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Abstract
Related to the famous (7,4)-problem, in an earlier paper we introduced B-colorings. 
We call a proper edge coloring of a graph G a B-coloring if every 4-cycle of G is 
colored with four different colors. Let qB(G) denote the smallest number of colors 
needed for a B-coloring of G. Here we look at qB(G) for Cartesian products of paths 
and cycles. Our main result is that qB(G) is equal to the chromatic index of G for 
grids, i.e. for Cartesian products of paths (apart from a few exceptions). This extends 
an earlier result for the case when G is the d-dimensional cube. Our main tool is 
a lemma which gives qB(G◻H) ≤ qB(G) + qB(H) if �(G) ≤ qB(H),�(H) ≤ qB(G) , 
where �(G) is the chromatic number of G.

Keywords  Proper edge colorings · Rainbow colorings of four-cycles · Grid graphs

1  Introduction

The chromatic number of a graph G is denoted by �(G) (the minimum number 
of colors needed in a proper vertex coloring). An edge coloring of a graph G is 
proper if incident edges of G must receive different colors. The chromatic index, 
q(G), is the minimum number of colors needed for a proper coloring of G (usually 
this quantity is denoted by � �(G) in the literature but we will shortly need a further 
index B, explaining our choice). Edge colorings of graphs where every 4-cycle is 
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rainbow, i.e. it is colored with four different colors, have been treated earlier in [5, 
6]. Recently the authors studied these colorings [7] with the additional property that 
the colorings should be proper. We called these colorings B-colorings and defined 
qB(G) as the smallest number of colors needed for a B-coloring of graph G. Observe 
that q(G) ≤ qB(G) for every graph G. The motivation to study qB(G) comes from 
its relation to the famous (7, 4)-problem. We asked in [7] whether for any graph G 
with n vertices and with qB(G) = cn , G has o(n2) edges. We showed that a positive 
answer to this question would imply a positive answer to the (7, 4)-problem as well: 
any triple system on n points with no 4 triples on 7 vertices has o(n2) triples [1].

Here we study qB(G) for cartesian products of paths and cycles. Our main result 
(Theorem 1.3) shows that qB(G) is equal to the chromatic index of G for Cartesian 
products of paths (apart from a few exceptions). This extends the result in [5] where 
G is the d-dimensional cube. Our main tool is a lemma (Lemma 1.1) form [5] which 
gives qB(G◻H) ≤ qB(G) + qB(H) if �(G) ≤ qB(H),�(H) ≤ qB(G) , where � is the 
chromatic number.

It is worth noting that B-colorings are similar to the well studied concept of star-
edge colorings: proper edge colorings where the union of any two color classes does 
not contain paths or cycles with four edges. These colorings were defined in [3] 
(appeared also in [4, 7]). These are also related to the (7,4)-problem; it was shown 
in [7] that (similarly to B-colorings) the following statement would give a positive 
answer to the (7, 4)-problem. Any graph G with n vertices and with star-edge color-
ings with cn colors has o(n2) edges. Star-edge colorings of Cartesian products are 
well-studied ([2, 9], more results are in the survey [8]).

1.1 � B‑Colorings of Cartesian Products of Graphs

The Cartesian product of two graphs G and H, denoted by G◻H , is a graph with 
vertex set V(G) × V(H) , and ((a, x), (b, y)) ∈ E(G × H) if either (a, b) ∈ E(G) 
and x = y , or (x, y) ∈ E(H) and a = b . Extending the definition for d factors, the 
d-dimensional grid is the Cartesian product of d paths Pn1

◻Pn2
◻…◻Pnd

 . A special 
case is the d-dimensional hypercube Qd where all factors are equal to P2 . If the d 
factors in the Cartesian product are all equal to a graph G, we denote their cartesian 
product by Gd.

We will frequently use the well-known fact that the chromatic number of the Car-
tesian product is the maximum of the chromatic numbers of the factors [10]:

In particular, the Cartesian product of bipartite graphs is bipartite. Our main tool 
will be the following lemma claiming that

when G1 and G2 satisfy an additional condition.

(1)�(G◻H) ≤ max {�(G),�(H)}.

(2)qB
(
G1◻G2

)
≤ qB

(
G1

)
+ qB

(
G2

)
,
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Lemma 1.1  Assume that graph G1 has a B-coloring with p1 colors, and graph G2 
has a B-coloring with p2 colors. Furthermore, assume that G1 has a proper vertex q1
-coloring, and G2 has a proper vertex q2-coloring satisfying the “cross inequalities"

Then qB(G1◻G2) ≤ p1 + p2.

Lemma 1.1 is implicit in [5] (Lemma 1 in [5]), where it was stated for “ C4-rain-
bow” colorings: the requirement was only that all 4-cycles must be colored with four 
distinct colors without requiring that they are proper colorings. However, the color 
sets used in the proof for the projections of G1◻G2 to G1 and to G2 , respectively, 
were disjoint. Thus if we start out with proper colorings of G1 and G2 , the result will 
also be a proper coloring of G1◻G2.

We also adopt another lemma from [5] (Lemma 2 in [5]) claiming that in certain 
special cases we can improve the upper bound in (2) by one. For the sake of com-
pleteness we present the proof.

Lemma 1.2  If G1 = P2◻P2◻P2 = Q3 and G2 is a connected bipartite graph with at 
least two edges, then

Proof  Set

Fix a B-coloring of G2 with the p2 ( ≥ 2 ) colors in S2 and a proper vertex coloring c 
of both G1 and G2 with two colors. Let C, D denote copies of G1 = P2◻P2◻P2 = Q3 
with total B-colorings by the 4 colors in S1 as shown in Fig. 1.

For each vertex x ∈ V(G2) , let G1(x) be the copy of G1 in G1◻G2 corresponding 
to x. Let G1(x) be equipped with the total coloring defined by C or D depending 
on the color c(x). For each vertex y ∈ V(G1) , let G2(y) be the copy of G2 in G1◻G2 

(3)q1 ≤ p2 and q2 ≤ p1.

qB
(
G1◻G2

)
≤ qB

(
G2

)
+ 3.

S1 = {1, 2, 3, 4}, p2 = qB(G2), S2 = {5, 6,… p2 + 4}.
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Fig. 1   The colorings C and D of Q3
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corresponding to y. Let G2(y) be equipped with either the original B-coloring or this 
B-coloring shifted by one (mod p2 ), depending on the color c(y). This is a B-color-
ing of G1◻G2 by p2 + 4 colors.

To eliminate one color, say color 5, we use the following property of copies C and 
D: the corresponding vertices are labelled with the same vertex color, i.e. they miss 
the same edge color. Then for an edge of color 5 we can recolor it with the common 
vertex color from {1, 2, 3, 4} of the two endpoints. For example, if in Fig. 1 the two 
top leftmost corners were connected by a color 5 edge, then we could recolor this 
edge to color 1. The resulting coloring is still a B-coloring, but we are using one 
fewer color, as desired. 	�  ◻

Using Lemmas 1.1 and 1.2 we can determine qB(G) for the d-dimensional grid. 
(In fact, it is equal to its chromatic index, apart from some special cases.) Theo-
rem  1.3 incorporates qB(Qd) = d, d ≥ 4, d ≠ 5 , a result from [5] (Theorem  1 in 
[5]).

Theorem  1.3  Let ni ≥ 2 for 1 ≤ i ≤ d be arbitrary integers and set 
d� = |{ni ∶ ni = 2}| . Then

apart from the following exceptional cases:

Next we consider the product of even cycles. A sequence of cycle lengths 
2n1 ≤ 2n2 ≤ ⋯ ≤ 2nd with ni ≥ 2 is exceptional  if n1 = 2 and for all 1 < i ≤ d , 
2ni ≡ 2 (mod 4) . The next result shows that qB(G) = q(G) again, when G is the 
product of even cycles with non-exceptional cycle lengths.

Theorem  1.4  Assume that 2n1 ≤ 2n2 ≤ ⋯ ≤ 2nd is a non-exceptional sequence. 
Then

For the exceptional case we have the following result.

Theorem  1.5  qB(C4) = 4, qB(C4◻C2n2
) = 5 if n2 is odd. In general, for odd 

n2,… , nd , we have

Theorem 1.6  Let ni for 1 ≤ i ≤ d be arbitrary integers. Then

The lower bound 2d + 1 is probably the right value of the expression in (4). We 
can prove this in some special cases.

qB
(
Pn1

◻Pn2
◻…◻Pnd

)
= 2d − d�,

qB
(
P2◻Pn

)
= qB

(
P2◻P2◻P2

)
= 4, qB

(
P2◻P2◻P2◻P2◻P2

)
= 6.

qB
(
C2n1

◻C2n2
◻…◻C2nd

)
= 2d.

2d ≤ qB
(
C4◻C2n2

◻…◻C2nd

)
≤ 2d + 1.

(4)2d + 1 ≤ qB
(
C2n1+1

◻C2n2+1
◻…◻C2nd+1

)
≤ 3d.
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Theorem 1.7  Let ni ≥ 1, 1 ≤ i ≤ d be arbitrary integers. Then

if 2d + 1|2ni + 1 for every 1 ≤ i ≤ d.

Theorem 1.6 can be slightly improved for product of triangles.

Theorem 1.8 
It seems interesting to decide whether qB(Cd

3
) is asymptotic to 2d.

2 � Proofs

Proof of Theorem  1.3  Set G = Pn1
◻Pn2

◻⋯◻Pnd
 and note that G is bipartite 

by (1) and qB(G) ≥ 2d − d� is obvious since the right hand side is equal to Δ(G) . 
Thus we have to construct a B-coloring of G with 2d − d� colors. The case when 
n1 = n2 = … nd = 2 (including the exceptional cases) is settled in [5]. Thus we may 
assume that ni ≥ 3 for at least one i. Furthermore, clearly it is enough to construct 
B-colorings where for all ni, nj ≥ 3 we have ni = nj.

The case d� = 0 follows immediately from Lemma  1.1. Similarly the cases 
d′ ≥ 4, d′ ≠ 5 follow from Lemma 1.1 and again from the fact that qB(Qd) = d, d ≥ 4 
and d ≠ 5.

For d� = 1 , qB(P2◻Pn) = 4 is obvious. Indeed, we start with a proper 2-coloring 
of Pn with colors 1 and 2. Then in the other Pn we switch the colors and finally we 
color the P2 -s alternately by colors 3 and 4. Clearly every 4-cycle is rainbow. For 
the general case it is enough to show a B-coloring of P2◻Pn◻Pn , then we can use 
induction and Lemma 1.1 again.

Represent the vertices of G = Pn◻Pn as the grid

We define two B-colorings with 5 colors, �1,�2 on G as follows.

with (mod 5) arithmetic, for i ∈ [0, n − 2], j ∈ [0, n − 1].

with (mod 5) arithmetic, for i ∈ [0, n − 1], j ∈ [0, n − 2].
Then we take two vertex disjoint copies of G, say C and D and the corresponding 

vertices C(i, j), D(i, j) are joined with an edge of color i + j + 1 (mod 5) . Color copy 
C with �1 , copy D with �2 . It is easy to check that we get a B-coloring of P2◻Pn◻Pn , 
see Fig. 2 (showing only the corners of C and D, it is continued in a similar fashion).

qB
(
C2n1+1

◻C2n2+1
◻…◻C2nd+1

)
= 2d + 1,

2d + 1 ≤ qB(C
d
3
) ≤

{
5d

2
if d is even,

5d+1

2
if d is odd.

{(i, j) | 0 ≤ i ≤ n − 1, 0 ≤ j ≤ n − 1}.

�1((i, j), (i + 1, j)) = i + j − 2,�2((i, j), (i + 1, j)) = i + j,

�1((i, j), (i, j + 1)) = i + j,�2((i, j), (i, j + 1)) = i + j − 2,
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Indeed, every 4-cycle inside the copies of G is one of the four generated by the 
neighbors of a vertex of C or a vertex of D not on the border. These are colored by 
four distinct colors because �1,�2 are B-colorings. The 4-cycles containing an edge 
e between vertices C(i, j) and D(i, j) are colored with four distinct colors because the 
color of e is different from the four colors appearing on the neighbors of C(i, j) in C 
and from the colors on the neighbors of D(i, j) in D. This is equivalent to the prop-
erty that assigning the color i + j + 1 (mod 5) to C(i,  j) and to D(i,  j) we get total 
colorings on C, D (a total coloring is a coloring of the edges and vertices (elements) 
of a graph, such that both edge and vertex colorings are proper and two elements of 
the same color are not incident). We leave it to the reader to check this, see Fig. 2.

For d� = 2 , it is enough to prove the statement for d = 3 because then we can fin-
ish by using Lemma 1.1 again. A B-coloring of P2◻P2◻Pn = Q2

◻Pn is shown in 
Fig. 2. For each vertex x ∈ V(Pn) , let Q2(x) be the copy of Q2 in Q2

◻Pn correspond-
ing to x. For the first vertex v1 of Pn we start with a 4-coloring of Q2 , then in each 
subsequent copy we shift the colors by one (mod 4). Then, as shown in Fig. 2, for 
a “horizontal" edge (i.e. edges of Pn(y) for y ∈ Q2 ) we can color the edge with the 
color from {1, 2, 3, 4} that is missing on the 4 vertical edges incident to the edge (one 
of the colors is repeated, thus one of the 4 colors is missing). For example in Fig. 3 
the edge e is colored with color 2. It is not hard to check that we have a B-coloring 
with 4 colors, as desired.

The case d� = 3 follows from Lemma 1.2. Finally, for d� = 5 , we use Lemma 1.1 
and the fact that for d� = 2 the statement is true, finishing the proof. 	�  ◻
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Fig. 2   C with coloring �
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Fig. 3   A B-coloring of Q2
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Proof of Theorem  1.4  Note that C2n1
◻…◻C2nd

 is a 2d-regular graph, thus 2d is a 
lower bound in the theorem. Furthermore, by (1) this graph is bipartite. For the 
upper bound, consider a non-exceptional sequence 2n1 ≤ 2n2 ≤ ⋯ ≤ 2nd . If n1 ≥ 3 , 
then no factor C2ni

 is a C4 , thus Lemma 1.1 implies the theorem.
Assume that n1 = 2 and n2 > 2 . Then, since the sequence of cycle lengths is non-

exceptional, there exists k > 1 such that 2nk ≡ 0 (mod 4) and we color G = C4◻C2nk
 

by 4 colors as follows. Represent the vertices of G as

For all 0 ≤ i ≤ 2nk − 2 and 0 ≤ j ≤ 3 , let the color of the edge between (i,  j) and 
(i + 1, j) be i + j + 3 (mod 4) and let the color of the edge between (2nk − 1, j) and 
(0,  j) be (2n1 − 1) + j + 3 (mod 4) . For all 0 ≤ i ≤ 2nk − 1 and 0 ≤ j ≤ 2 , let the 
color of the edge between (i, j) and (i, j + 1) be i + j + 1 (mod 4) and let the color of 
the edge between (i, 3) and (i, 0) be i + 3 + 1 ≡ i (mod 4) . This is clearly a B-color-
ing of G. Then we can apply Lemma 1.1 for G and for the product of the remaining 
factors.

We are left with the case when the sequence of cycle lengths starts with t ≥ 2 
four-cycles. Let G be the product of these four-cycles and H is the product of the 
remaining factors. Since G is the product of an even number (at least four) of P2-s, 
qB(G) = 2t by Theorem 1.3. Then we can finish the proof by applying Lemma 1.1 
for G and H (if H is empty we are done by Theorem 1.3). 	�  ◻

Proof of Theorem  1.5  Note that qB(C4) = 4 is trivial. Next we show that 
qB(C4◻C2n2

) ≤ 5 when n2 ≥ 3 is odd. Represent the vertices of G = C4◻C2n2
 again 

as the grid

Color the edges of the cycle in row j with the alternating colors j and 5 so that rows 
0 and 2 start with colors 0 and 2, respectively, while rows 1 and 3 start with color 5. 
The 4-cycles (i, 0), (i, 1), (i, 2), (i, 3), (i, 0) in column i are colored with 3, 0, 1, 2 (in 
this order) for even i and with 2, 3, 0, 1 for odd i. One can easily check that this is a 
B-coloring of G.

Suppose that G has a B-coloring with colors 1, 2, 3, 4. We claim that any four 
consecutive edges of the cycles in the rows of G must be colored with four dif-
ferent colors. This leads to contradiction since such a coloring is impossible if 
2n2 ≡ 2 (mod 4) . Assume w.l.o.g. that the path (0, 0), (1, 0), (2, 0), (3, 0), (4, 0) has 
two edges, e,  f with color 1. These edges cannot intersect (since a B-coloring is a 
proper coloring). There are two cases (apart from symmetry).

•	 e = {(0, 0), (1, 0)}, f = {(2, 0), (3, 0)} . Assume w.l.o.g. that the edge 
g = {(1, 0), (2, 0)} has color 2. Then w.l.o.g. the edges {(1, 0), (1, 1)} , 
{(2, 0), (2, 3)} have color 3 and the edges {(1, 0), (1, 3)} , {(2, 0), (2, 1)} have color 

{
(i, j) | 0 ≤ i ≤ 2nk − 1, 0 ≤ j ≤ 3

}
.

{
(i, j) | 0 ≤ i ≤ 2n2 − 1, 0 ≤ j ≤ 3

}
.
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4. This implies that the none of the three edges {(1, 1), (1, 2)} , {(1, 1), (2, 1)} , 
{(2, 1), (2, 2)} can be colored with 3 or 4. This is a contradiction because these 
edges are on a 4-cycle.

•	 e = {(0, 0), (1, 0)}, f = {(3, 0), (4, 0)} . Assume w.l.o.g. that the edge 
{(1, 0), (2, 0)} has color 2, the edge {(2, 0), (3, 0)} has color 3. Then w.l.o.g. the 
edge {(2, 0), (2, 1)} has color 1 and the edge {(2, 0), (2, 3)} has color 4. This 
implies that the edges {(1, 0), (1, 1)} and {(3, 0), (3, 1)} have color 4. Next we 
observe that the edge {(1, 1), (2, 1)} has color 3 and the edge {(2, 1), (3, 1)} has 
color 2. Thus the edge {(2, 1), (2, 2)} has color 4, so the 4-cycle in the third col-
umn has two edges of color 4, a contradiction.

Using that qB(C4◻C2n2
) = 5 , we can use Lemma  1.1 to get the upper bound 

qB(C4◻C2n2
◻…◻C2nd

) ≤ 2d + 1 . 	� ◻

Proofs of theorems 1.6, 1.7, 1.8  The upper bound of Theorem  1.6 follows from 
Lemma 1.1 (here C2ni+1

 has a proper 3-coloring and a B-coloring with 3 colors as 
well and we use (1)). The lower bound of Theorems 1.6 and 1.8 follows from the 
well-known fact that regular graphs with odd number of vertices are class 2 graphs 
(i.e. have chromatic index Δ + 1).

For Theorem 1.7, set G = C2n1+1
◻C2n2+1

◻…◻C2nd+1
 , where 2d + 1|2nj + 1 for 

every 1 ≤ j ≤ d . We give a B-coloring of G with 2d + 1 colors. Represent G by the 
d-dimensional vectors x = (x1,… , xd) with 1 ≤ xj ≤ 2nj + 1 . Let e1,… , ed be unit 
vectors, so ei has 1 at the i-th position and has 0 otherwise. Then, for 1 ≤ i ≤ d , we 
color the edge {x, x + ei} of G with

This coloring is proper, since the edges of G incident to x are colored with different 
colors, the missing color at vertex x is 

�∑d

j=1
xj

�
+ 2d (mod (2d + 1)). Any 4-cycle 

in G incident to vertex x is determined by two different unit vectors ep, eq with edges

The colors on these edges are

clearly all different (mod (2d + 1)) , as desired.
The upper bound for Theorem 1.8 follows by induction on d, using Lemma 1.1 

starting with d = 1, 2 . The B-coloring of C3 with three colors is obvious. The B-col-
oring of C2

3
 with 5 colors is shown in Fig. 4. 	� ◻

(
d∑

j=1

xj

)
+ 2i − 1 (mod (2d + 1)).

{x, x + ep}, {x, x + eq}, {x + ep, x + ep + eq}, {x + eq, x + eq + ep}.

(
d∑

j=1

xj

)
+ 2p − 1,

(
d∑

j=1

xj

)
+ 2q − 1,

(
d∑

j=1

xj

)
+ 2q,

(
d∑

j=1

xj

)
+ 2p,



1 3

Graphs and Combinatorics (2023) 39:98	 Page 9 of 10  98

Acknowledgements  The authors appreciate the remarks of the referees that improved the presentation.

Funding  Open access funding provided by ELKH Alfréd Rényi Institute of Mathematics. The authors 
have not disclosed any funding.

Data availability  Not applicable.

Declarations 

Competing Interests  The authors have not disclosed any competing interests.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Brown, W.G., Erdős, P., Sós, V.T.: Some extremal problems on r-graphs, In: New directions in the 
theory of graphs, Proc. 3rd Ann Arbor Conference on Graph Theory, Academic Press, New York, 
pp. 55–63 (1973)

	 2.	 Deng, K., Liu, X.S., Tian, S.L.: Star edge coloring of d-dimensional grids. J. East China Norm. 
Univ. Sci. Ed. 3, 13–16 (2012)

	 3.	 Dvořak, Z., Mohar, B., Šámal, R.: Star chromatic index. J. Graph Theory 72, 313–326 (2013)
	 4.	 Erdős, P., Gyárfás, A.: A variant of the classical Ramsey problem. Combinatorica 17, 459–467 

(1997)
	 5.	 Faudree, R.J., Gyárfás, A., Lesniak, L., Schelp, R.H.: Rainbow coloring of the cube. J. Graph The-

ory 17, 607–612 (1993)
	 6.	 Faudree, R.J., Gyárfás, A., Schelp, R.H.: An edge coloring problem for graph products. J. Graph 

Theory 23, 297–302 (1996)
	 7.	 Gyárfás, A., Sárközy, G.N.: “Less” strong chromatic indices and the (7, 4)-conjecture, to appear in 

Studia Sci. Math. Hung
	 8.	 Lei, H., Shi, Y.: A survey on star edge-coloring of graphs, arXiv:​2009.​08017

Fig. 4   A B-coloring of C
3

◻C
3

 
with 5 colors

2

4

3

1

4
0

2

3 4

0

1

3
0

1

2

2
4

3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2009.08017


	 Graphs and Combinatorics (2023) 39:98

1 3

98  Page 10 of 10

	 9.	 Omoomi, B., Dastjerdi, M.V.: Star edge coloring of the Cartesian product of graphs, arXiv:​1802.​
01300

	10.	 Sabidussi, G.: Graphs with given group and given graph-theoretical properties. Can. J. Math. 9, 
515–525 (1957)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

http://arxiv.org/abs/1802.01300
http://arxiv.org/abs/1802.01300

	Proper Edge Colorings of Cartesian Products with Rainbow -s
	Abstract
	1 Introduction
	1.1 B-Colorings of Cartesian Products of Graphs

	2 Proofs
	Acknowledgements 
	References




