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ON THE SUM OF THE RECIPROCALS OF CYCLE 
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For a graph G let !l' (G)= .E { ~ I G contains a cycle of Jength k}. Erdos and Hajnal [1] 

introduced the real function /(a)=inf {2 (G)IIE(G)I ~a} and suggested to study its properties. 
IV(G)I . (k+l) . Obvwusly /(1)=0. We prove f k ~(300k log k)- 1 for all sufficiently large k, showmg that 

sparse graphs of large girth must contain many cycles of different lengths. 

1. Introduction 

Let G = ( V, E) be a finite undirected graph. Let S!! (G)= Z {! l there exists 

a cycle of length kin G}. The number !l'(G) is the sum of the reciprocals of cycle 

lengths occuring in G. In a sense, S!!(G) measures how rich the graph G is with respect 

to cycles. E.g. S!!(~,)= ~ +! + ... + :
1 
~(r- ~)+logn, where y=.5772... is 

the Mascheroni constant; S!!(~, 11)=_!:_+ 
6
1 

+ ... +-?
1 ~ 

2
1 

(y-1 +log n). Erdos 
' 4 -11 

and Hajnal [I] introduced the real function f(a) =inf {.P(G) J ~~i~: ~a}. They 

asked about the behaviour ofj(rx) as rx tends to infinity. The complete bipartite graph 
Kn,n shows that f(n)~c ·log n for n~2, but originally it was unknown whether 
f(a) is bouJ1ded or not. Recently Gyarfas, Koml6s and Szemeredi (2] showed that 
f(a) ~a ·log a, provided that a>b, where a and bare suitable contants. Obviously 
f(a)=O for rx~ 1. The problem of determining the behaviour ofj(rx) for aE(l, 1 +e) 
has been raised in [2]. It was not even clear whether f(l +e) >0 for every e >0. 

In this paper we prove the following theorem, answering this question in the 
affirmative: ' 

AMS subject classification (1980): 05 C 38; 05 C 05 
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(
k+l) . 1 Theorem 1. There exists a positive integer n0 such that f -- >--:-:--:--=--:---. k = 300klog k 

for all integers k '?= n0 ; in other words: for every graph G with ~~i ~~ '?= k t 1 
it follows 

that ~(G)>-300k
1log k,, although the girth ofG may be arbitrarily large. 

Basically our proof follows the pattern of [2]: Generalizing the notion of 3/2-

tree [2], we constmct a subtree of G. Since ~~~i ~ 1, eventually we will detect 

sufficiently many cycles of different lengths, so that !l' (G) can be estimated from 
below. 

2. Proof of the theorem 

!E(G)! k+ 1 
Lemma. Let k be a positive integer and let G be a graph such that lV(G)\ >--k-. 

Then there exists a graph G* such that 

(1) G* does not contain k vertices x 0 , ••. , xk_ 1 , each of which has degree 2 and 
which form a path of length k. 

(2) IE(G*)I k+ 1 * 
JV(G*)J ~ -r- and !fl(G) :§ !.e(G). 

Proof. We proceed by induction on the number of k-element subsets {x0, ... , xk_1} 
of vertices in G such that each xi has degree 2 and x0 , .•• , xk_1 form a path of length 
k. Pick any such subset {x0 , .•. , xk_1} and let G be the graph which is obtained from G 
by deleting {x0 , ••• , xk_1} and deleting all edges which are incident with these vertices. 
Obviously then !l'(G):§!f(G), JE(G)\=\E(G)\-k-1 and \V(G)\=JV(G)\-k. 

. \E(G)J k+l . . . JE(G)J k+l 
The assumptiOn \V(G)j >--1 - Imphes that also--~ -~-1 -. Hence, by indue-

/( . IV(G)J t( 

tion, the assertion follows. I 
Now let G=(V, E) be a fixed finite graph such that 

IE\/\V\ ~(k+l)/k, 
for some positive integer k. 

According to the lemma we may assume that G is co1111ected and satisfies 

(1) G does not contain k vertices x0 , ... , xk_1 , each of which has degree 2 and 
which form a path in G. 

We keep on establishing observations about the interior structure of G. 
These observations are based on certain reals a, [3, 1' and g. Ultimately we find out: 
if these numbers satisfy certain equations (viz. 7.1 and 9.1), then !l'(G) is suffici­
ently large ( cf. 17). Since g is directly related to G ( cf. 3), it remains to choose a; [3 
and y accordingly. 

The final result is formulated under (20). 
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(2) Notation. A rooted (~2)-tree in G is a triple !T=(T, r, F) such that 
T<;;; Vis a set of vertices in G, 
F~ E is a set of edges in G, 
rET is a distinguished vertex, called the root of !!7, 
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(T, F) is a tree, i.e. a connected graph without cycles, such that every vertex 
:xE T has degree at most three in (T~ F). 

For vertices x and y in T let dist (x, y) be the number of edges in the (uni­
quely determined) path in (T, F) joining x and y. For nonnegative integers n let 

!T(n) = {xETj dist (r, x) = n} 

be the n-th level of !!7. The height of !!7 is the maximal integer n such that !T(n) ~0. 

(3) Notation. Let g be the maximal positive integer such that G does not contain any 
cycle of length at most g, i.e. g=girth (G)-1. For a vertex xE V let deg (x) 
denote the number of adjacent vertices, i.e. the degree of x. 

(4) Observation. Let O<ct< 1 be a real number. There exists a nonnegative integer N 
and there exists a rooted (~2)-tree !T=(T, r, F) of height at most N+1 satisfying 
the following properties: 

(4.1) l!!i(l+k)l ~ ak 
2 

2
k_1 IT(l)l for every 0 2 12 N-k. 

-a 

Additionally, there exists a set GOOD~!T(N) and a mappings: GOOD-T 
such that 

(4.2) !GOODJ >(1-a) !!T(N)j, 

(4.3) {x, s(x)}EE""F for every xEGOOD, i.e. the vertices x and s(x) are joined 
by an edge in G not belonging to the rooted tree !!7. 

Proof. Such a rooted tree !!7 can be obtained by a straightforward recursive con­
struction. Pick a vertex rEV arbitrarily and put T0 = {r} and F0 =0. Assume that 
for some nonnegative integer m the rooted ( ~2)-tree /T,11 =(T"" r, Fm) has been 
constructed such that (4.1) is satisfied for all 021::-§m-k. 

Let 
Am = {xE!Tm(m)j deg (x) = 2} 

be the set of degree 2 vertices of G belonging to the m-th level of~. 
Let 

A;}; = {yEV""Tml{x, y}EE for some xEAm} 

be the set of neighbours of Am not already belonging to :T,. Let Bm ~ :T, ( m )"'Am 
be a set of maximal cardinality such that there exist two mappings bi: Bm­
- V""(Tm U A;};), iE {0, 1 }, satisfying 

(4.4) {x, b,(x)}EE for every xEBm and iE {0, 1}, 

(4.5) bi(x)~bj(y) for every x,yEBm and i,jE{O, 1} with·(x,i)~(y,j), 

i.e. to every xEBm there are associated two adjacent vertices b0 (x) and b1 (x) not 
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already belm1ging to TmUA,~ such that. {b0 (x), b1 (x)}n{b0 (y), b1 (y)}=0 for any 
two different x and y in Bm. 

Let 

Put 

and 

Repeat this construction as long as possible, viz. let N be the minimal integer 
such that 

(4.6) 

and put !T=(T, r, F)=(TN+b r, FN+1). 

(4.7) 

and 

(4.8) 

(4.9) 

Recall that §' has been defined in such a way that 

!Ami+ IBm!~ aJ!T(m)J for every 0 ~ m-< N 

J!T(m)J = !Am-1J+21Bm-11 for every 0 < m -:2 N. 

We show that f7 satisfies assertion (4.1): Let 0:§/~N -k. By (4.7) then 

ak-lJAzl +a"-11Btl ~ akJT(l)J. 

According to (4.7) and (4.8) it follows that 

(4.10) cxk-l-iJAz+il +ctk-1-iJBl+iJ-ak-iJAz-l+il- 2ak-i!Bt-1+tl ~ 0 

for every 1 ~i<k. 

(4.11) 

Summing up the inequalities ( 4.9) and ( 4.1 0) yields 

k-2 

!Az+k-11 + IBZ+k-11- Z ctk-1-ilBZ+ii ~ akJ!T(l)J. 
i=O 

As the graph satisfies condition (1), it follows that 

(4.12) 

and hence 

(4.13) 

Summing up ( 4.11) and ( 4.13) yields 

(4.14) 
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thus 

(4.15) 
2ak 2 k-2 

IAI+k-tl ~ 2 _ak-1 J.:T.(l)J + ak:-1_ 2 (IBt+k-11 + t~ (ll.f'-1-ak-l-i) IBt+il) 

2ak 2 
~ 2-rxk-1 J.:T(l)J+ rxk-1 _ 2 1Bt+k-tl, 

as 0-<rx-< 1. 
From ( 4.8) and ( 4.15) then finally it follows that 

(4.16) j&T (l +k)J = 

as again 0-<a<l. Thus assertion (4.1) is valid. 

Let us mention that in fact the sets At+i and Bz+i can be chosen in such a way 
that equality holds in (4.1) occasionally. 

It remains to define the set GOOD and the mapping s: GOOD-+ T such that 
(4.2) and (4.3) are satisfied. Put 

GOOD = §" (N)"'-.(AN U BN). 

According to ( 4.6) then ( 4.2) is valid. Due to the maximality of BN for every xE GOOD 
there exists some vertex s(x)ET=TN+l satisfying (4.3). I 

For the remainder of this proof fix a rooted (=22)-tree !T=(T, r, F) of 
height Nor N+l and a set GOOD~.:T(N) as well as a mapping s: GOOD-T 
such that the assertions (4.1), (4.2) and (4.3) are satisfied. 

(5) Observation. There exists a set EQP~ GOOD and there exists an integer n~g 
such that 

(5.1) 

(5.2) 

(5.3) 

dist (x, s(x)) = n for every xEEQP, 

]EQPJ ~ JGOODI/n2
, 

1- ( v ') )N-k+l 
]EQPI ~ .:.--:-- a -

2 
.... k-t ., 

n -rx , 

Proof. Recall that g =girth (G) -1. Consider the mapping A : GOOD-N"'-{0, ... 
... ,g-1} which is defined by A(x)=dist(x,s(x)) for every xEGOOD. Then 

<X> 

!GOOD!= Z jA-1 (n)l and assuming that (5.2) fails for every n~g and EQP= 
n=g 

=L1-1 (n) it follows that 

IGOODI = i JA-1 (n)l <!GOOD! z...;. = !GOODf(n2/6-1)-< !GOOD!, 
n=g 11=2 n 

an obvious contradiction. 
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Hence for some n?Eg the set A - 1 (n) satisfies (5.1) and (5.2). Assertion (5.3) 
is an obvious consequence from (4.2) and (4.1) and (5.2). I 

Fix an ~integer n~g and a set EQP~ GOOD satisfying (5.1), (5.2) and (5.3). 
Put n*=Ln/2-lJ. 

(6) Notation. For vertices zE T let 

C(z) = {yEff (N)jdist (z, y) = N- dist (r, y)} . 

be the vertices in the N-th level of ff belonging to the cone generated by z. 

(7) Observation. Let 0< f3-< 1 be a real number such that 

(7.1) 1-cx ~ f3Cg-4)f2 
2g2 - . 

There exists a vertex zEff(N -n*) such that 

(7.2) 
1-a ( i f2)n*-k+1 

jC(z)nEQPI ?E 
2

n2 pn*a V 2-(Fi . 

Proof. Call a vertex zEff(N -n*) small iff 

(7.3) ( V ? ]n*-k+l 
jC(z)j-< pn* a 2-:k-1 · 

Without loss of generality we can assume that C (z) ~ 0 for every zE ff(N- n*). 
Hence it follows from ( 4.1) that 

( ~2 n*-k+1 

(7.4) l U C(z)! -< j.9""(1V-n*)lf3"* a 
2 

fc-l 
zE~(N-n*) -a 

z small 

-< CiT ( ~2 k-1-n* n* ( y;;;2 ]n*-k+l 
= 1~ (N)I a 2 k-1 f3 a 2 k-1 -a -a 

= jff(N)j{3n*. 

Note that particularly g~2 (since girth (G) is at least 3 ). From n~g~2, and 
(7.1) it follows that 

(7.5) 

Denote by EQP* the set of vertices in EQP which are not covered by small cones. 
According to (7.4), (5.2), (4.2), (7.1) and since n~g it follows that 

(7.6) 

jEQP*j ?E jEQPj-j U C(z)! ~ jEQPj-jT(N)jpn* 
zE~(N-n*) 

z small 

~ jff(N)I 1 ~a -jff(N)If3'i* = !ff(N)I ( 1 ~a -{3"*) 
. n n 

1-a 
~ 1.9" (N)I 2n2 . 
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Note that C(z)nC(z')=0 for different vertices z and z' in !!7{N-n*). Hence 
there exist at most 

( V )n*-k+l 

j!T(N)I/f3n* a 2-~k-l 
vertices zE!T (N- n*) which are not small. Assuming that every such "large" 
vertex fails to satisfy (7.2) yields . 

!EQP*I < 
1

2-~ j!T(N)j, 
n" 

contradicting (7.6). Hence the observation is proved. I 
Fix a vertex zE:T(N -n*) satisfying (7.2). 

(8) Notation. Let m<N. A vertex xE!T(m) is a cycle vertex iff there exist two verti~ 
ces Yo and y1 in :T(m+ 1) such that {x, Ya}EF and {x, YI}EF (i.e. x possesses two 
irrmediate successors in :T, viz. Ya and y1) satisfying 

(8.1) 

(9) Observation. Let y>O be a real number and assume that a, /3, g (as introduced 
above) andy satisfy 

(9.1) log ( ~~,") + (; -1) log fl +(; -k-1) log(" V 2_~_1) "e ny log2 

for all n~g. Then there exists an ascending path z=x0 , xb ... , xn*-l in !T (i:e. 
{xi, xi+1}E F and xiE!T(N -n* +i)) which contains at least yn cycle vertices. 

Proof. Construct x1, ... , xn*-l by a greedy procedure. If there exists precisely one 
vertex yE!T(N -n*+m+ 1) such that {x111 , y}EF, put xm+l =y. If there exist two 
vertices Yo and y1 in :T(N-n*+m+l) such that {x111 ,y0}EF and {x111 ,y1}EF, put 

xm+I =Yo iff jC(yo)nEQPI ~ jC(yl)nEQPI 

= Y1 iff jC(yo)nEQPI < jC(yl)nEQPj. 

We show that z=x0 , ... , xn*-l contains at least yn cycle vertices. Let X 1110 , ... , xmt_
1

, 

where m0 <m1 < ... <mt_1 , be the cycle vertices amongst x0 , ... , xn*-I· ' 

(9.2) 

(9.3) 

Hence 

(9.4) 

According to the construction and (8.1) it follow~s that 

jC(xmt-l) nEQPI :§ 2, 

jC(X1111 _
1
)nEQPj 2 2jC(X1111)nEQPj for 0 < l < t. 

Note that !C(xmo) n EQPI = IC(z) nEQPj, hence it follows from (7.2) that 

(9.5) 

4 

l- ( ~~n*-k+l 
2t ~ 2n: pn* a V i=CFi) 
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i. e. 

(9.6) t ""Io~ 2 (log (I2~,1X) +n* log p +(n*-k+l) log (IX V 2 _ ~-,)) 

""lo~ 2 [log·(I2~:) +(;-I) log P+ (~ -k-1) log (IX V2_:._,JJ 

according to (9.1) and the fact that n~g. I 
Fix a path x0 , x1 , •.. , xn*-l containing the cycle vertices Xm

0
, ••• , X 111t_ 1

, 

where m0<mc< ... <mr_1 and t~yn. Fix a vertex xmtEC(xmt_
1
)nEQP. For 

every vertex x,
1 
let Ym

1
EfQP be such that 

(10) Ym
1
E C(xm

1
)nEQP"'-CCxmi+1) for every 0 ~ i < t. ' 

Put Ymt =xmt· Such vertices Ym
1 

exist as the vertices Xm1 are cycle vertices. 

(11) Notation. For vertices x andy in T denote by P(x, y) the (uniquely determined) 
path in tT joining x and y. In order to avoid ambiguties say that P(x, y) consists 
of edges (in F), determining the path between x andy. Note that IP(x, y)l =dist(x, y). 

(12) Observation. Let z*E T denote the vertex satisfying {z*, z}EP(r, z), i.e. z* is the 
(uniquely determined) predecessor of z in T. Then {z*, z}EP(Ym

1
, s(y111)) for every 

O~i~t. 

Proof. Denote by C(z)= U {yEY(N -n*+i)ldist (y, z)=i} the (upper) 
O~i~11*+I 

cone generated by z. Obviously 

(12.1) MAX{dist (y, z)iyEC(z)} ~ n*+l, 

hence 

(12.2) MAX {dist(x, y)iyEC(z), xEC(z)} ~ n*+n*+l = 2l~ -1 J+l ~ n-1. 

From (5.1) it follows that s(y111 ) ~ C(z) for any 0-:§i:§t. Hence the assertion' fol­
lows. 1 
(13) Observation. Let O~i<j~t. Then 

(13.1) P(Y1111 , Ym)nP(s()J,11 ), s(ym)) = 0. 

(13.2) Ci,j = P(y,,, y,,)UP(s(y,), s(ym))U{{Ym1 , s(y111)}, {Ymp s(ym)}} 

forms a cycle of length at most 2n. 

Proof. As the only way of entering or leaving the cone C(z) is to use the edge {z, z*}, 
assertion (13.1) follows from (12). Consequently Cii is a cycle. As YmiE C(xm)"'­
"'-CCxm;+I) and {xm;' X 1111 +1}EF it follows from i<j that 

(13.3) dist (y,i, Ym) = 2(n*-mJ 
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From (12) and (5.1) it follows that 

(13.4) dist (z*, s(ym)) = dist (Ym;, s(ym,))-dist (Ym;, z*) = n- n* -l~ 

hence by the triangle inequality 

(13.5) dist (s(y111,), s(ym)) :§ 2(n-n* -1), 

this yields 

(13.6) IPCYm;' Ym)UP(s(ym,), s(ym))U{{Ym,, s(ym)}, {Ymi' s(ym)}}l 

~ 2(n*-mi)+2(n-n*-1)+2 = 2n-2mi ~ 2n 

showing that Cii is a cycle oflength at most 2n. I 
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(14) Fact. Let tr*=(T*, r*, F*) be a rooted tree with distance function dist*. For 
every nonnegative integer m and every vertex xEff*(m) it follows that 

(14.1) :NIAX {dist*(x, y)]yEf/*(m)} =MAX {di.st*(y, y')]y, y'Etl*(m)}. 

Proof. Obvious by induction on m. I 
(15) Observation. For nonnegative integers O~i<t let i<~(i)~t be such that 

(15.1) dist(s(ym), s(Ym;;<;J)) = MAX{dist(s(y111), s(ym))]i <j ~ t}. 
Then 

(15.2) 

Proof. Consider 
T* ={yET] dist (z*, y) < n-n*-1}""-C(z) 

and for every 02i<t let 

Tt = T*U {s(y111)]i --;§.j ~ .t}. 

Denote by §£* the rooted subtree of §' consisting of vertices Ji* with root z*. 
According to (12) and (13.4) then 

(15.3) Si*(n-n*-1) = {s(ym)Ji ~j ~ t}. 

As Tt ~ Tt+ 1 it follows that 

(15.4) MAX {disC,:+: (y, y')]y, y'E.9;+ 1 (n-n*-1)} 
..., 1+1 ,. 

~MAX {disty-:(y, y')]y, y'EB;(n-n*-1)}. 

According to (14.1) then 

(15.5) dist (s(ym,+l), s(Ymw+ 1 >)) = disty-£+
1 
(s(y111,+ 1), s(Ym;;<•+ 1 )) 

~ disty-:(s(ym), s(Ymw)) = dist(s(y111.), s(Ymw)). I 

(16) Observation. ]Ci+l,W+l)]< jCi,~(i)] for every O~i<t., 

Proof. According to (13.3) and since mi<mi+1 this follows from (15.2). I 

4* 
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(17) Observation. Let the real numbers 0-<ct-< 1, 0-< /3-< 1 and y >0 satisfy (7.1) 
and (9.1). Then 

!f(G) ~ y/2. I 

(18) Observation. Put a=2-112
"; P=( 

2 
2k )-

1
/
2k; y=O.OOlljk. Then (9.1) 

2v'2-t2 
is satisfied, provided tha't g>300k log k, and k~n0 , where n0 is sufficiently large. 

Proof. We write (9.1) for n=g equivalently as 

. (1-a) ( v 2 ) ( v· 2 ) (18.1) log 2g2 +(g/2-1) log af3 2 -a"_1 - klog a 2 _ak-I ~ gy log 2 

and evaluate each of the three summands on the left hand side of (18.1) separately. 

(18.2) log 
12~: = log p- 2-112

") -log 2-2log g ~ log e0
;,,

2
) -log 2-2log g 

(18.3) 

(18.4) 

(18.5) 

(18.6) 

~-(2log 2+1og k+2log g). 
k 

V 2 v 2 
a 2-ak-1 = 2 V2- j/2. 

2k 

i/2 ~ 2 af3 V ~ = - 21c_' 

2 J12- ¥2 
2k 

(g/2-1) log ( ~P v2 _!,_1) = (g/2 -1) log [ V 
2 
y';_ j/2] 

= 21k (g/2-1) log ( _: 21c l 
2 y2- Jf2 

g 1 
~ 4k 0.088- 2k 0.088 

= g0.022/k-
0·~44 ' 

-k log (IX V2-:k-1J "c log(2 y'2 -1)-log 2 "c-log 2. 

Now, putting (18.2), (18.5), and (18.6) together shows that 

log (12~:) +(g/2-1) log ( IX/3 V 2_:,_1) -klog (IX V 2_!H) 

(
0.044 ) 

~ g0.022jk- -k-+3log2+log k -2log g 

(
0.044 ) = g0.011/k+g·0.011/k- -· -k-+3log2+1og k -2logg 
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and thus it suffices to show that 

(18.7) (
0.044 ·J, 

g·0.011/k- -k-+3log2+logk -2logg ~0. 

This follows immediately according to the choices of g and k. To show (9.1) for arbi­
trary n ~g it is enough to see 

but this also holds by the choices of a, {3, y, g and k. I 
(19) Observation. Put a and f3 as before, then (7.1) is satisfied, provided g~300k log k 
and k~n0 for some sufficiently large n0 . 

Proof. 

(19.1) log(pa- 412) = g-4 (- 1) loo- 2 ::::;g- 4 (-l) log2 
2 2k b 2 y'2 -l/2 - 2 2k 

thus, according to (18.2) and (19.1), it suffices to show that 

o--4 
,., 

4
k log 2 ~ (2log 2+log k+2log g), 

this follows immediately, as g~300k log k and k~110 • I 
(20) Observation. There exists a positive integer n0 such that for every graph G = ( V, E) 

with ::: ~ kk 
1 

, where k~n0 , it follows that .P (G) ~min {300k
1
log k' 0.00055/k}. 

Proof. Recall (17), (18) and (19). I 

3. Concluding Remarks 

We have the fol10\ving upper bound for f(l +a): 

Theorem 2. f(k; 
1

) ~ k~ 
1 
~~ for al[ positive integers k~2 mod 15. 

Proof. For the positive integers land n denote by K1~,, the graph resulting from the 
complete bipartite graph .K,,, 11 by inserting l additional vertices on each edge of K,1, 11 • 

Clearly 

IE(Kr~,n)l 
jV(.K,!,n)! 

JV(K,~,,z)J = 2n+n2 l, IE(K,~,n)i = n2 (l+1), 

l+l 2 t - 1 (1 1 1 ' 1) 
--2-, (K11 ' 1J- 1+1 4+6+8+ ··· + 2n · 
l+-

n 
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. . k(n-2)-2 . (k + 1 ) 1 n ( 1 1 1 ) 
Puttmg I n shows that f -k- ::2 k+l n- 2 4+6+ ... +2n and 

h . . . . . . d c 5 h f'(k+ 1 J 1 77 . t 1s expressiOn Is mm1m1ze tor n = , ence ""k ::2 k + 
1 72 

, provided 

mod 15. I 
A careful inspection of the proof of our main theorem suggests the following 

definition : 

Definition. For positive reals a and g let 

f*(g, a)= in{'l'(G) I \~i~ll ;;,; a and girth (G) ~ g}. 
Corollary. There exists a positive integer n0 such that 

f* ( 300k: log k, k: 1) ~ 0.0~055 
for all positive integers k ~ n0 • 

Problem. Fix ct>-1, is f*(g, a) bom1ded as g tends to infinity? 
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