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ABSTRACT
A proper edge coloring of a graph 𝐺 is strong if the union of any two color classes does not contain a path with three

edges (i.e. the color classes are induced matchings). The strong chromatic index 𝑞(𝐺) is the smallest number of colors

needed for a strong coloring of 𝐺. One form of the famous (6, 3)-theorem of Ruzsa and Szemerédi (solving the (6, 3)-

conjecture of Brown–Erdős–Sós) states that 𝑞(𝐺) cannot be linear in 𝑛 for a graph 𝐺 with 𝑛 vertices and 𝑐𝑛2 edges.

Here we study two refinements of 𝑞(𝐺) arising from the analogous (7, 4)-conjecture. The first is 𝑞𝐴(𝐺), the smallest

number of colors needed for a proper edge coloring of 𝐺 such that the union of any two color classes does not contain

a path or cycle with four edges, we call it an A-coloring. The second is 𝑞𝐵(𝐺), the smallest number of colors needed

for a proper edge coloring of 𝐺 such that all four-cycles are colored with four different colors, we call it a B-coloring.
These notions lead to two stronger and one equivalent form of the (7, 4)-conjecture in terms of 𝑞𝐴(𝐺), 𝑞𝐵(𝐺) where 𝐺

is a balanced bipartite graph. Since these are questions about graphs, perhaps they will be easier to handle than the

original (7, 4)-conjecture. In order to understand the behavior of 𝑞𝐴(𝐺) and 𝑞𝐵(𝐺), we study these parameters for some

special graphs.

We note that 𝑞𝐴(𝐺) has already been extensively studied from various motivations. However, as far as we know the

behavior of 𝑞𝐵(𝐺) is studied here for the first time.
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1. INTRODUCTION

The celebrated (6, 3)-theorem of Ruzsa and Szemerédi [32] states that if a 3-uniform hypergraph

(or shortly 3-graph) 𝐻 on 𝑛 vertices does not contain 3 edges on at most 6 vertices then it has

𝑜(𝑛2) edges. This answers the first special case of the famous Brown–Erdős–Sós conjecture (BES-

conjecture, [3], [11]) claiming that if a 3-graph 𝐻 on 𝑛 vertices does not contain 𝑘 edges on at

most 𝑘+3 vertices then it has 𝑜(𝑛2) edges. In their proof, Ruzsa and Szemerédi used Szemerédi’s

Regularity Lemma [36] to prove an auxiliary resultwhich is nowknown as the Triangle Removal

Lemma (see [6]). This area have been studied extensively since then for example in [1, 6, 7, 16,

19, 23, 34]. The next case of the BES-conjecture, the famous (7, 4)-conjecture, is still wide open

(throughout the paper we will refer to this conjecture as the (7, 4)-problem):

CONJECTURE 1.1. Assume that a 3-graph𝐻 on 𝑛 vertices does not contain 4 edges on at most 7 vertices
(briefly we say that 𝐻 is (7, 4)-free). Then |𝐸(𝐻)| = 𝑜(𝑛2).

Conjecture 1.1 can be equivalently stated using two well-known reductions. The first (see

for example Lemma 1.1 in [33]) is the observation that in a (7, 4)-free 3-graph 𝐻 any edge can

intersect at most two other edges in two vertices, thus we can keep at least the third of the edges

of 𝐻 so that they form a linear 3-graph, i.e. any two edges intersect in at most one vertex. A

3-graph 𝐻 is 3-partite, if there exists a partition of the vertex set 𝑉 into 3 classes 𝑉1, 𝑉2, 𝑉3 such

that every edge intersects each class in exactly one vertex. In addition, we say that𝐻 is balanced

if |𝑉1| = |𝑉2| = |𝑉3|. Then the second reduction is applying the well-known lemma of Erdős and

Kleitman ([13]) allowing to keep at least
2

9
-th proportion of the edges of 𝐻 forming a balanced

3-partite 3-graph. Thus it is enough to prove Conjecture 1.1 for linear balanced 3-partite 3-

graphs. One can easily check (or use the list of four-edge configurations in [8, Figure 13.1]) that

in this case the (7, 4)-free property means the exclusion of two 3-graphs, 𝐶14 and 𝐶16 as shown

in Figure 1 (edges are represented by straight line segments). These 3-graphs (especially 𝐶16

known as the Pasch configuration) are well studied in Steiner triple systems, see [8] for basic

facts. It is worth noting that there are 𝐶14-free and there are 𝐶16-free Steiner triple systems, thus

forbidding both is essential in Conjecture 1.1. Moreover, every Steiner triple system contains

either 𝐶14 or 𝐶16 since extending a triangle with an edge containing two of its midpoints is a

𝐶14 or a 𝐶16.

An interesting test case for Conjecture 1.1 is the sets of lines in 𝑃𝐺(𝑛, 2), the projective space

of dimension 𝑛 over 𝔽2. In this case no four lines form a 𝐶14, thus Conjecture 1.1 states that

any positive proportion of lines in 𝑃𝐺(𝑛, 2) contain a Pasch configuration for a large enough

𝑛. This is a corollary of a result of Solymosi [33] who proved, relying on the Removal Lemma

for 3-graphs proved by Frankl and Rödl [18], that Conjecture 1.1 is true for 3-graphs defined

by groups. (We wonder whether any positive proportion of lines in 𝑃𝐺(𝑛, 2) contain subspaces

as well, in particular a Fano plane.) Recently Solymosi’s result was extended and strengthened

by Nenadov, Sudakov and Tyomkyn [30] and independently by Long [25] (see also Wong [37])

for the full BES-conjecture in groups (in fact, much denser configurations were found in these

special cases). Other recent results on the BES-conjecture include an approximative result of
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Figure 1. Configurations 𝐶14 and 𝐶16 (Pasch configuration).

Conlon, Gishboliner, Levanzov and Shapira [7] (improving [34]), a Ramsey variant due to Sha-

pira and Tyomkyn [35] and a proof for large uniformity by Keevash and Long [21].

Our aim here is to investigate proper edge colorings of balanced bipartite graphs emerging

from Conjecture 1.1. An edge coloring of a graph 𝐺 is proper if the color classes formmatchings
(i.e., contain pairwise disjoint edges) and the chromatic index is the minimum number of colors

needed for a proper coloring of 𝐺. The proof technique of [32] (see also [22]) applied the Regu-

larity Lemma for proper edge colorings of graphs such that the union of any two color classes

does not contain a path with three edges (i.e. the color classes are so-called induced matchings).
These colorings reappeared later in several applications and were called strong colorings. The
strong chromatic index 𝑞(𝐺) of a graph 𝐺 is the minimum𝑚 for which 𝐺 has a strong𝑚-coloring.

We shall show below how the (7, 4)-problem leads to the following less restrictive proper

colorings. A proper edge coloring of a graph 𝐺 is called an A-coloring if the union of any two

color classes does not contain paths or cycles with four edges; it is called a B-coloring if the edges
of every four-cycle must be colored with four different colors. Finally, a C-coloring satisfies both
conditions. We define 𝑞𝐴(𝐺), 𝑞𝐵(𝐺), 𝑞𝐶(𝐺) as the minimum number of colors needed in A-, B-,

C-colorings of the edge set of 𝐺. In the next subsection we use these notions to formulate two

stronger and one equivalent form of Conjecture 1.1 in terms of 𝑞𝐴(𝐺), 𝑞𝐵(𝐺), 𝑞𝐶(𝐺) where 𝐺 is

a balanced bipartite graph.

We note that 𝑞𝐴(𝐺) has already been extensively studied from different motivations. Er-

dős and the first author [12] studied it in connection with (9, 6)-colorings of complete graphs.

Dvořak, Mohar and Šámal [10] initiated its systematic study motivated by the star chromatic

number and introduced the term star chromatic index for 𝑞𝐴(𝐺). However, as far as we know

the behavior of 𝑞𝐵(𝐺) is studied here for the first time.

Based on the discussion above Conjecture 1.1 can be rephrased to {𝐶14, 𝐶16}-free balanced 3-

partite 3-graphs 𝐻 . We may assume that 𝑉 (𝐻) = 𝑋 ∪ 𝑌 ∪ 𝑍 where 𝑋, 𝑌 , 𝑍 are pairwise disjoint,

|𝑋 | = |𝑌 | = |𝑍| = 𝑛 (and any two edges of 𝐻 intersect in at most one vertex). The next standard

step is the projection (appeared already in [32]), representing 𝐻 as a balanced bipartite graph
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𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) with a proper coloring using 𝑛 colors: for any 𝑧 ∈ 𝑍 define the color class

𝑀𝑧 = {(𝑥, 𝑦)∶ (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐻)}.

Since 𝐺 is a graph, it might be easier to handle than the original hypergraph𝐻 . How to translate

the {𝐶14, 𝐶16}-free property of 𝐻 to 𝐺 in the projection? The symmetry of 𝐶16 implies that it

appears as an alternating four-cycle in 𝐺 as a subgraph of𝑀𝑧1 ∪𝑀𝑧2 . On the other hand, 𝐶14 can

appear in 𝐺 in two ways. The first is a 3-colored four-cycle as a subgraph of𝑀𝑧1 ∪𝑀𝑧2 ∪𝑀𝑧3 , the

second is an alternating path with four edges as a subgraph of 𝑀𝑧1 ∪ 𝑀𝑧2 . The projections are

shown in Figure 2. These considerations lead to two different questions.

z1

z2

z3
z1

z2

z1 z2

1

Figure 2. Configurations 𝐶14 and 𝐶16 with their projections.

QUESTION 1.2 (A-variant). Assume that 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) is a bipartite graph, |𝑋 | = |𝑌 | = 𝑛 and

𝑞𝐴(𝐺) = 𝑛. Is it true that |𝐸(𝐺)| = 𝑜(𝑛2)?

QUESTION 1.3 (B-variant). Assume that 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) is a bipartite graph, |𝑋 | = |𝑌 | = 𝑛 and

𝑞𝐵(𝐺) = 𝑛. Is it true that |𝐸(𝐺)| = 𝑜(𝑛2)?

Note that an affirmative answer to any of the two questions would provide an affirmative

answer to Conjecture 1.1:

PROPOSITION 1.4. A positive answer to Question 1.2 or Question 1.3 implies Conjecture 1.1.
In fact, Question 1.2 was asked already by Erdős and Gyárfás ([12] Problem 1.), related to the

minimum number of colors for a (not necessarily proper) edge coloring of 𝐾𝑛 ensuring at least

9 colors within any 5 vertices. It was predicted that the answer is positive without noticing that

it would imply Conjecture 1.1 (see Subsection 2.3 for more details). Dvor̂ak, Mohar and Šámal

raised the same problem from a different motivation ([10] Question 1) and introduced the term

star chromatic index, 𝜒 ′
𝑠 (𝐺), which is exactly the same as what we denote here by 𝑞𝐴(𝐺). Many

follow-up papers have addressed the problems raised in [10]; see the survey by Lei and Shi [26].

However, we could not find a reference to the rather natural Question 1.3. Combining the A-

and B-variants, Conjecture 1.1 can be rephrased as follows.

CONJECTURE 1.5 (C-variant). Assume that 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) is a bipartite graph, |𝑋 | = |𝑌 | = 𝑛 and
𝑞𝐶(𝐺) = 𝑛. Then |𝐸(𝐺)| = 𝑜(𝑛2).
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PROPOSITION 1.6. Conjecture 1.5 and Conjecture 1.1 are equivalent.

2. RESULTS
2.1. (𝟕, 𝟒)-analogs of Ruzsa–Szemerédi graphs
Agraph𝐺 is called an (𝑟, 𝑡)-RS graph (Ruzsa–Szemerédi graph) if its edge set has a strong coloring
with 𝑡 color classes of size 𝑟 . These graphs have been studied extensively. Many results focused

on the case 𝑟 = 𝑐𝑛 (see e.g. Fox, Huang and Sudakov [16] and its references). In a similar vein

we shall define (𝑟, 𝑡)-A, (𝑟, 𝑡)-B, and (𝑟, 𝑡)-C balanced bipartite 𝐺(𝑛, 𝑛) graphs. A graph 𝐺 is an

(𝑟, 𝑡)-A graph (similarly for B and C) if its edge set has an A-coloring with 𝑡 color classes of size

𝑟 . As in [16], we study that in different ranges for 𝑐, how large can 𝑡 be if 𝑟 = 𝑐𝑛. Of course an

affirmative answer to Question 1.2 would imply that 𝑟 and 𝑡 cannot both be linear in an (𝑟, 𝑡)-A

graph (similarly for B and C). It turns out that (𝑟, 𝑡)-A and (𝑟, 𝑡)-B graphs behave differently. First

we study (𝑟, 𝑡)-A graphs.

THEOREM 2.1. Assume that |𝑋 | = |𝑌 | = 𝑛 and 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) is a (𝑐𝑛, 𝑡)-A bipartite graph.
(i) If 𝑐 > 3/4, then 𝑡 = 1,
(ii) If 𝑐 = 3/4, then 𝑡 ≤ 4,
(iii) If 𝑐 > 2/3, then 𝑡 ≤ 1

3(𝑐−2/3)
.

Thus for the range 𝑐 > 2/3, 𝑡 is still a constant, i.e. not only 𝑟𝑡 = 𝑜(𝑛2), but actually it is linear.

For 𝑐 = 3/4, we can indeed have 𝑡 = 4. See Figure 3 for an A-coloring of the cube with 4 color

classes of size 3. Using disjoint copies of cubes, we have an example of a coloring with 4 color

classes of size
3𝑛

4
for any 𝑛 divisible by 8. By (𝑖𝑖) in the above theorem, this 𝑡 = 4 is best possible.

1

Figure 3. Decomposing the cube into 4 color classes of size 3.

In the other direction, the lower bounds on 𝑡 for (𝑟, 𝑡)-RS-graphs are valid for (𝑟, 𝑡)-A graphs

as well. Thus, the constructions in [16] imply that for 𝑐 = 1/2 we can have 𝑡 = Ω(log 𝑛).

The (𝑟, 𝑡)-B graphs behave differently. The previous upper bounds on 𝑡 for (𝑟, 𝑡)-A graphs are

not valid for (𝑟, 𝑡)-B graphs. We can have even (𝑛, 𝑡)-B graphs with large 𝑡 because any proper
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coloring of a 𝐶4-free graph is a 𝐵-coloring. Indeed, note that a 𝑡-regular 𝐶4-free bipartite graph

𝐺(𝑛, 𝑛) is an (𝑛, 𝑡)-B graph and it is well known that we can have 𝑡 = Ω(𝑛
1

2 ) (incidence graphs

of finite planes). On the other hand, we have the following upper bound.

THEOREM 2.2. Let 0 < 𝜀 ≤ 1

3
and assume that |𝑋 | = |𝑌 | = 𝑛 and 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) is a (𝑐𝑛, 𝑡)-B

bipartite graph with 𝑐 = 2

3
+ 𝜀. Then 𝑡 < (1 − 𝛿)𝑛 for sufficiently large 𝑛 provided that 9𝜀

6𝜀+4
> 𝛿.

Many questions remain, perhaps the most intriguing ones are the following.

∙ Where does the jump occur between 1/2 and 2/3 for the A-variant? More precisely,

what is the largest 𝑐 ∈ [ 1
2
, 2
3
] for which 𝑡 → ∞when 𝑛 → ∞ for any sequence of (𝑐𝑛, 𝑡)-B

bipartite graphs 𝐺(𝑛, 𝑛)?

∙ Is 𝑡 = 𝑜(𝑛) for any sequence of (𝑛, 𝑡)-B bipartite graphs 𝐺(𝑛, 𝑛)? (A very special case of

Question 1.3.)

∙ Is 𝑡 < 𝑛 for large enough even 𝑛 in every ( 𝑛
2
, 𝑡)-C bipartite graph 𝐺(𝑛, 𝑛)? (A very special

case of Conjecture 1.5.)

2.2. Less strong chromatic indices of graphs
Fouguet and Jolivet [17] proposed to study 𝑞(𝐺) in connection to frequency assignment prob-

lems. Later, independently, Erdős and Nešetřil (at a seminar in Prague at the end of 1985) revital-

ized the subject, leading to problems and results, for example [4], [14], [27] (Section 10.4), [38]

(survey).

The most natural problem is how the parameters 𝑞, 𝑞𝐴, 𝑞𝐵, 𝑞𝐶 depend on the maximum degree

Δ = Δ(𝐺). The natural upper bound on 𝑞(𝐺) ([14])

𝑞(𝐺) ≤ 2Δ
2
− 2Δ + 1

is improved to (2 − 𝜀)Δ2
by Molloy and Reed [27] and its conjectured best bound is asymptotic

to
5Δ2

4
[14]. On the other hand, as proved in [10], 𝑞𝐴(𝐺) ≤ Δ2𝑂(1)

√
log Δ

, i.e. it is almost linear, but

again the best bound is open. However, perhaps surprisingly, the best bound for 𝑞𝐵(𝐺) can be

determined rather easily. In fact, the upper bound from the greedy coloring gives 𝑞𝐵(𝐺) ≤ Δ2

and this is sharp, shown by the complete bipartite graph.

The natural lower bound

𝑞(𝐺) ≥ max
𝑥𝑦∈𝐸(𝐺)

{𝑑(𝑥) + 𝑑(𝑦) − 1} (2.1)

does not always hold for 𝑞𝐴, 𝑞𝐵 (for example a result of Faudree et al. [15] is that for the 𝑑-

dimensional cube 𝑄𝑑 , 𝑑 ≥ 4, 𝑑 ≠ 5, 𝑞𝐵(𝑄𝑑) = 𝑑). Assume that |𝑋 | = |𝑌 | = 𝑛, 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) is

a bipartite graph and let 𝑑 = 𝑑(𝐺) denote the average degree |𝐸(𝐺)|/𝑛. Then (2.1) implies

𝑞(𝐺) ≥ 2𝑑 − 1. (2.2)

We start with a general lower bound for 𝑞𝐴(𝐺) that is not far off from (2.2).
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THEOREM 2.3. Assume that |𝑋 | = |𝑌 | = 𝑛 and 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) is a bipartite graph with average
degree 𝑑 ≥ 2. Then we have

𝑞𝐴(𝐺) ≥
3𝑑

2
− 3

√

𝑑

2
.

It is worth noting that a weaker analogue of Theorem 2.3 with 4/3 instead of 3/2was proved

by Deng, Liu and Tian in [9]. A slightly better lower bound can be obtained from another as-

sumption.

THEOREM 2.4. Assume that |𝑋 | = |𝑌 | = 𝑛 and 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) is a bipartite graph such that
𝑑(𝑣) = 𝑑 for some 𝑣 ∈ 𝑋 and 𝑑(𝑤) ≥ 𝑑 for all 𝑤 ∈ 𝑌 adjacent to 𝑣. Then we have

𝑞𝐴(𝐺) ≥
⌊

3𝑑

2 ⌋
.

Note, that the lower bound of Theorem 2.4 is sharp for every tree satisfying the condition of

the theorem and having maximum degree 𝑑 (see [5] or [9], where it is proved that for each tree

𝑇 with maximum degree 𝑑, we have 𝑞𝐴(𝑇 ) ≤ ⌊
3𝑑

2 ⌋, see also [26]). In the next theorem we apply

Theorem 2.4 for cubes, improving the earlier lower bound ⌈4𝑑/3⌉ (see [26]).

Next we consider the 𝑑-dimensional cube, 𝑄𝑑 , since 𝑞𝐵(𝑄𝑑) have already been studied in [15].

We have 𝑞(𝑄𝑑) = 2𝑑 (𝑑 ≥ 2) [14]. For the A- and C-variants we have the following.

THEOREM 2.5. For 𝑑 ≥ 3 we have ⌊ 3𝑑
2
⌋ ≤ 𝑞𝐴(𝑄𝑑) ≤ 𝑞𝐶(𝑄𝑑) ≤ 2𝑑 − 2.

The upper bound of 2𝑑 − 2 on 𝑞𝐴(𝑄𝑑) was shown earlier by Omoomi and Dastjerdi in [31]

(see Corollary 3.2 on page 26 in [31]). Our lower bound on 𝑞𝐴(𝑄𝑑) implies that 𝑞𝐵(𝑄𝑑) < 𝑞𝐴(𝑄𝑑)

for 𝑑 > 3, 𝑑 ≠ 5 because a result of Faudree et al. [15] is that for 𝑑 ≥ 4, 𝑑 ≠ 5, 𝑞𝐵(𝑄𝑑) = 𝑑. It

would be interesting to see how sharp are the inequalities in Theorem 2.5.

2.3. The cases 𝑲𝒏 and 𝑲𝒏,𝒏

It is obvious that 𝑞(𝐾𝑛) = 𝑞𝐵(𝐾𝑛) = (
𝑛

2) and 𝑞(𝐾𝑛,𝑛) = 𝑞𝐵(𝐾𝑛,𝑛) = 𝑛2 since no two edges can

be colored with the same color in strong or in B-colorings of these graphs. However, to decide

whether 𝑞𝐴(𝐾𝑛) or 𝑞𝐴(𝐾𝑛,𝑛) is linear in 𝑛 seems difficult. In fact, it was predicted in [12] that

𝑞𝐴(𝐾𝑛) is super-linear and it remains so if 𝐾𝑛 is replaced by any graph with 𝑐𝑛2 edges. This ques-
tion is obviously difficult, since it would imply the positive answer to Question 1.2, consequently

to Conjecture 1.1. The question about 𝑞𝐴(𝐾𝑛) is asked independently in [10].

The question about 𝑞𝐴(𝐾𝑛) emerged first from the following problem in [12]. Estimate

𝑓 (𝑛, 5, 9), the minimum number of colors needed for a not necessarily proper edge-coloring 𝜙

of 𝐾𝑛 such that at least 9 colors appear within every set of 5 vertices. Recalling the argument

from [12], it is clear that an A-coloring of 𝐾𝑛 must contain at least 9 colors in every 𝐾5 (at most

one color can contain two edges within 5 vertices). On the other hand, color classes of 𝜙 which

do not form matchings must have just two intersecting edges and two such color classes cannot

intersect. Thus, apart from at most 𝑛/3 exceptional ones, the color classes of 𝜙 are matchings.

The exceptional ones can be recolored to give at most 2𝑛/3 one-edge matching. Thus

𝑞𝐴(𝐾𝑛) − 𝑛/3 ≤ 𝑓 (𝑛, 5, 9) ≤ 𝑞𝐴(𝐾𝑛).
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Axenovich [2] proved that

(1 +
√
5)𝑛

2
− 3 ≤ 𝑞𝐴(𝐾𝑛) ≤ 2𝑛

1+𝑐/
√

log 𝑛
.

The lower bound is improved to (1 + 𝑜(1))2𝑛 in [10] and the proof method there also gives

(1 + 𝑜(1))2𝑛 ≤ 𝑞𝐴(𝐾𝑛,𝑛). A further improvement is

(1 + 𝑜(1))3𝑛 ≤ 𝑞𝐴(𝐾𝑛),

see [5], [28].

3. PROOFS
In the proofs we refer to color classes of proper colorings as matchings.

Proof of Proposition 1.4. Assume that we have a positive answer to Question 1.2 (Question 1.3 is

similar). We will show that this implies Conjecture 1.1. Consider a 3-graph 𝐻 on 𝑛 vertices with

|𝐸(𝐻)| ≥ 𝑐𝑛2, where 𝑐 is a constant and 𝑛 is sufficiently large. We must show that 𝐻 contains

either a 𝐶14 or a 𝐶16 (see Figure 1). As it is discussed in the Introduction wemay assume that𝐻 is

a balanced, linear 3-partite 3-graph. Thus we may assume that 𝑉 (𝐻) = 𝑋 ∪ 𝑌 ∪ 𝑍 where 𝑋, 𝑌 , 𝑍

are pairwise disjoint, |𝑋 | = |𝑌 | = |𝑍| (and any two edges of 𝐻 intersect in at most one vertex).

Furthermore, also as in the Introduction we may define the projection 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) of 𝐻

together with a proper coloring using |𝑍| colors: for any 𝑧 ∈ 𝑍 define the color class (matching)

𝑀𝑧 = {(𝑥, 𝑦)∶ (𝑥, 𝑦, 𝑧) ∈ 𝐸(𝐻)}.

Since we have a positive answer to Question 1.2, 𝐺 contains a path or cycle with 4 edges using

only 2 colors. Adding back the corresponding two vertices from 𝑍 , we get a 𝐶14 or 𝐶16 (see the

last two figures in Figure 2), as desired. □

Proof of Proposition 1.6. The direction that Conjecture 1.5 implies Conjecture 1.1 is similar to the

proof of Proposition 1.4. For the other direction, assume that Conjecture 1.1 holds. We must

show that Conjecture 1.5 holds as well. Assume that |𝑋 | = |𝑌 | = 𝑛 and 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺))

is a bipartite graph with |𝐸(𝐺)| ≥ 𝑐𝑛2, where 𝑐 is a constant, 𝑛 is sufficiently large and 𝐺 has

a proper edge-coloring with 𝑛 colors. We must show that there is either a four-cycle with a

repeated color or a four-path with only 2 colors. We will apply the fact that Conjecture 1.1

holds. First we define a balanced 3-partite 3-graph 𝐻 with the reverse of the projection above:

for each color class (matching) 𝑀𝑖 we add a vertex 𝑧𝑖 ∈ 𝑍 and for each edge (𝑥, 𝑦) ∈ 𝑀𝑖 we add

the edge (𝑥, 𝑦, 𝑧𝑖) to 𝐸(𝐻). By applying the fact that Conjecture 1.1 holds, we find either a 𝐶14

or a 𝐶16 in 𝐻 . Taking the projection of this 𝐶14 or 𝐶16 back to 𝑋 ∪ 𝑌 we get a four-cycle with a

repeated color or a four-path with only 2 colors in 𝐺 (see Figure 2, we get the first or the second

figure from the 𝐶14 depending on whether we have 3 or 2 vertices in 𝑍), as desired. □

Proof of Theorem 2.1. Assume that |𝑋 | = |𝑌 | = 𝑛 and𝐺 = (𝑋∪𝑌 , 𝐸(𝐺)) is a (𝑐𝑛, 𝑡)-A bipartite graph.

Let us take an A-coloring of 𝐺 with color classes (matchings)𝑀1, … ,𝑀𝑡 of size 𝑟 = 𝑐𝑛. Thus the

union of any two color classes cannot contain paths or cycles with four edges by definition.
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Proof of (𝑖). Suppose 𝑡 = 2, so we have two matchings 𝑀1 and 𝑀2 of size 𝑟 = 𝑐𝑛 with 𝑐 > 3/4.

Set 𝑆 = 𝑉 (𝑀1) ∩ 𝑉 (𝑀2) ∩ 𝑋 . Clearly |𝑆| > 𝑛/2. Consider the set 𝑀 ′
1 of those edges of 𝑀1 that

have an endpoint in 𝑆 and the set 𝑀 ′
2 of those edges of 𝑀2 that have an endpoint in 𝑆. Then

|𝑆| = |𝑀 ′
1| = |𝑀 ′

2| > 𝑛/2 and thus 𝑆′ = 𝑉 (𝑀 ′
1) ∩ 𝑉 (𝑀 ′

2) ∩ 𝑌 ≠ ∅. This creates a four edge path or

cycle in the union of 𝑀1 and 𝑀2, a contradiction. □

Proof of (𝑖𝑖). To avoid the contradiction of the previous proof, we must have

|𝑉 (𝑀𝑖) ∩ 𝑉 (𝑀𝑗 ) ∩ 𝑋| = 𝑛/2

for any two matchings 𝑀𝑖, 𝑀𝑗 . This means that the sets 𝑆𝑖 = 𝑋 ⧵ 𝑉 (𝑀𝑖) of size 𝑛/4 must be

pairwise disjoint, thus 𝑡 ≤ 4. □

Proof of (𝑖𝑖𝑖). We will use the well-known Johnson bound (see [20]) from coding theory. If we

have 𝑡 sets of size 𝑐𝑛 on an 𝑛-element ground set such that the pairwise intersections have at

most 𝑘 elements, then

𝑡 ≤
𝑐𝑛 − 𝑘

𝑐2𝑛 − 𝑘
, (3.1)

assuming that the denominator is positive.

We will apply the Johnson bound for the vertex sets of the matchings 𝑉 (𝑀𝑖), so |𝑉 (𝑀𝑖)| =

2𝑟 = 2𝑐𝑛 on a set with 2𝑛 elements. First we need a bound on the pairwise intersections. Let us

consider two matchings, 𝑀1 and 𝑀2 (say with colors 𝑝 and 𝑞), and put

𝑆𝑋 = 𝑉 (𝑀1) ∩ 𝑉 (𝑀2) ∩ 𝑋, 𝑆𝑌 = 𝑉 (𝑀1) ∩ 𝑉 (𝑀2) ∩ 𝑌 .

Then

𝑉 (𝑀1) ∩ 𝑉 (𝑀2) = 𝑆𝑋 ∪ 𝑆𝑌 .

Thus by definition from the vertices in 𝑆𝑋 and 𝑆𝑌 there is both an edge in color 𝑝 and an edge in

color 𝑞 (let us call this a 𝑝𝑞-star). The 𝑝𝑞-stars from 𝑆𝑋 must all be pairwise disjoint and none of

them can send two edges to 𝑆𝑌 otherwise we get a path or cycle with 4 edges in the union of the

two color classes 𝑝 and 𝑞, contradicting the fact that we have an 𝐴-coloring. Thus at least one

edge of every 𝑝𝑞-star must go from 𝑆𝑋 to the symmetric difference of 𝑌 ∩ 𝑉 (𝑀1) and 𝑌 ∩ 𝑉 (𝑀2),

implying

|𝑆𝑋 | ≤ 2(𝑐𝑛 − |𝑆𝑌 |),

or

|𝑆𝑋 | + 2|𝑆𝑌 | ≤ 2𝑐𝑛. (3.2)

Repeating the argument for the 𝑝𝑞-stars from 𝑆𝑌 we get

|𝑆𝑌 | + 2|𝑆𝑋 | ≤ 2𝑐𝑛. (3.3)

Adding (3.2) and (3.3) we get

3(|𝑆𝑋 | + |𝑆𝑌 |) ≤ 4𝑐𝑛,

or

|𝑆𝑋 | + |𝑆𝑌 | ≤ 4𝑐𝑛/3.
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Then using 𝑐 > 2/3, from the Johnson bound (3.1) with 𝑘 = 4𝑐𝑛/3 we get

𝑡 ≤
2𝑐𝑛 − 4𝑐𝑛/3

2𝑐2𝑛 − 4𝑐𝑛/3
=

1

3(𝑐 − 2/3)
,

as desired. □

□

Proof of Theorem 2.2. Let us take a B-coloring with matchings 𝑀1, … ,𝑀𝑡 of size 𝑟 = 𝑐𝑛 with

𝑐 = 2

3
+ 𝜀. Assume that 𝑡 ≥ (1 − 𝛿)𝑛. We will show that there must be a 4-cycle with two edges

from 𝑀𝑖 for some 𝑖 if 𝑛 is large enough, giving a contradiction. From the assumptions

|𝐸(𝐺)| = 𝑐𝑛𝑡 ≥ 𝑐(1 − 𝛿)𝑛
2
. (3.4)

We will use the following well-known lemma.

LEMMA 3.1 ([24, Lemma 9], see also [29]). Assume that |𝑋 | = |𝑌 | = 𝑛 and 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) is a
bipartite graph with |𝐸(𝐺)| ≥ 𝑐′𝑛2. Then 𝐺 contains a double star with at least 2𝑐′𝑛 vertices.

Using this lemmawith 𝑐′ = 𝑐(1−𝛿) and (3.4) we get a double star 𝑆with center edge (𝑢, 𝑣) ∈ 𝑀𝑖

and with order at least ( 4
3
+ 2𝜀)(1 − 𝛿)𝑛. Therefore for 𝑇 = 𝑉 (𝐺) ⧵ 𝑉 (𝑆) we get

|𝑇 | ≤ 2𝑛 −
(

4

3
+ 2𝜀

)
(1 − 𝛿)𝑛

=
2𝑛

3
− 2𝜀𝑛 + 𝛿

(

4

3
+ 2𝜀

)
𝑛 <

(

2

3
+ 𝜀

)
𝑛 − 1,

(3.5)

provided that
9𝜀

6𝜀+4
> 𝛿 and

1

𝑛
< 3𝜀 − 𝛿( 4

3
+ 2𝜀).

Indeed, (3.5) is equivalent to

𝛿
(

4

3
+ 2𝜀

)
𝑛 + 1 < 3𝜀𝑛,

or

1

𝑛
< 3𝜀 − 𝛿

(

4

3
+ 2𝜀

)
,

(note that here the right hand side is positive if
9𝜀

6𝜀+4
> 𝛿).

However, |𝑇 | < ( 2
3
+ 𝜀)𝑛 − 1 implies that there exists an edge (𝑢′, 𝑣′) ∈ 𝑀𝑖 not incident to 𝑇

and different from (𝑢, 𝑣) thus (𝑢, 𝑣), (𝑢′, 𝑣′) are in a four-cycle, concluding the proof. □

Proof of Theorem 2.3. Assume that |𝑋 | = |𝑌 | = 𝑛, 𝐺 = (𝑋 ∪ 𝑌 , 𝐸(𝐺)) is a bipartite graph with

average degree 𝑑 = 𝑑(𝐺) ≥ 2 and we have an A-coloring with 𝑡 matchings. We will show that

we must have

𝑡 ≥
3𝑑

2
− 3

√
𝑑

2
. (3.6)

We call a matching large in this A-coloring if it has at least 𝑐𝑛 = (
2

3
+ 𝜀) 𝑛 edges, where 𝜀 =

1

3

√
2

𝑑
.

Note that 𝜀 ≤ 1

3
. Otherwise,we call amatching small. By (𝑖𝑖𝑖) in Theorem 2.1we can have atmost
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1

3(𝑐−2/3)
= 1

3𝜀
large matchings. Thus the number of edges in the union of the small matchings is

at least 𝑛𝑑 − 𝑛

3𝜀
. This implies

𝑡 ≥
𝑛𝑑 − 𝑛

3𝜀

(
2

3
+ 𝜀) 𝑛

=
𝑑 − 1

3𝜀
2

3
+ 𝜀

=
𝑑 −

√
𝑑

2

2

3
+ 1

3

√
2

𝑑

≥
3𝑑

2
− 3

√
𝑑

2
,

as desired (using the definition of 𝜀). □

Proof of Theorem 2.4. Set 𝑘 = ⌊ 𝑑
2
⌋ for convenience. Let𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑑} be the set of neighbors

of 𝑣. Consider an A-coloring of 𝐺 with colors 1, 2, … , 𝑑 on the edges incident to 𝑣, say (𝑣, 𝑤𝑖) is

colored by 𝑖. Suppose indirectly that fewer than 𝑘 additional colors are used in the A-coloring.

Then, for any vertex 𝑤𝑖 there are at least 𝑑 − 1 edges going to 𝑋 ⧵ {𝑣} and at least

(𝑑 − 1) − (𝑘 − 1) = 𝑑 −
⌊

𝑑

2⌋
=
⌈

𝑑

2⌉

of them are colored with some color from {1, 2, … , 𝑑}. Thus the colors of {1, 2, … , 𝑑} are used

at least 𝑑(⌈ 𝑑
2
⌉) times on the edges between 𝑊 and 𝑋 ′ = 𝑋 ⧵ {𝑣} implying that some of them,

say 1 is used at least ⌈ 𝑑
2
⌉ times. Since the coloring is proper, color 1 is used w.l.o.g. on edges

(𝑤𝑖, 𝑦𝑖) for 𝑖 = 2, … , ⌈ 𝑑
2
⌉ + 1 where 𝑦𝑖 ∈ 𝑋 ′

. We claim that for every 𝑗 ∈ {1, 2, … , ⌈ 𝑑
2
⌉ + 1} no edge

(𝑤1, 𝑦), 𝑦 ∈ 𝑋 ′
can be coloredwith 𝑗 . Indeed, for 𝑗 = 1 this is obvious since the coloring is proper.

Otherwise, assume that 𝑗 ≠ 1 and (𝑤1, 𝑦), 𝑦 ∈ 𝑋 ′
is colored with 𝑗 for some 𝑗 ∈ {2, … , ⌈ 𝑑

2
⌉ + 1}.

Then 𝑦, 𝑤1, 𝑣, 𝑤𝑗 , 𝑦𝑗 is a path or a cycle colored by 𝑗 , 1, 𝑗 , 1 contradicting the definition of the

A-coloring, proving the claim. We conclude that from 𝑤1 to 𝑋 ′
there are at most

𝑑 − (⌈𝑑/2⌉ + 1) + ⌊𝑑/2⌋ − 1 < 𝑑 − 1

colors, a contradiction proving Theorem 2.4. □

Proof of Theorem 2.5. The lower bound of 𝑞𝐴(𝑄𝑑) follows from Theorem 2.4. For the upper bound

of 𝑞𝐶(𝑄𝑑) we construct inductively a C-coloring of 𝑄𝑑 with 𝑠 = 2𝑑 − 2 matchings. Our starting

point is the C-coloring of 𝑄3 with 4 matchings shown in Figure 3.

Assume that we already have a C-coloring of 𝑄𝑑−1 with 𝑠 − 2 matchings. We consider 𝑄𝑑 as

𝐾2×𝑄𝑑−1 i.e., two vertex-disjoint copies𝑋1, 𝑋2 of𝑄𝑑−1 where the corresponding vertices are con-

nected with a perfect matching𝑀 . In𝑋1 take a C-coloring with 𝑠−2matchings,𝑀1
1 , … ,𝑀1

𝑠−2 (en-

sured by the inductive hypothesis). Define the same C-coloring on 𝑋2, denoting by𝑀
2
1 , … ,𝑀2

𝑠−2

the corresponding matchings.

To get a C-coloring of 𝑄𝑑 with 𝑠 colors first we define 𝑠 − 2 colors 𝑀 ′
𝑖 by extending 𝑀1

𝑖 with

𝑀2
𝑖+1: for 𝑖 ∈ [𝑠 − 2] set𝑀 ′

𝑖 = 𝑀1
𝑖 ∪𝑀

2
𝑖+1 using (mod 𝑠 − 2) index arithmetic. The last two colors

are defined by partitioning 𝑀 into two parts 𝑀 ′, 𝑀 ′′
using the well-known fact that 𝑄𝑑 is a

bipartite graph with unique partite classes 𝑃, 𝑄: let𝑀 ′
be the set of edges of𝑀 from the 𝑃-part

of 𝑋1 to the 𝑄-part of 𝑋2, similarly, let𝑀 ′′
be the set of edges of𝑀 from the 𝑄-part of 𝑋1 to the

𝑃-part of 𝑋2. Now the 𝑠 −2matchings𝑀 ′
𝑖 together with𝑀

′
and𝑀 ′′

give a proper edge-coloring

𝜋 of the edges of 𝑄𝑑 into 𝑠 = 2𝑑 − 2 color classes (matchings).
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We claim that 𝜋 is a C-coloring. Indeed, suppose indirectly that we have two edges 𝑒, 𝑓 from

the same matching of 𝜋 such that 𝑒 ∪ 𝑓 is in a four cycle or in a 2-colored four edge path.

If 𝑒, 𝑓 are in the same copy of 𝑄𝑑−1, say in 𝑋1 then the inductive hypothesis ensures this.

Indeed, a four-cycle containing 𝑒, 𝑓 is inside 𝑋1 and this is true for an alternating four edge

path containing 𝑒, 𝑓 as well, since an edge leaving 𝑋1 cannot be in the same matching as the

edge connecting 𝑒, 𝑓 . It is obviously impossible that one of {𝑒, 𝑓 } is in 𝑋𝑖 and the other is in

𝑀 ′ ∪ 𝑀 ′′
because of the definition of 𝑀 ′, 𝑀 ′′

.

Therefore we may assume that 𝑒, 𝑓 are in 𝑋1, 𝑋2, respectively. The 4-cycle or the 2-colored

4-edge path containing 𝑒, 𝑓 have to use an edge 𝑔 from𝑀 ′
or from𝑀 ′′

w.l.o.g. 𝑔 ∈ 𝑀 ′
. Then we

have a path with edges 𝑒, 𝑔, 𝑓 where 𝑔 connects a vertex of 𝑒 in the 𝑃-part of 𝑋1 to a vertex of

𝑓 in the 𝑄-part of 𝑋2. This path cannot be extended to a 2-colored 4-edge path with an edge ℎ.

Indeed, since 𝑔 ∈ 𝑀 ′
, either ℎ ∈ 𝑀 ′′

or ℎ is inside𝑋1 or inside𝑋2 andwe can get only a 3-colored

path with four edges. Thus the only possibility is that the path 𝑒, 𝑔, 𝑓 is extended to a 4-cycle.

Denote the vertices of this 𝐶4 as {𝑥1, 𝑥
′
1, 𝑥

′
2, 𝑥2} in cyclic order where 𝑒 = (𝑥1, 𝑥

′
1), 𝑓 = (𝑥2, 𝑥

′
2)

are edges in the copies of 𝑄𝑑−1 in 𝑋1, 𝑋2, respectively, joined by (𝑥1, 𝑥2), (𝑥
′
1, 𝑥

′
2) ∈ 𝑀 . The edges

(𝑥1, 𝑥2), (𝑥
′
1, 𝑥

′
2) ∈ 𝑀 belong to different matchings because one of them goes from the 𝑃-part

of 𝑋1 and the other from the 𝑄-part of 𝑋1. But then the edges (𝑥1, 𝑥
′
1), (𝑥2, 𝑥

′
2) must also belong

to different matchings because (𝑥1, 𝑥
′
1) ∈ 𝑀 ′

𝑖 implies (by the shifting) that (𝑥2, 𝑥
′
2) ∈ 𝑀 ′

𝑖−1, a

contradiction, proving Theorem 2.5. □

4. CONCLUSION
We introduced two refinements of the chromatic index, 𝑞(𝐺), arising from the (7, 4)-conjecture.

The first is 𝑞𝐴(𝐺), the smallest number of colors needed for a proper edge coloring of𝐺 such that

the union of any two color classes does not contain a path or cyclewith four edges,we called it an

A-coloring. The second is 𝑞𝐵(𝐺), the smallest number of colors needed for a proper edge coloring

of 𝐺 such that all four-cycles are colored with four different colors, we called it a B-coloring.
These notions led to two stronger and one equivalent form of the (7, 4)-conjecture in terms

of 𝑞𝐴(𝐺), 𝑞𝐵(𝐺) where 𝐺 is a balanced bipartite graph. Since these are questions about graphs,

perhaps they will be easier to handle than the original (7, 4)-conjecture. In order to understand

the behavior of 𝑞𝐴(𝐺) and 𝑞𝐵(𝐺), we studied these parameters for some special graphs.
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