|B_{l-1+i}| \ge 0$$

for every $1 \leq i < k$.

Summing up the inequalities (4.9) and (4.10) yields

(4.11)
$$|A_{l+k-1}| + |B_{l+k-1}| - \sum_{i=0}^{k-2} \alpha^{k-1-i} |B_{l+i}| \ge \alpha^k |\mathcal{F}(l)|.$$

As the graph satisfies condition (1), it follows that

(4.12)
$$|A_{l+k-1}| \leq \sum_{i=0}^{k-2} 2|B_{l+i}|,$$

and hence

(4.13)
$$-\frac{\alpha^{k-1}}{2}|A_{l+k-1}| + \sum_{i=0}^{k-2} \alpha^{k-1}|B_{l+i}| \ge 0.$$

Summing up (4.11) and (4.13) yields

$$(4.14) \qquad \frac{2-\alpha^{k-1}}{2} |A_{l+k-1}| + |B_{l+k-1}| + \sum_{i=1}^{k-2} (\alpha^{k-1} - \alpha^{k-1-i}) |B_{l+i}| \ge \alpha^k |\mathcal{F}(l)|,$$

thus

(4.15)

$$|A_{l+k-1}| \ge \frac{2\alpha^{k}}{2-\alpha^{k-1}} |\mathscr{T}(l)| + \frac{2}{\alpha^{k-1}-2} \left(|B_{l+k-1}| + \sum_{i=1}^{k-2} \left(\alpha^{k-1} - \alpha^{k-1-i} \right) |B_{l+i}| \right)$$
$$\ge \frac{2\alpha^{k}}{2-\alpha^{k-1}} |\mathscr{T}(l)| + \frac{2}{\alpha^{k-1}-2} |B_{l+k-1}|,$$

as $0 < \alpha < 1$.

From (4.8) and (4.15) then finally it follows that

$$(4.16) \qquad \qquad |\mathscr{T}(l+k)| =$$

$$= |A_{l+k-1}| + 2|B_{l+k-1}| \ge \frac{2\alpha^k}{2-\alpha^{k-1}} |\mathcal{F}(l)| + \frac{2(\alpha^{k-1}-1)}{\alpha^{k-1}-2} |B_{l+k-1}| \ge \frac{2\alpha^k}{2-\alpha^{k-1}} |\mathcal{F}(l)|,$$

as again $0 < \alpha < 1$. Thus assertion (4.1) is valid.

Let us mention that in fact the sets A_{l+i} and B_{l+i} can be chosen in such a way that equality holds in (4.1) occasionally.

It remains to define the set GOOD and the mapping s: $GOOD \rightarrow T$ such that (4.2) and (4.3) are satisfied. Put

$$\text{GOOD} = \mathscr{T}(N) \setminus (A_N \cup B_N).$$

According to (4.6) then (4.2) is valid. Due to the maximality of B_N for every $x \in \text{GOOD}$ there exists some vertex $s(x) \in T = T_{N+1}$ satisfying (4.3).

For the remainder of this proof fix a rooted (≤ 2) -tree $\mathscr{T}=(T, r, F)$ of height N or N+1 and a set $\text{GOOD} \subseteq \mathscr{T}(N)$ as well as a mapping s: $\text{GOOD} \rightarrow T$ such that the assertions (4.1), (4.2) and (4.3) are satisfied.

(5) Observation. There exists a set EQP \subseteq GOOD and there exists an integer $n \ge g$ such that

(5.1)
$$\operatorname{dist}(x, s(x)) = n \quad for \; every \quad x \in \mathrm{EQP},$$

$$(5.2) |EQP| \ge |GOOD|/n^2,$$

(5.3)
$$|\mathrm{EQP}| \geq \frac{1-\alpha}{n^2} \left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}} \right)^{N-k+1},$$

Proof. Recall that g = girth (G) - 1. Consider the mapping Δ : GOOD $\rightarrow \mathbb{N} \setminus \{0, ..., g-1\}$ which is defined by $\Delta(x) = \text{dist}(x, s(x))$ for every $x \in \text{GOOD}$. Then $|\text{GOOD}| = \sum_{n=g}^{\infty} |\Delta^{-1}(n)|$ and assuming that (5.2) fails for every $n \ge g$ and $\text{EQP} = = \Delta^{-1}(n)$ it follows that

$$|\text{GOOD}| = \sum_{n=g}^{\infty} |\Delta^{-1}(n)| < |\text{GOOD}| \sum_{n=2}^{\infty} \frac{1}{n^2} = |\text{GOOD}|(\pi^2/6 - 1) < |\text{GOOD}|,$$

an obvious contradiction.

Hence for some $n \ge g$ the set $\Delta^{-1}(n)$ satisfies (5.1) and (5.2). Assertion (5.3) is an obvious consequence from (4.2) and (4.1) and (5.2).

Fix an integer $n \ge g$ and a set EQP \subseteq GOOD satisfying (5.1), (5.2) and (5.3). Put $n^* = \lfloor n/2 - 1 \rfloor$.

(6) Notation. For vertices $z \in T$ let

$$C(z) = \{ y \in \mathcal{T}(N) | \text{dist}(z, y) = N - \text{dist}(r, y) \}$$

be the vertices in the N-th level of \mathcal{T} belonging to the cone generated by z.

(7) Observation. Let $0 < \beta < 1$ be a real number such that

(7.1)
$$\frac{1-\alpha}{2g^2} \ge \beta^{(g-4)/2}.$$

There exists a vertex $z \in \mathcal{T}(N-n^*)$ such that

(7.2)
$$|C(z) \cap \operatorname{EQP}| \geq \frac{1-\alpha}{2n^2} \beta^{n^*} \left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}} \right)^{n^*-k+1}$$

Proof. Call a vertex $z \in \mathcal{T}(N-n^*)$ small iff

(7.3)
$$|C(z)| < \beta^{n^*} \left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}} \right)^{n^*-k+1}$$

Without loss of generality we can assume that $C(z) \neq \emptyset$ for every $z \in \mathcal{F}(N-n^*)$. Hence it follows from (4.1) that

(7.4)
$$\left| \bigcup_{\substack{z \in \mathcal{F}(N-n^*) \\ z \text{ small}}} C(z) \right| < |\mathcal{F}(N-n^*)| \beta^{n^*} \left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}} \right)^{n^*-k+1} \\ \leq |\mathcal{F}(N)| \left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}} \right)^{k-1-n^*} \beta^{n^*} \left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}} \right)^{n^*-k+1} \\ = |\mathcal{F}(N)| \beta^{n^*}.$$

Note that particularly $g \ge 2$ (since girth (G) is at least 3). From $n \ge g \ge 2$ and (7.1) it follows that

(7.5)
$$\frac{1-\alpha}{2n^2} \ge \beta^{n^*}.$$

Denote by EQP^{*} the set of vertices in EQP which are not covered by small cones. According to (7.4), (5.2), (4.2), (7.1) and since $n \ge g$ it follows that

(7.6)
$$\begin{aligned} |\mathrm{E}\mathrm{Q}\mathrm{P}^*| &\geq |\mathrm{E}\mathrm{Q}\mathrm{P}| - \left| \bigcup_{\substack{z \in \mathcal{T}(N-n^*)\\ z \text{ small}}} C(z) \right| &\geq |\mathrm{E}\mathrm{Q}\mathrm{P}| - |T(N)| \beta^{n^*} \\ &\geq |\mathcal{T}(N)| \frac{1-\alpha}{n^2} - |\mathcal{T}(N)| \beta^{n^*} = |\mathcal{T}(N)| \left(\frac{1-\alpha}{n^2} - \beta^{n^*}\right) \\ &\geq |\mathcal{T}(N)| \frac{1-\alpha}{2n^2}. \end{aligned}$$

Note that $C(z) \cap C(z') = \emptyset$ for different vertices z and z' in $\mathcal{T}(N-n^*)$. Hence there exist at most

$$|\mathcal{T}(N)|/\beta^{n^*}\left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}}\right)^{n^*-k+1}$$

vertices $z \in \mathcal{F}(N-n^*)$ which are not small. Assuming that every such "large" vertex fails to satisfy (7.2) yields

$$|\mathrm{EQP}^*| < \frac{1-\alpha}{2n^2} |\mathscr{T}(N)|,$$

contradicting (7.6). Hence the observation is proved.

Fix a vertex $z \in \mathcal{T}(N-n^*)$ satisfying (7.2).

(8) Notation. Let m < N. A vertex $x \in \mathcal{T}(m)$ is a cycle vertex iff there exist two vertices y_0 and y_1 in $\mathcal{T}(m+1)$ such that $\{x, y_0\} \in F$ and $\{x, y_1\} \in F$ (i.e. x possesses two immediate successors in \mathcal{T} , viz. y_0 and y_1) satisfying

(8.1)
$$C(y_0) \cap EQP \neq \emptyset$$
 and $C(y_1) \cap EQP \neq \emptyset$.

(9) Observation. Let $\gamma > 0$ be a real number and assume that α , β , g (as introduced above) and γ satisfy

$$(9.1) \qquad \log\left(\frac{1-\alpha}{2n^2}\right) + \left(\frac{n}{2} - 1\right)\log\beta + \left(\frac{n}{2} - k - 1\right)\log\left(\alpha\right)^k \sqrt{\frac{2}{2-\alpha^{k-1}}} \ge n\gamma\log 2$$

for all $n \ge g$. Then there exists an ascending path $z = x_0, x_1, ..., x_{n^*-1}$ in \mathcal{T} (i.e. $\{x_i, x_{i+1}\} \in F$ and $x_i \in \mathcal{T}(N-n^*+i)$) which contains at least γn cycle vertices.

Proof. Construct $x_1, ..., x_{n^*-1}$ by a greedy procedure. If there exists precisely one vertex $y \in \mathcal{T}(N-n^*+m+1)$ such that $\{x_m, y\} \in F$, put $x_{m+1}=y$. If there exist two vertices y_0 and y_1 in $\mathcal{T}(N-n^*+m+1)$ such that $\{x_m, y_0\} \in F$ and $\{x_m, y_1\} \in F$, put

$$\begin{aligned} x_{m+1} &= y_0 \quad \text{iff} \quad |C(y_0) \cap \text{EQP}| \geq |C(y_1) \cap \text{EQP}| \\ &= y_1 \quad \text{iff} \quad |C(y_0) \cap \text{EQP}| < |C(y_1) \cap \text{EQP}|. \end{aligned}$$

We show that $z=x_0, ..., x_{n^*-1}$ contains at least γn cycle vertices. Let $x_{m_0}, ..., x_{m_{t-1}}$, where $m_0 < m_1 < ... < m_{t-1}$, be the cycle vertices amongst $x_0, ..., x_{n^*-1}$.

According to the construction and (8.1) it follows that

$$(9.2) |C(x_{m_{t-1}}) \cap EQP| \le 2,$$

$$(9.3) |C(x_{m_l-1}) \cap EQP| \le 2|C(x_m) \cap EQP| \text{ for } 0 < l < t.$$

Hence

$$(9.4) |C(x_{m_0}) \cap EQP| \leq 2^t.$$

Note that $|C(x_{m_0}) \cap EQP| = |C(z) \cap EQP|$, hence it follows from (7.2) that

(9.5)
$$2^{t} \geq \frac{1-\alpha}{2n^{2}} \beta^{n^{*}} \left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}} \right)^{n^{*}-k+1}$$

4

i. e.

$$(9.6) t \ge \frac{1}{\log 2} \left(\log\left(\frac{1-\alpha}{2n^2}\right) + n^* \log \beta + (n^* - k + 1) \log\left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}}\right) \right)$$
$$\ge \frac{1}{\log 2} \left(\log\left(\frac{1-\alpha}{2n^2}\right) + \left(\frac{n}{2} - 1\right) \log \beta + \left(\frac{n}{2} - k - 1\right) \log\left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}}\right) \right)$$
$$\ge \gamma n$$

according to (9.1) and the fact that $n \ge g$.

Fix a path $x_0, x_1, ..., x_{n^*-1}$ containing the cycle vertices $x_{m_0}, ..., x_{m_{t-1}}$, where $m_0 < m_1 < ... < m_{t-1}$ and $t \ge \gamma n$. Fix a vertex $x_{m_t} \in C(x_{m_{t-1}}) \cap EQP$. For every vertex x_{m_i} let $y_{m_i} \in EQP$ be such that

(10) $y_{m_i} \in C(x_{m_i}) \cap \text{EQP} \setminus C(x_{m_i+1})$ for every $0 \le i < t$.

Put $y_{m_t} = x_{m_t}$. Such vertices y_{m_i} exist as the vertices x_{m_i} are cycle vertices.

(11) Notation. For vertices x and y in T denote by P(x, y) the (uniquely determined) path in \mathcal{T} joining x and y. In order to avoid ambiguties say that P(x, y) consists of edges (in F), determining the path between x and y. Note that |P(x, y)| = dist(x, y).

(12) Observation. Let $z^* \in T$ denote the vertex satisfying $\{z^*, z\} \in P(r, z)$, i.e. z^* is the (uniquely determined) predecessor of z in T. Then $\{z^*, z\} \in P(y_{m_l}, s(y_{m_l}))$ for every $0 \le i \le t$.

Proof. Denote by $\overline{C}(z) = \bigcup_{\substack{0 \le i \le n^* + 1 \\ 0 \le i \le n^* + 1}} \{y \in \mathcal{F}(N - n^* + i) | \text{dist}(y, z) = i\}$ the (upper) cone generated by z. Obviously

(12.1)
$$MAX \{ \text{dist} (y, z) | y \in \overline{C}(z) \} \leq n^* + 1,$$

hence

(12.2) MAX {dist
$$(x, y) | y \in C(z), x \in \overline{C}(z)$$
} $\leq n^* + n^* + 1 = 2 \left\lfloor \frac{n}{2} - 1 \right\rfloor + 1 \leq n - 1.$

From (5.1) it follows that $s(y_{m_i}) \notin \overline{C}(z)$ for any $0 \le i \le t$. Hence the assertion follows.

(13) Observation. Let $0 \le i < j \le t$. Then

(13.1)
$$P(y_{m_i}, y_{m_j}) \cap P(s(y_{m_i}), s(y_{m_j})) = \emptyset.$$

(13.2)
$$C_{i,j} = P(y_{m_i}, y_{m_j}) \cup P(s(y_{m_i}), s(y_{m_j})) \cup \{\{y_{m_i}, s(y_{m_i})\}, \{y_{m_j}, s(y_{m_j})\}\}$$

forms a cycle of length at most 2n.

Proof. As the only way of entering or leaving the cone $\overline{C}(z)$ is to use the edge $\{z, z^*\}$, assertion (13.1) follows from (12). Consequently C_{ij} is a cycle. As $y_{m_i} \in C(x_{m_i}) \setminus C(x_{m_i+1})$ and $\{x_{m_i}, x_{m_i+1}\} \in F$ it follows from i < j that

(13.3)
$$\operatorname{dist}(y_{m_i}, y_{m_j}) = 2(n^* - m_i).$$

From (12) and (5.1) it follows that

(13.4)
$$\operatorname{dist}(z^*, s(y_{m_i})) = \operatorname{dist}(y_{m_i}, s(y_{m_i})) \cdot \operatorname{dist}(y_{m_i}, z^*) = n - n^* - 1,$$

hence by the triangle inequality

(13.5)
$$\operatorname{dist}(s(y_{m_i}), s(y_{m_i})) \leq 2(n - n^* - 1),$$

this yields

(13.6)
$$|P(y_{m_i}, y_{m_j}) \cup P(s(y_{m_i}), s(y_{m_j})) \cup \{\{y_{m_i}, s(y_{m_i})\}, \{y_{m_j}, s(y_{m_j})\}\}|$$

$$\leq 2(n^* - m_i) + 2(n - n^* - 1) + 2 = 2n - 2m_i \leq 2n$$

showing that C_{ij} is a cycle of length at most 2n.

(14) Fact. Let $\mathcal{T}^* = (T^*, r^*, F^*)$ be a rooted tree with distance function dist^{*}. For every nonnegative integer m and every vertex $\hat{x} \in \mathcal{T}^*(m)$ it follows that

(14.1) MAX {dist*
$$(\hat{x}, y) | y \in \mathcal{T}^*(m)$$
} = MAX {dist* $(y, y') | y, y' \in \mathcal{T}^*(m)$ }.

Proof. Obvious by induction on m.

(15) Observation. For nonnegative integers $0 \le i < t$ let $i < \xi(i) \le t$ be such that

(15.1)
$$\operatorname{dist}(s(y_{m_i}), s(y_{m_{\xi(i)}})) = \operatorname{MAX} \{\operatorname{dist}(s(y_{m_i}), s(y_{m_j})) | i < j \leq t\}.$$

Then

4*

(15.2)
$$\operatorname{dist}\left(s(y_{m_{i+1}}), s(y_{m_{\xi(i+1)}})\right) \leq \operatorname{dist}\left(s(y_{m_i}), s(y_{m_{\xi(i)}})\right).$$

Proof. Consider

$$T^* = \{y \in T \mid \text{dist} (z^*, y) < n - n^* - 1\} \setminus \overline{C}(z)$$

and for every $0 \leq i < t$ let

$$T_i^* = T^* \cup \{s(y_{m_j}) | i \leq j \leq t\}.$$

Denote by \mathcal{T}_i^* the rooted subtree of \mathcal{T} consisting of vertices T_i^* with root z^* . According to (12) and (13.4) then

(15.3)
$$\mathscr{T}_{i}^{*}(n-n^{*}-1) = \{s(y_{m_{j}}) | i \leq j \leq t\}.$$

As $T_i^* \supseteq T_{i+1}^*$ it follows that

(15.4) MAX {dist_{\mathcal{J}_{i+1}^*}(y, y')|y, y' \in \mathcal{J}_{i+1}(n-n^*-1)}

$$\leq MAX {dist_{\mathcal{J}_i^*}(y, y')|y, y' \in \mathcal{J}_i(n-n^*-1)}.$$

According to (14.1) then

(15.5)
$$\operatorname{dist}(s(y_{m_{i+1}}), s(y_{m_{\xi(i+1)}})) = \operatorname{dist}_{\mathcal{F}_{i+1}^*}(s(y_{m_{i+1}}), s(y_{m_{\xi(i+1)}}))$$
$$\leq \operatorname{dist}_{\mathcal{F}_{i}^*}(s(y_{m_{i}}), s(y_{m_{\xi(i)}})) = \operatorname{dist}(s(y_{m_{i}}), s(y_{m_{\xi(i)}})).$$

(16) Observation. $|C_{i+1,\xi(i+1)}| < |C_{i,\xi(i)}|$ for every $0 \le i < t$.

Proof. According to (13.3) and since $m_i < m_{i+1}$ this follows from (15.2).

(17) Observation. Let the real numbers $0 < \alpha < 1$, $0 < \beta < 1$ and $\gamma > 0$ satisfy (7.1) and (9.1). Then

$$\mathscr{L}(G) \ge \gamma/2.$$

(18) Observation. Put $\alpha = 2^{-1/2k}; \quad \beta = \left(\frac{2}{2\sqrt{2}-\sqrt{2}}\right)^{-1/2k}; \quad \gamma = 0.0011/k.$ Then (9.1)

is satisfied, provided that $g > 300k \log k$, and $k \ge n_0$, where n_0 is sufficiently large. **Proof.** We write (9.1) for n=g equivalently as

(18.1)
$$\log\left(\frac{1-\alpha}{2g^2}\right) + (g/2-1)\log\left(\alpha\beta\sqrt[k]{\frac{2}{2-\alpha^{k-1}}}\right) - k\log\left(\alpha\sqrt[k]{\frac{2}{2-\alpha^{k-1}}}\right) \ge g\gamma\log 2$$

and evaluate each of the three summands on the left hand side of (18.1) separately.

(18.2)
$$\log \frac{1-\alpha}{2g^2} = \log (1-2^{-1/2k}) - \log 2 - 2\log g \ge \log \left(\frac{\log 2}{2k}\right) - \log 2 - 2\log g$$

 $\ge -(2\log 2 + \log k + 2\log g).$

(18.3)
$$\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}} = \sqrt[k]{\frac{2}{2\sqrt{2-\sqrt{2}}}}$$

(18.4)
$$\alpha \beta \sqrt[k]{\frac{2}{2-\alpha^{k-1}}} = \sqrt{\frac{2}{2\sqrt{2}-\sqrt[2]{2}}},$$

(18.5)
$$(g/2-1)\log\left(\alpha\beta\sqrt[k]{\frac{2}{2-\alpha^{k-1}}}\right) = (g/2-1)\log\left(\sqrt{\frac{2}{2\sqrt{2}-\sqrt[2]{2}}}\right)$$
$$= \frac{1}{2k}(g/2-1)\log\left(\frac{2}{2\sqrt{2}-\sqrt[2]{2}}\right)$$
$$\ge \frac{g}{4k}0.088 - \frac{1}{2k}0.088$$
$$= g0.022/k - \frac{0.044}{k},$$
$$(18.6) \qquad -k\log\left(\alpha\sqrt[k]{\frac{2}{2-\alpha^{k-1}}}\right) \ge \log(2\sqrt{2}-1) - \log 2 \ge -\log 2.$$

Now, putting (18.2), (18.5), and (18.6) together shows that

$$\log\left(\frac{1-\alpha}{2g^2}\right) + (g/2-1)\log\left(\alpha\beta \sqrt[k]{\frac{2}{2-\alpha^{k-1}}}\right) - k\log\left(\alpha \sqrt[k]{\frac{2}{2-\alpha^{k-1}}}\right)$$

$$\geq g0.022/k - \left(\frac{0.044}{k} + 3\log 2 + \log k\right) - 2\log g$$

$$= g0.011/k + g \cdot 0.011/k - \left(\frac{0.044}{k} + 3\log 2 + \log k\right) - 2\log g$$

and thus it suffices to show that

(18.7)
$$g \cdot 0.011/k - \left(\frac{0.044}{k} + 3\log 2 + \log k\right) - 2\log g \ge 0.$$

This follows immediately according to the choices of g and k. To show (9.1) for arbitrary $n \ge g$ it is enough to see

(18.8)
$$\frac{1}{2}\log\beta + \frac{1}{2}\log\left(\alpha\right)^{k}\sqrt{\frac{2}{2-\alpha^{k-1}}} - \gamma\log 2 - 2\log\left(\frac{g+1}{g}\right) \ge 0$$

but this also holds by the choices of α , β , γ , g and k.

(19) Observation. Put α and β as before, then (7.1) is satisfied, provided $g \ge 300k \log k$ and $k \ge n_0$ for some sufficiently large n_0 .

Proof.

(19.1)
$$\log\left(\beta^{g-4/2}\right) = \frac{g-4}{2} \frac{(-1)}{2k} \log \frac{2}{2\sqrt{2} - \sqrt[2k]{2}} \leq \frac{g-4}{2} \frac{(-1)}{2k} \log 2$$

thus, according to (18.2) and (19.1), it suffices to show that

$$\frac{g-4}{4k}\log 2 \ge (2\log 2 + \log k + 2\log g),$$

this follows immediately, as $g \ge 300k \log k$ and $k \ge n_0$.

(20) Observation. There exists a positive integer n_0 such that for every graph G = (V, E)with $\frac{|E|}{|V|} \ge \frac{k+1}{k}$, where $k \ge n_0$, it follows that $\mathscr{L}(G) \ge \min\left\{\frac{1}{300k \log k}, 0.00055/k\right\}$.

Proof. Recall (17), (18) and (19).

3. Concluding Remarks

We have the following upper bound for $f(1+\varepsilon)$: **Theorem 2.** $f\left(\frac{k+1}{k}\right) \leq \frac{1}{k+1} \frac{77}{72}$ for all positive integers $k \equiv 2 \mod 15$.

Proof. For the positive integers l and n denote by $K_{n,n}^{l}$ the graph resulting from the complete bipartite graph $K_{n,n}$ by inserting l additional vertices on each edge of $K_{n,n}$. Clearly

$$|V(K_{n,n}^{l})| = 2n + n^{2}l, |E(K_{n,n}^{l})| = n^{2}(l+1),$$

$$\frac{|E(K_{n,n}^{l})|}{|V(K_{n,n}^{l})|} = \frac{l+1}{l+\frac{2}{n}}, \ \mathscr{L}(K_{n,n}^{l}) = \frac{1}{l+1} \left(\frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \dots + \frac{1}{2n}\right).$$

Putting $l = \frac{k(n-2)-2}{n}$ shows that $f\left(\frac{k+1}{k}\right) \le \frac{1}{k+1} \frac{n}{n-2} \left(\frac{1}{4} + \frac{1}{6} + \dots + \frac{1}{2n}\right)$ and this expression is minimized for n=5, hence $f\left(\frac{k+1}{k}\right) \le \frac{1}{k+1} \frac{77}{72}$, provided $k \equiv 2 \mod 15$.

A careful inspection of the proof of our main theorem suggests the following definition:

Definition. For positive reals α and g let

$$f^*(g, \alpha) = \inf \left\{ \mathscr{L}(G) \left| \frac{|E(G)|}{|V(G)|} \ge \alpha \text{ and } \operatorname{girth}(G) \ge g \right\}.$$

Corollary. There exists a positive integer n_0 such that

$$f^*\left(300k\log k, \frac{k+1}{k}\right) \ge \frac{0.00055}{k}$$

for all positive integers $k \ge n_0$.

Problem. Fix $\alpha > 1$, is $f^*(g, \alpha)$ bounded as g tends to infinity?

References

- [1] P. ERDŐS, Some recent progress on extremal problems in graph theory, Proc. 6th S. E. Conference on graph theory, Utilitas Math. 1975, 3-14.
- [2] A. GYÁRFÁS, J. KOMLÓS and E. SZEMERÉDI, On the distribution of cycle lengths in graphs, J. Graph Theory, 4 (1984), 441-462.

A. Gyárfás

Computer and Automation Institute of the Hungarian Academy of Sciences Kende u. 13—17, 1111-Hungary

H. J. Prömel and B. Voigt

Fakultät für Mathematik Universität Bielefeld Bielefeld 1 4800, West Germany

E. Szemerédi

Mathematical Institute of the Hungarian Academy of Sciences Budapest, P.O.B. 127 1364, Hungary