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The set of different cycle lengths of a graph G is denoted by C(G). We 
study how the distribution of C(G) depends on the minimum degree of 
G. We prove two results indicating that C(G) is dense in some sense. 
These results lead to the solution of a conjecture of Erdos and Hajnal 
stating that for suitable positive constants a, b the following holds: 

2: i- 7 ~ a log[o(G)], 
iEC(G) 

where o(G) denotes the minimum degree of G. 

1. INTRODUCTION 

The set of different cycle lengths of a graph G is denoted by C( G). There 
exist many theorems which assert that C(G) is "dense" provided that 
the number of edges in G is substantially larger than the number of 
vertices. Here, dense may mean various things, for example, C(G) = 

{3, 4, ... , IV(G)I} (G is pancyclic); C(G) contains a large sequence of 
consecutiveintegers; C(G) contains a large sequence of consecutive even 
integers. A survey of such results can be found in [1]. 

There are important families of graphs not satisfying the above as
sumption but still suspected of having a set of, cycles whose lengths are 
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dense in some sense. Graphs of chromatic number k, graphs of minimum 
degree o, and graphs of density a are examples of such families. All 
these families contain graphs of arbitrarily large girth; therefore small 
integers do not necessarily appear as cycle lengths. A measure of density 
for these families was proposed in a paper of Erdos [2], who asked about 
the behavior of L(G), the sum of reciprocals of elements of C(G), as a 
fun_ction of the edge density of G. He introduced the function 

f(a) = inf{L(G) : IE(G)I ;>- aiV(G)I} 

where V(G) and E(G) denote the sets of vertices and edges of G. It is 
obvious that f(a) = 0 for a ~ 1. The complete bipartite graphs with 
equal color classes show that f(a) ~ c log(a). It was conjectured by 
Erdos and Hajnal thatf(a) ;>- C

1 log( a) but it was not even known whether 
f(a) tends to infinity with a ([1], p. 168). In this paper we prove that 
f(a) ;>- a log(a) if a ;>- b, for suitable constants a and b (Theorem 41

). 

The behavior of f(a) for a E (1, 1 + e) seems to be an interesting 
problem.* 

Throughout the paper we shall study the distribution of C( G) for graphs 
of fixed minimum degree o( G). Since a graph of chromatic number k 
contains a subgraph of minimum degree at least k - 1 and a graph of 
density a contains a subgraph of minimum degree at least LaJ + 1, our 
results can be applied. both to graphs of fixed chromatic number and to 
graphs of fixed density. 

We have two results on the distribution of C(G), both of which express 
certain density properties of C( G). 

The first density result on C( G) is Theorem 1 1 in Section 3: if G is a 
graph such that o( G) ;>- c 1 then there exists an integer n (depending on 
G) such that n tends to infinity with o(G) and IC(G) n [3, 4nll ;>- in; 
moreover, n can be chosen to satisfy n ;>- log[ eo( G)]. Theorem 11 im
mediately implies that C( G) has positive upper density if G is an infinite 
graph having finite subgraphs Hi such that o(HJ tends to infinity with i 
(Corollary 2). As a special case, C(G) has positive upper density if G 
is a graph of infinite chromatic number. This was also conjectured by 
Erdos and Hajnal ([3], p. 37). , 

The second density result on C(G) is Theorem 2' in Section 4: if G 
is a graph satisfying o(G) ;>- Cz and o(G) ;>- 4e- 1 log2[IV(G)Il then C(G) 
contains almost all even integers in the interval [2[eo(G)] 112 + 2, 3_,_ 1[eo(G) 
- 1]]. Here, "almost all" means "with the possible exception of the 
multiples of 2t for some integer t ;>- 2." 

The above density results on C( G) will be proved in slightly stronger 
forms (Theorem 1 and Theorem 2), in which the function eo(G) is replaced 
by the conceptually more complicated function 

*A result on this problem will appear in [4]. 
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p(G, e) = min{p(H) : H c G, o(H) ~ eo(G)} 

where p(H) denotes the number of vertices in a longest path of H. The 
reason for· doing this is purely technical, as will be apparent in Section 
5 where corollaries of Theorem 1 and Theorem 2 are applied to derive 
lower bounds on L(G). The main result of Section 5 is Theorem 4: for 
suitable constants a and b, L(G) ~ a log[o(G)] if o(G) ~ b. 

In Section 2 we introduce the notion of !-trees, which play a fundamental 
role in the proofs of Theorem 1 and Theorem 2. 

The variables a, b, c, e will denote positive constants; e will be used 
for constants less than 1. 

2. THE i-TREES AND THEIR CROWNS 

We use the well-studied concept of rooted trees. Let T be a rooted tree. 
The vertices whose distance in T from the root is i are at level i for 
i = 0, 1 , . . . . We can visualize a rooted tree with its root at the bottom 
and the different levels above each other in increasing order. The height 
of a tree Tis its maximal level number; it is denoted by h(T). The set 
of vertices of T at level i is denoted by L;; if { = h(T) we use the more 
expressive notation top(T). For x, y E V(T) we write x ~ y if the path 
in T between y and the root ofT contains x; ~ is a partial ordering on 
V(T). For x E V(T) the cone of x, denoted by C(x), is the subtree ofT 
containing the vertices y E V(T) such that y ~ x. The root of C(x) 
is x. The cone distance between x, y E V(T) is defined as the minimal 
height of a cone containing both x and y. The cone distances between 
vertices of T are 0, 1, ... , h(T). 

A !-tree is a tree T such that for every i between 0 and h(T) - 1, at 
least !IL;I vertices of L; have at least two ·neighbors in Li+t· Note that 
a !-tree has at least three vertices, by definition. 

In a !-tree T obviously 

0 ~ i < h(T), 

justifying its name. Equally straightforward from (1) is 

ILhl ~ ih 

where h is the height of T. A slight variation of (1) is the property 

1 ~ i ~ h, 

and the summation of (3) gives 

IV(T)I ~ 3ltop(T)I. 

(1) 

(2) 

(3) 

(4) 
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A i-tree T C G is called maximal in G if Tis a i-tree and T cannot 
be extended to a i-tree of height h(T) + 1 by the addition of edges of 
G connecting vertices of top(T) and V( G) - V(T). 

We shall use two types of maximal i-trees. In Section 3 we use binary 
maximal !-trees. (A tree Tis binary if for every i, 0 ~ i < h(T), and for 
every x E Li, x is connected in T to at most two vertices of Li + 1 .) In 
Section 4 saturated maximal !-trees are used. A tree T C G is saturated 
in G if for every i, 0 ~ i ~ h(T), Li contains all vertices of G whose 
distance in G from the root ofT is i. It is very easy to see that a graph 
G contains a saturated maximal i-tree with root x for every x E V(G) 
if 8(G) ?: 2. 

If G is a graph and x E V( G) then the degree of x in G is denoted by 
da(x). The following technical lemma will be used many times in the 
paper. 

Lemma 1. Let k be a positive integer, let c be a real number. Assume 
that G is a graph and M C V(G) such that jV(G)j ~ clMI and da(x) ?: 

k for all x E M. Then there exists a subgraph H c G such that 8(H) ?: 

k/4c and jV(H) n M/ ?: !IM/. 

Proof. It is sufficient to prove the lemma for a graph G which is minimal 
in the following sense: the removal of any edge of G destroys the property 
da(x) ?: k for at least one x E M. 

We define HI, H 2 , ... , Hm as· follows. Let HI be defined as G. 
If Hi is already defined and ds;(v) < k/4c for some v E V(HJ then 
Hi+ I = Hi - v, otherwise m = i. Since G has at least !k/M/. edges 
of which fewer than /V(G)j(k/4c) ~ clM/(k/4c) = ik/MI are missing 
from E(Hm), we get /E(Hm)l > iklMI. The minimality of G implies that 
every edge of Hm is incident to a vertex of M of degree kin G. There
fore IV(Hm) n Mlk?: IE(Hm)l > !klMI, and the graph H = Hm satisfies 
the requirements. I 

We need the next lemma for the definition of the crown. 

Lemma 2. Let G be a graph satisfying 8( G) ?: 3 and let T be a maximal 
i-tree in G. Then there exists a subgraph ~F = F(G, T) of G with the 
(ollowing properties: 

(a) E(F) n E(T) = ~, 

(b) top(T) meets every edge ofF, 
(c) 8(F) ?: A [8(G) - 2], 
(d) /V(F) n top(T)j ?: -h-itop(T)j, 
(e) /V(F) n top(T)j ?: -fz-/V(F)j. 

Proof. Let A C top(T), Y C V(G) - V(T), IYI = 2/AJ. A tree T' is 
an (A, -Y)-extension of T if V(T') = V(T) U Y and E(T') = E(T) U E' 
where E' contains edges of G between A and Y and exactly two edges 
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of E' are incident to x for all x E A. Let us choose T' as an (A, Y)
extension of T for which IAI is maximal. (Note that A = 0 is possible, 
in which case Y = 0 and T' = T.) Let B = top(T) - A and let F' be 
the sub graph of G spanned by the edge-set { (x, y) : (x, y) E E( G) -
E(T), x E B, y E V(T')}._ The maximality of A implies that every x E 
B is connected to at most one vertex of V(G) - V(T') in G. Moreover, 
every x E B is incident to. one edge of T. Therefore 

Op(X) ?: o(G) - 2 for all X E B. (5) 

Since Tis a maximal i-tree, IV(T)I ~ 3ltop(T)I by property (4) of i-trees. 
On the other hand, I Y I < iltop(T)I and ltop(T)I < 4IBI by the maximality 
ofT. Thus 

IV(F')I ~ I Yl + JV(T)J < iltop(T)J + 3Jtop(T)J < 18JBJ. (6) 

Now (5) and (6) ensure that we can apply Lemma 1 with F' in the 
role of G, B in the role of M, o(G) - 2 in the role of k (o(G) - 2 ?: 1), 
and 18 in the role of c. The sub graph F C F' guaranteed by Lemma 1 
satisfies properties (a)-(e). I 

If Tis a maximal i-tree of a graph G then any graph F = F(G, T) 
defined by Lemma 2 is called a crown of T. Let F be a crown of a 
maximal i-tree T of G, let X = V(F) n top(T), Y = V(F) - V(T). If 
x E X and t E V(T) then an (x, t)-join is either the edge (x, t) E E(F) 
or a path (x, y, t) such that y E Y and (x, y), (y, t) E E(F). In the latter 
case the (x, t)-join is called an out-of-tree join with center y. If (x, t) is 
an out-of-tree join then t E top(T) by the definition of F. Let x EX and 
t E V(T). We say that t is an n-neighbor of x if there exists an (x, f)
join and the cone distance between x and t is n. The concepts of join 
and n-neighbor are illustrated in Figure 1, where the edges ofF are heavy 
lines and the edges of T are dotted lines. There are (x, tJ-joins in the 
figure for 1 ~ i -~ 8. For i = 5 and i = 8 these are out-of.;tree joins. 
The sets {t1}, {t2 , t3 , t4 }, {t5 , t6}, {t7 , t 8} are the 1-, 2-, 3-, 4-neighbors 
of x, respectively. · 

3. INTERVALS CONTAINING MANY CYCLE LENGTHS 

Theorem 1. For suitable constants c1 , e1 the following holds. If G is a 
graph such that o(G) ?: c1 then there exists a positive integer n ?: 

logUp(G, e1)] such that JC(G) n [3, 4n]l ?: in.'. 

Theorem 1 immediately implies that the sum of reciprocals in C( G) n 
[I\n, 4n] is at least -hn(1/4n) = l 4 • Thus we get the following corollary. 
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Corollary 1. If B(G) ~ c1 then the sum of reciprocals in C(G) n 
[(16)- 1 log[ip(G, s 1)], jV(G)j] is at least l4. 

Since p(G, s 1) ~ s 1B(G), we can formulate Theorem 1 in a slightly 
weaker but simpler form. 

Theorem 1'. For every graph G satisfying B( G) ~ c 1 , there exists a 
positive integer n ~ log[is1B(G)] such that jC(G) n [3, 4n]j ~ in. 

Observing that n tends. to infinity with B( G) in Theorem 1', we get a 
result for infinite graphs. 

Corollary 2. Let G be an infinite graph containing finite subgraphs 
H., H 2 , ... , Hi, ... , such that B(HJ tends to infinity with i. Then the 
upper density of C( G) is at least -fi. 

A graph G of infinite chromatic number obviously satisfies the condition 
of Corollary 2. Therefore C(G) has positive upper density in this case, 
as conjectured by Erdos an Hajnal ([3], p. 37). 

Proof of Theorem 1. Let G be a graph satisfying B(G) ~ 2, let T be a 
binary maximal !-tree of G of height h, let F be a crown ofT, and let 
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X = top(T) n V(F). The set {x E X : x has an i-neighbor} is denoted 
by xi o -~ i ~ h). 

Claim 1. For suitable constants d1, 81 the following holds. If o(G) ~ 
d 1 and m = Llog[tp(G, 8t)]J then Uf=miX;I ~ !lXI. 

Proof. We choose 81 and d1 as follows: 81 = (2 x 72 x 4 x 144)- 1, 
d1 > 2/81. Let A =X- Uf=mXi and assume indirectly that IAI > liXI. 

Now IV(F)I ~ 72IXI < 144IAI by property (e) of crowns and by the 
indirect assumption. On the other hand dp(x) ~ ,fz[o(G) - 2] for all 
x E A by property (c) of crowns. We apply Lemma 1 with Fin the role 
of G, A in the role of M, 144 in the role of c, L,fz[o(G) - 2]J in the role 
of k. Lemma 1 gives a subgraph of F 1 C F such that 

o(Fl) ~ L[-fzo(G) - 2JJ/(4 x 144) 
> o(G)/(2 X 72 X 4 X 144) > 81o(G). 

Let s be a longest path of Fl. Since o(Fl) > 8tO(G), lSI ~ p(G, 81). 
Therefore, because every edge of F 1 is incident to a vertex of A, 
IS n AI ~ HISI - 1) ~ i[p(G, 81) - 1]. On the other hand, the choice 
of A implies that S n A c top( C) for some cone C of T of height 
m. Since T is binary, IS n AI ~ 2m. Comparing the lower and upper 
bounds of IS n AI and noting that p(G, 81) ~ 81o(G) ~ 81d1 > 2, we 
get m ~ log{l[p(G, 81) -:- 1]} > log[tp(G, 81)] ~ m, a contradiction. I 

Claim 2. Let o(G) ~ d 2 = 8d1. There exists an integer n ~ m 
Llog[tp(G, 81)]J and a Zn C X such that IZnl ~ IXI/[2n2(n + 1)] and 
every vertex of Zn has an n-neighbor at the same level of T. 

Proof. Let X' = Uf=mXi. We prove that for some n, m ~ n ~ h, 
IXnl ~ IX'I/n2 holds. The reasoning is indirect. If IX;I < IX'I/i2 for all 
i, m ~ i ~ h, then 

IX' I~ ±IX; I< ± I~ I = IX' I ± i- 2~ <IX; I ~ r 2
, 

i=m i=m l i=m i=m 

from which we get 1 ~ L-?=mi- 2 = hr2 
- 2:-r=1 1r 2

• However, m = 

Llog[ip(G, 81)]J ~ Llog[4- 181o(G)]J ~ Llog(4- 1818d1)J > 2 since d1 > 
2/81. Thus we get the contradiction 1 ~ !1r2 

- 1. 
The n-neighbors of the vertices of Xn are distributed at n + 1 different 

levels of T (at levels h, h - 1, ... , h - n). Therefore the pigeonhole 
principle gives IXnl/(n + 1) ~ IX'I/n2(n + 1) vertices of X with 
n-neighbors at the same level of T. Since IX'I ~ liXI by Claim 1, the 
proof of Claim 2 is complete. I 
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From now on we use m, n, Zn as defined in Claim 2, for every graph 
G satisfying o(G) ~ d2 • 

Claim 3. For a suitable constant d3 ~ d2 , the following holds. If G is a 
graph satisfying o( G) ~ d3 then there exists a cone S of T with height 
n - 1 satisfying the properties 

(a) ltop(S)I ~. !n- 1
, 

(b) ltop(S) n Znl > ltop(S)I/33n2(n + 1). 

Proof. A cone S of height n - 1 in Tis called large if it satisfies (a), 
otherwise it is small. The number of small cones is at most ILh-n+JI (the 
number of vertices at level h - n + 1 of T) and they contain fewer 
than 1Lh-n+ 1l!n- 1 vertices of top(T); therefore the subset Z C Zn containing 
vertices above the large cones is large: 

Observing that lXI ~ .ftltop(T)I by property (d) of crowns and 
1Lh-n+ 11 ~ ltop(T)Iin- 1 by property (3) of !-trees, we get the follow
ing lower bound for IZI: 

IZI > ltop(T)I{[32n2(n + 1)] - 1 ~ in- 1
} = ltop(T)Ig(n). (7) 

We choose an n0 such that g(n) ~ [33n2(n + Or 1 for n ~ n0 • If we 
choose d3 ~ 4e} 12110 then n ~ m = Llog[!p(G, e1)]J ~ Llog[4- 1e1o(G)]J 
~ n0 and (7) implies 

IZI > ltop(T)I[33n2(n + 1)] -t. (8) 

If B denotes the union of the tops oflarge cones then IBI/IZI ~ ltop(T)I/IZI 
< 33n2(n + 1) because of (8). Thus ltop(S)I/Itop(S) n Zl < 33n2(n + 1) for 
some large cone S, proving the claim with d3 = max{d2 , 4e} 12110

}. I 
For x E V(T), L(x) and R(x) denote th~ left and right subtree of T 

above X, respectively. Note that either L(x) or R(x) or both may be empty 
(e.g., both are empty if x E top(T)). A vertex x of the cone Sis called 
a branching vertex if neither L(x) n Zn nor R(x) n Zn is empty. 

Claim 4. For a suitable constant d4 ~ d3 the following holds. 
If G is a graph satisfying o( G) ~ d 4 then there exists a path P = 

(x1 , x2 , ... , x,z) in the cone S such that x1 = s, the root of S, xn E 
top(S) and P contains at least !n branching·vertices. 

Proof. The path P is defined by starting from s and continuing always 
in the subtree containing the larger number of vertices of Zn. More 
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formally, let xi = s, and if xi, x2 , ..• , xr are already defined for r < n 
then 

X = {the root of L(xr) if ILCxr) n Znl ~ IR(xr) n Znl, 
. r+I the root of R(xr) if IR(xr) n Znl > IL(xr) n Znl· 

Let YI, y2 , ••• , Yt denote the branching vertices of P = (xh ... , xn) 
indexed in their natural order as they appear in P. The existence of at 
least one branching vertex is guaranteed if ltop(S) n Znl ~ 2. Claim 3 
shows that this is ensured if n ~ ni, where ni is the smallest integer 
satisfying !n1-I [33ni(ni + 1)] -I ~ 2. The definition of P shows that 
IC(yJ n Znl ~ 2IC(yi+I) n Znl (i = 1, ... , t - 1), and the definition of 
t shows that IC(yt) n Znl = 2. Therefore, by Claim 3, 

From this inequality we get 

t > (n - 1)[2 - log(3)] - log[33n2(n + 1)] = n[2 - log(3)] - o(n), 

showing that t > in if n ~ n2 , since 2 - log(3) > t. Let d4 = max{d3 , 

4e}I2m} where n3 = max{nb n2 }. In this case n ~ m = Llog[!p(G, ei)]J 
~ Llog[4-Ieio(G)]J ~ n3 , which validates our arguments. I 

Without restricting the generality of the proof we may assume that 
the path P goes to the left, i.e., xi+I E L(xJ fori = 1, 2, ... ; n - 1. 

Let I denote the index-set of the branching vertices of P. For every 
i E 1, we can choose a zi E Zn and a path Pi connecting xi and zi in S 
such that Pi - xi C R(xJ. The tree P U (UiEJ PJ is denoted by U. 
Clearly top(U) contains III + 1 vertices: zi for i E I and Xn. We define 
Zn as xn for technical reasons. It is also obvious from the definition that 
top(U) C Zn. 

Let U' denote the subtree of T whose vertices are at cone distance n 
from top(S). The definition of U ensures that every vertex in top(U) has 
an n-neighbor at the same level of U'; this level of U' is denoted by R. 
For i E I U n, R(i) denotes the set of n-neighbors of zi in R. We note 
that R C top(T) when there exists an i E I U n and a v E R(i) such 
that the join (zi, v) is an out-of-tree join. (Figure 2 illustrates Pi, U, U', 
and R.) 

Now we shall define a cycle H(i) in G for all i E I. The definition is 
given by the following procedure. 

Procedure Cycles 
CO. Let i be the smallest index in I. 
Cl. Consider triples (j, a, b) where j E I U n, j > i, a E R(i), b t= 

R(j). Let U(zi, Zj) be the path connecting zi and Zj in U. Let 
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FIGURE 2 . 

U'(a, b) be the path connecting a and b in U'. (Observe that 
U(zi, Zj) contains 2(n - i) + 1 vertices.) Let 11 be a (zi, a)-join 
and let 1 2 be a (zj, b)-join. The union of the joins 11 , 12 with the 
paths U(zi, Zj), U'(a, b) gives a cycle of G unless 11 and 12 are out
of-tree joins with the same center v E V(G) - V(T). Let de(i) de
note the set of cycles in this form, where all triples (j, a, b) and 
all pairs 11 , 12 are considered. If de(i) = 0 then continue at C2, oth
erwise continue at C3. 

C2. There is a vertex v E V(G) - V(T) such that for all triples 
(j, a, b) and for all 11 , 12 , the joins 11 and 12 are out-of-tree 
joins with center v. We define the cycle H(j) for all j E I, j ;?!: i, 
as the union of U(zn, Zj) with the edges (Zn, v), (zj, v) E E(F). 
The length of H(j) is 2(n - j) + 2. Stop. (See Fig. 3.) 

C3. Define H(i) as an element of de(i) belonging to a triple (j(i), a(i), 
b(i)) for which the number of vertiCes in U'(a, b) is maximum. If 
the number of vertices in U'(a(i), b(i)) is denoted by r(i) then the 
length of H(i) can be expressed as 2(n - i) + 1 + r(i) + e(i) 
where e(i) is defined as 0, 1, or 2 according to the number of out
of-tree joins in {11 , 12}. (See Fig. 4.) 

If there are some unprocessed indices in I then i is redefined as the 
next index in the natural order of I. Continue at Cl. If every index is 
processed then Stop. 
End of procedure cycles. 

The length of the cycle H(i) can be written in the following form: 
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IHCOI = 2(n - i) + 1 + r(i) + e(i) where r(i) 
was defined in C2. 

Claim 5. If i, i' E I and i' > i then r(i') ~ r(i). 
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1, e(i) 0 if H(i) 

Proof. If H(i') was defined in C2 then r(i') = 1 and if H(i) was defined 
in C2 then r(i') = r(i) = 1. In both cases, the claim is true. 

So assume that both H(i) and H(i') were defined in C3. Let C be the 
cone of minimal height in U' containing both a(i) and b(i). We shall 
prove that a(i'), b(i') E top (C). 

Let c denote one of a(i') and b(i'). There exists a k E I U n, k > i, 
such that c E R(k), since for c = a(i'), k = i' is a good choice and for 
c = b(i'), k = j(i') is a good choice. If we assume indirectly that 
c $. top( C) then the path P 2 connecting c and a(i) in U' and the path 
P 3 connecting c and b(i) in U' are longer than the path P 1 connecting 
a(i) and b(i) in U'. Let 1 1 , 12 denote the joins in the definition of H(i). 

If the triple (k, a(i), ·c) defines a cycle in G with the (zi, a(i))-join 11 

and with some (zb c)-join J~ then U'(a(i), c) = P2 , contradicting the 
maximality of U'(a(i), b(i)) = P 1• 

We may therefore assume that 11 and J~ are out-of-tree joins with a 
common center v E V(G) - V(T) (see Fig. 5). Thus (zi, v) and (v, c) 
are edges ofF and 1i = (zi, v) U (v, c) is a (zi, c)-join. Therefore the 
triple (j(i), c, b(i)) defines a cycle in G with' the joins J i and 12 • (Note 
that 12 does not contain v because 11 contains v.) Now U'(c, b(i)) 
P3 , contradicting the maximality of U'(a(i), b(i)) = P1• 
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We have proved that a(i'), b(i') E top(C). This implies r(i') :s; r(i). I 
If it < i2 < i3 are three consecutive indices of I then 

since i3 - it ~ 2, e(it) ~ 0, e(i3 ) :s; 2, and r(it) - r(i3 ) ~ 0 by Claim 
5. This argument shows that the set H = {IHCi)l : i E I} has at least i III 
elements. Since III ~in by Claim 4, we get IHI?! !n. On the other hand, 
IHCi)l = 2(n - i) + 1 + r(i) + e(i) :s; 2(n - 1) + 1 + 2n - 1 + 2 
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4n, for every i E I. The proof of Theorem 1 is complete if we choose 
c1 = d4 and 8 1 as defined in Claim 1. 

4. INTERVALS CONTAINING ALMOST ALL EVEN CYCLE LENGTHS 

Let [A, B] denote an interval of positive real numbers. We say that C( G) 
contains almost all even integers in [A, B] if there exists an integer t ?= 

2 such that C(G) contains all even integers of [A, B] with the possible 
exception of the multiples of 2t. The proof of the next proposition is 
omitted since it requires straightforward elementary calculations. 

Proposition 1. There is a positive constant a 1 with the following property. 
If G is a graph and [A, B] is an interval such that C(G) n [A, B] =I= 0 
and C(G) contains almost all even integers in [A, B] then L(G) ?= 

a 1 log(B/A). 

Theorem 2. For suitable constants c2 , 8 2 the following holds. If G is a 
graph satisfying o(G) ::?: c2 and p(G, 8 2) ?= 4 log2[jV(G)j] then C(G) 
contains almost all even integers in the interval [4 log[jV(G)j] + 2, 
3- 1[p(G, 8 2 ) - 1]]. 

Now we formulate Theorem 2', a slightly weaker but simpler version 
of Theorem 2. 

Theorem 2'. For suitable constants c3 , 8 2 the following holds. If G is a 
graph and o(G) ? max{c3 , 482 1 log2[jV(G)j]} then C(G) contains almost 
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all even integers in the interval 

Proof. If c3 ;::= c2 then we can apply Theorem 2 for G since p(G, 82) 
;::= 82 o(G) ;::= 4 log2[JV(G)j]. Theorem 2 ensures that C(G) contains al
most all even integers in the interval [AI, BI] = [4 log[JV(G)J] + 2, 
3 -I[p(G, 82) - 1]]. Now A 2 = 2[82o(G)]I12 + 2 ;::= AI and B2 = 
3 -I[82o(G) - 1] ~ BI. Therefore C(G) contains almost all even integers 
from [A2, B 2] if A 2 < B2 is ensured by choosing c3 sufficiently large. I 

Theorem 2 and Proposition 1 easily yield the following result, which 
we need in Section 5. 

Corollary 3. For suitable positive constants a2 , c4 the following holds. 
If G is a graph satisfying o( G) ;::= c4 and p( G, 82) ;::= 4 log2[J V( G)j] then 
L(G) ;::= a2 log[o(G)]. 

Proof. First, we choose c4 so that c4 ;::= c2, and apply Theorem 2 to 
deduce that C(G) contains almost all even integers in [Ah BI] where 
AI = 4 log[JV(G)J] + 2 and BI = 3-I[p(G, 82)]I12 + 2. Then A 2 ;::=AI, 
and so, C(G) contains almost all even integers in [A 2 , BI]· Now note 
that p(G, 82) can be made arbitrarily large by an appropriate choice of 
c4 , because 

We may therefore choose c4 so that [A2 , BI] n C(G) # 0. By Proposition 
1, L(G) ;::= ai '!og(Bt/A2). Similarly, we can choose c4 so that BdA2 ;::= 

12-Ip(G, 8 2)I12 and o(G) ;::= 822124
• Therefore L(G) ;::= ai log(BdA2) ;::= 

ai log[12-Ip(G, 82)I12] ;::= ai log{12-I[82o(G)]I12} ;::= 4-Iai log[o(G)] and 
the corollary holds with a2 = iai. I 

For the proof of Theorem 2 we need the following lemma. 

Lemma 3. Let (U, V) be a partition of {1, 2, .. , n} into two nonempty 
sets U, V and let 

D(U, V) = {d : d = Ju - vJ, u E U, v E V}. 

Then there exists an integer m ;::= 2 such that D(U, V) contains all natural 
numbers not greater than in and not divisible by m. 

Proof. If D(U, V) = {1, 2, ... , n - 1} then the lemma is obviously 
true. Let m be the smallest natural number not in D(U, V). Clearly 
m ;::= 2, since m = 1 would imply that U or Vis empty. Let Urn = U 
n {1, 2, ... , m} and let Vm = V n {1, 2, ... , m}. Then m ~ D(U, V) 
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implies that 

U = {u + im: u E Urn, u + im ~ n}, 
V = {v + jm : v E V m, v + jm ~ n}. (9) 

Let k = rm + s, where 0 ~ r, 1 ~ s ~ m - 1, and k ~in. We prove 
that k E D(U, V). 

A. If r = 0 then k E D(fJ, V) by the minimum property of m. Moreover, 
if we have a pair u E U, v E V satisfying lu - vi = s then, by the 
periodicity of U ·and V expressed in (9), we can find u(s) E U, v(s) E 
V such that lu(s) - v(s)l = lu ~ vi = s and 1 ~ u(s), v(s) ~ 2m - 1. 

B. Assuming r ~ 1, we consider u(s) and v(s) as defined· in A. We 
define u' and v' as follows: if u(s) > v(s) then u' = u(s) + rm and 
v' = v(s), otherwise u' = u(s) and v' = v(s) + rm. Since rm <: k ~ in, 
m < n/3r~ Therefore, max(u', v') = rm + max{u(s), v(s)} < rm + 
2m = (r + 2)m < (r + 2)n/3r ~ n. By (9), u' E U and v' E V; moreover, 
lu' - v'l = rm + s = k. Thus k E D(U, V). 

Proof of Theorem 2. Assume that o( G) ~ 3. Let T be a saturated 
maximal !-tree of G. We apply Lemma 2 to define F, the .crown ofT. 
Because. T is saturated, there is no edge of F from top(T) to Li, for 
0 ~ i ~ h(T) - 2. Since o(F) ~ A [o(G) - 2] = d by property (c) of 
crowns, each vertex of X = top(T) n V(F) belongs to at least one of 
the following three sets: 

A1 = {x E X: at least !d edges ofF go from x to B 1 = V(F) -
V(T)}, 

A2 {x E X: at least id edges ofF go from x to B2 = top(T)}, 
A 3 {x E X: at least idedges ofF go from x to B3 = LhCT)- 1}. 

We can choose an i (1 ~ i ~ 3) such that !Ail ~ !lXI. We define the 
tree T' as follows: T' = T if i 1 or i = 2 and T' = T - top(T) if 
i = 3. 

Assuming that !d ~ 1, i.e., 

o(G) ~ 218, (10) 

we apply Lemma 1 for the graph spanned by the edges of F which join 
vertices of Ai to vertices of Bi. The set Ai plays the role of M, LidJ 
plays the role of k and 3 x 72 = 216 plays the role of c. CIV(F)I ~ 
72IXI ~ 72 x 3IAil holds by property (e) of crowns and by the defi
nition of Ai.) Lemma 1 gives a subgraph F 1 c F such that o(F1) ~ 
L[o(G) - 2]/3 X 72Jj4 X 216 ~ o(G)/2 X 3 X 72 X 4 X 216 if o(G) 
~ 2 x 3 x 72 + 2. If we choose 
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e2 = (2 X 3 X 72 X 4 X 216) - 1 (11) 

then o(F1) ~ e2o(G). Therefore F 1 contains a path of p(G, e2 ) vertices. 
By removing zero, one, or two end-vertices of this path, we obtain a 
path P = (x1 , x2, ... , xr) of F 1 with the following properties: 

r is odd and r ~ p(G, e2 ) - 2, 
xj E to'p(T') if} is odd and 1 ::-s;j ::-;:; r, 

xj ~ V(T') - top(T') for 1 ::-;:; j ::-;:; r. 

The set {x1 , x 3 , x5 , ••• , xr} is denoted by Y. The tree T' and the path P 
are shown in Figure 6 for i = 1, i, 3. 

Let U' denote the subtree of T' for which top( U') = Y and V( U') is 
as small as possible. The root of U' contains at least two branches if 
I Yl ~ 2; this can be ensured by setting 

c2 = 5e2 1
, (12) 

since r + 2 ~ p(G, e2 ) ~ e2o(G) ~ e2c2 • One branch from the root of 
U' and the union of the other branches divide Y into two nonempty sets 
Y1 and Y2 with the property that for every pair xP E Y1 , xq · E Y2 , the 
number of vertices in the path P 1 connecting xP and xq in U' is 2h' + 
1, where h' = h(U'). On the other hand, xP and xq are connected 
by a subpath P 2 of P of IP - ql + 1 vertices. We define the cycle 
H(p, q) for every xP E Y1 , Xq E Y2 as the union of P 1 and P 2 • Clearly 
IH(p, q)j = 2h' + IP - ql (U' and H(p, q) are shown in Fig. 7). 

Now we apply Lemma 3, where (U, V) is the partition of {1, 2, 
i(r + 1)} defined by 

i E V, X 2i_ 1 E Y2 • 

If d E D(U, V), i.e., d = lu - vi for some u E U, v E V, then 

l•l 
T',T 

FIGURE 6 

T'=T-ry(TJ 



DISTRIBUTION OF CYCLE LENGTHS IN GRAPHS 457 

u' 

FIGURE 7 

Xzu- 1 E Y1 and Xzu- 1 E Y2 • Therefore G contains the cycle H(2u - 1, 
2v - 1) of length 2h' + l2u - 1 - (2v ---, 1)1 = 2h' + 2d. Since d 
takes on all values in [1, i(r + 1)] except, possibly, the multiples of 
m, 2h' + 2d takes on all even values in I = [2h' + 2, 2h' + 2 + 
i(r + 1)] except, possibly, the multiples of 2m, where m ~ 2. In other 
words, C( G) contains almost all even integers in I. 

Since ih(T) ~ ltop(T)I ~ IV(G)I by property (2) of !-trees, 

h' ~ h(T) ~ logiV(G)I/(log3 - 1) ~ 2log[IV(G)IJ. (13) 

On the other hand, r + · 1 ~ p(G, s2 ) - 1. Therefore, 

I :J [2h' + 2, i (r + 1)] :J [4log[IV(G)IJ + 2, 3 - 1[p(G, cz) - 1]] = I', 

and C( G) contains almost all even integers in l', as stated in the theorem, 
provided that s2 and c2 are chosen according to (11) and (12). I 

5. THE SUM OF RECIPROCALS OF CYCLE LENGTHS 

Let H be a subgraph of a graph G. A vertex x E V(H) is an inner vertex 
of H if dH(x) = dG(x). ' 

Lemma 4. Every graph G has a subgraph H such that IV(H)I ~ 2p(G) 
and H has at least p(G) inner vertices. 
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Proof. Let S = (x1 , x2 , ••• , xP) be a longest path of G. We define paths 
S1, S2 , ••• , SP and vertices Yb y2 , ••• ,·yp inductively as follows: S1 = S, 
Y1 = Xp. If Sf = (ZI, Zz, ... ZmJ and Yf = {yi, Yz, ... , yf} are already 
defined, where t < p, we define sf+I and Yf+I by the rule sf+I = 

(z b z2 , .• .• , Zm,+ 1) is a longest path of G - Yr starting with the vertices 
zh Zz, ... , Zm,; Yf+I = Zm,+ 1• Figure 8 shows an example in which G is a 
tree with p(G) = 12. 

Let H be the subgraph of G spanned by the set V(S1) U V(S2 ) U · · · 
U V(Sp) U Y;. Since V(Sf) C V(Sf+I) U Yf for 1 ~ t ~ p - 1, jV(H)j 
~ jV(Sp)l + IYPI ~ 2p. On the other hand, _Yp is a subset of V(H) with 
p vertices and, for every t, 1 ~ t ~ p, yf can be joined in G only to 
vertices of Sf and Yf. Therefore dH(Yf) = dG(Yr) for 1 ~ t ~ p. I 

We need the following corollary of Lemma 4. 

Corollary 4. Let G be a graph satisfying o( G) ~ 1. There exists a subgraph 
G' c G such that o(G') ~ io(G) and jV(G')I ~ 2p(G). 

Proof. We choose H C:: G according to Lemma 4. Let X denote the 
set of inner vertices of H. Since iV(H)i ~ 2IXI and dH(x) = dG(x) ~ 
8(G) for all x E X, we can apply Lemma 1 for .H with k = o(G), c = 

2, M = X. Lemma 1 gives a sub graph G' c H such that o( G') ~ k I 4c = 
io(G). Moreover, jV(G')j ~ jV(H)j ~ 2p(G). I 

We prepare the main result of this section with the following (rather 
technical) theorem . 

. Theorem 3. There are constants c5 , a3 , and 8 3 with the following property. 
If G is a graph satisfying o(G) ~ c5 then either L(G) ~ a3 log[o(G)] or 
there exists a subgraph H c G such that o(H) ~ -83o(G) and jV(H)i < 
16- 1 log[ip(G, 8 1)]. (The constant 8 1 comes from Theorem 1.) 

Proof. The proof is a simple calculation based on repeated applications 
of Corollary 3 and Corollary 4. Let c4 , a2 , 8 2 be the constants appearing 
in Corollary 3. We define 

(14) 

X1 Xz X!. )( 4 Xs X, X7 Xp X, 

FIGURE 8 
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The definition of p( G, e) ensures a subgraph G1 c G such that 

(15) 

Applying Corollary 4 for G1 , we get G2 c G1 , satisfying 

(16) 

Assuming that 

(17) 

8(G2 ) ~ c4 follows from the first parts of (16) and (15). If p(G2 , e) ~ 4 
log2IV(G2 )1 then we can apply Corollary 3 for G2 , which gives L(G) ~ 
L(G2 ) ~ az log[8(G2 )] ~ a2 log[8- 1e8(G)] ~ !a2 log[8(G)], where the 
last inequality holds if 

(18) 

Therefore the first alternative of Theorem 3 holds with a3 = !a2 if (17) 
and (18) are satisfied. 

We may assume p(G2 , e) < 4 log2IV(G2 )1. The second part of (16) 
implies 

(19) 

Now the previous argument is repeated. The definition of p(G2 , e) 
ensures G3 C G2 such. that 

p(G:,) = p(G2 , e). (20) 

Applying Corollary 4 for G3 , we get G4 C G3 satisfying 

(21) 

We try to apply Corollary 3 for G4 as we did before for G2 • The same 
argument shows that the condition 

(22) 

either ensures the first alternative of Theorem 3 with a3 = !a2 or 
p(G4 , e) < 4 log2IV(G4 )1. In the latter case the second parts of (21) and 
(19) imply 
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We start the same argument a third time. The definition of p(G4 , e) 
ensures G5 C G4 such that 

p(Gs) = p(G4, e). (24) 

Applying Corollary 4 for G5 , we get H C G5 , satisfying 

o(H) ?: io(Gs), IV(H)i ~ 2p(Gs) = 2p(G4, e). (25) 

We prove that H satisfies the second alternative of Theorem 3 if 
e3 = 8- 3e3 and c5 is sufficiently large. The condition o(H) ?: e3o(G) is 
guaranteed by the first parts of (25), (24), (21), (20), (16), (15). On the 
other hand, e ~ e1 by (14). Therefore p(G, e)~ p(G, e1) and it is sufficient 
to show that iV(H)i < 16- 1 log[!p(G,e)]. Since IV(H)i can be estimated 
by the second part of (25) and by (23), we have to prove that 8 log2{8 
log2[2p(G, e)]} < 16- 1 log[!p(G, e)], which obviously holds if p(G, e) is 
large enough, say p(G, e) ?: c0 • This can be ensured by -requiring c5 ?: 

-1 
CoB 

We conclude that Theorem 3 holds with the following constants: e = 

min{e1 , Bz}, c5 = max{82e- 2 c4 , 84e- 4
, c0 e- 1

}, e3 = 8- 3e3
, a3 = ~-a2 . I 

Theorem 4. For suitable constants a and b the following holds. If G is 
a graph satisfying o(G) ?: b then L(G) ?: a log[o(G)]. 

Proof. Let c1 , e1 be the constants defined in Corollary 1. Let c5 , a3 , 

e3 be the constants defined in Theorem 3. We define the graphs G0 , G1 , 

G2 , ••• , Gr inductively as follows. Let G0 = G. Assume that G0 , G1 , ••• , 

Gi are already defined for some i, i ?: 0. The next procedure either 
defines Gi+I or stops with Gr = Gi. 

Procedure Gi+I· 
Step 1. If o(G;) < Cs then Gr = Gi. Stop. 
Step 2. Apply Theorem 3 for Gi. If the first alternative holds in Theorem 

3 then Gr = Gi. Stop. 
Step 3. If o(G;) < Ct then Gr = Gi. Stop. 
Step 4. Let Gi+ 1 be the subgraph H of Gi ensured by the second alternative 

in Theorem 3. 
End of procedure Gi+l· 

Since Gi+I is a proper subgraph of Gi, the definition eventually ends 
with some Gr. The definition of Gi+I implies that o(Gi+I) ?: e3o(G;) for 
all i, 0 ~ i < t; thus ' 

o(Gr) ?: e~o(G). (26) 
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On the other hand, o(GJ ~ c1 and IV(Gi+ 1)1 < 16- 1 log[!p(Gi, e1)] for 
all i, 0 ~ i < t. Corollary 1 implies that the sum of reciprocals in C(G) 
n [IV(Gi+l)l, IV(GJIJ is at least i4 for all i, 0 ~ i < t. Therefore 

L(G) ~ l4t. (27) 

Now we need an easy discussion of cases. If Gr is defined in Step 1 then 
Cs > o(Gr) ~ e~o(G) by (26), which gives t > {log[o(G)] - log(cs)}/ 
log(e3 1

). This estimation and (27) imply 

L(G) > logo(G\ _ logc5 
1

. 

64loge3 64loge3 
(28) 

If Gr is defined in Step 3 then the previous argument can be followed. 
We get 

( ) 
logo(G) · logc1 LG > - . 

64loge3 1 64loge3 1 (29) 

If Gr is defined in Step 2 then by (27) and by Theorem 3 

L(G) ~ l4t + a3 log[8(Gr)]. (30) 

If t ~ log[o(G)]/[2 log(e3 1
)] then L(G) can be estimated by the second 

term of (30): 

L(G) ~ a3 log[8(Gr)] ~ a3 log[e~8(G)] ~ !a3 log[8(G)]. (31) 

If t > log[8(G)]/[2log(e3-
1
)] then L(G) can be estimated by the first term 

of (30): 

L(G) ~ tht > [2log(e3 1)64r 1 log[o(G)]. (32) 

In all cases [(28), (29), (31), (32)] we have a lower bound on L(G) of 
the form a; log[o(G)] - hi, i = 1, 2, 3, 4. Let a' = min{ai, a~, a~, 
a~), a = ia', b' = max{ hi, b~, b~, b~}. Then 

L(G) ~ a' log[o(G)] - b' ~ ia' log[o(G)] = a log[o(G)] 

if log[o(G)] ~ 2b' /a', which can be ensured by choosing b = 22
b'/a'. I 

Because a graph of density a contains a subgraph of minimum degree 
LaJ + 1 > a, Theorem 4 has the following consequence. 

Theorem 4'. Let a and b be the constants defined in Theorem 4. If G is 
a graph of density a, where a ~ b, then L(G) · ~ a log( a). 
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