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Introduction 

Let .s4 = {Al, ... 'An} be a family of sets. The elements X, y E u~=l Ai are called 
equivalent if for every i, 1:::;; i :::;; n, x E Ai if and only if y E Ai. The equivalence 
classes are called the atoms of the family d. Rado asked in [ 4] the following 
question: what is the maximum number f(n, d) of atoms, where the maximum is 
taken over families of n boxes in the d-dimensional Euclidean space. A box is a 
parallelepiped with sides parallel to the coordinate axes. A family of n boxes is 
extremal if it defines f(n, d) atoms. Rado showed that f(n, 1) = 2n -1. The 
authors of the present paper proved that f(n, 2) = 2n2 -6n +7 if n ~2, deter­
mined f(n, 3) asymptotically and gave upper and lower bounds for f(n, d) (see 
[3]). 

The present paper is devoted to the two-dimensional extremal families of boxes 
which we call box diagrams. Our main result, Theorem 3.1, is the characterization 
of box diagrams. It turns out that all box diagrams can be obtained by a slight 
modification (peripheral lifting) from a basic type: the caterpillar construction 
given in Section 2. Box diagrams defined by the caterpillar construction for n = 3 
and n = 4 are shown in Figs. 6 and 9 in Section 2. We note that this characteriza­
tion describes the structure of box diagrams completely. 

It is remarkable that one-dimensional extremal families have no structural 
characterization. As proved in [3], these are interval families with connected 
overlap graphs for which only a non-structural characterization is known (cf. [2]). 

We show two consequences of the main result. The first one concerns the 
enumeration of box diagrams: apart from axial symmetries, there are 

combinatorially non-equivalent box diagrams for n;::: 3 (Theorem 3.2). 
The second consequence of the main result is the characterization of simple box 
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diagrams {Theorem 3.3). We call a box diagram simple if all atoms are connected 
regions of the plane. Since simple box diagrams for 2~n~4 are Venn-diagrams 
(cf. [1]), a side-product of Theorem 3.3 is the catalogue of Venn-diagrams formed 
by two-dimensional boxes (see Figs. 10 and 11 in Section 3). 

1. Preliminaries 

A box is a closed rectangle with sides parallel to the perpendicular coordinate 
axes X and Y. Let x+, x-, y+, y- denote the positive and negative halves of X 
and Y, respectively. A box system is a finite set of boxes. We shall always assume 
that a box system B has the following properties: 

(i) The boundary lines of the boxes of B are all different. 
(ii) If B contains n boxes then the coordinates of all corners are integers 

whose absolute values are at most n. 
(iii) B has non-empty intersection containing the origin in its interior. 
We remark that properties (i) and (ii) are purely technical. Property (iii) is 

assumed because it is easy to prove that the boxes of a box diagram have 
non-empty intersection (see [3, Lemma 3.3]). 

A box system B naturally defines four linear orders on the boxes of B. If 
b11 b2 E B then we define 

bl >Lb2 if b1 nx- => b2 nx-, 

bl>Rb2 if b1 nx+ => b2 nx+, 
(1) 

b1 >ub2 if b1 n y+ => b2 n y+, 

b1>nb2 if b1 n y- => b2 n y-. 

We refer these orders as L (left), R (right), U (up) and D (down) orders. On the 
other hand, any four linear orders L, R, U, D on the set N = {1, ... , n} define a 
box system B = {b1 , .•.. , bn} as follows. For tEN, let L(i), R(i), U(i), D(i) 
denote the position of i under L, R, U, D, respectively. For example, L(i) = k 
means that i EN is the kth element of N under L. the box bi is defined by the 
four lines 

-x =L(i), X= R(i), y = U(i), -y =D(i). 

On the basis of the above reasoning, a system of n boxes can be considered as 
four linear orders on a set of n elements. We shall use both the geometric and 
combinatorial views. 

Two box systems of n boxes, B and B' are equivalent if there exists a 
one-to-one mapping between B and B' preserving the four orders L, R, D, U. If 
we think of B and B' as four linear orders on N = {1, ... , n} then the equivalence 
of Band B' means that a suitable permutation of N maps L into L', R into R', U 
into U' and D into D'. 
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Two box systems are called congruent if they can be mapped into each other by 
applying reflections over the axes x = 0, y = 0 and the line x + y = 0. Adopting the 
combinatorial view, a box system defined by the four linear orders L, R, U, D 
determines congruent box systems by applying (possibly repeatedly) some of the 
following three transformations: L~R; u~D; L~ U, R~D. 

It is obvious that equivalent or congruent box systems have the same number of 
atoms. As a consequence, lmx diagrams are closed under equivalence and 
congruence. Equivalent box diagrams are always considered identical. Congruent 
box diagrams are considered identical in enumerations and in figures where a 
catalogue of box diagrams is given. 

Two intervals of a line overlap each other if they intersect but neither contains 
the other. The overlap graph of an interval system is defined by associating 
vertices to intervals and two vertices are connected if the corresponding intervals 
overlap each other. We shall use the following simple lemma established in [3]. 

Lemma 1.1 ([3]). Let I be a system of n closed intervals without common endpoints. 
If I has a connected overlap graph then I defines 2n- 1 atoms. 

Let Bn = {b1 , ... , bn} be a box system. The boxes bb bi E Bn horizontally (verti­

cally) overlap each other if the intervals X n bi and X n bi ( Y n bi and Y n bi) 
overlap each other. The horizontal and vertical overlap graphs of Bn are defined 
as the overlap graphs of {X n bb ... , X n bn} and of {Y n b1 , ..• , Y n bn}, respec­
tively. Using the linear orders defined in (1), the horizontal (vertical) overlap of 
two boxes means that they are compared oppositely under Land R (under U and 
D). 

The number of atoms in a family B of boxes is denoted by a(B). 

2. The caterpillar construction and its peripheral liftings 

Let n, p, q, i 1 , i2 , ••• , iv, j 1 , j 2 , •.. , jq be integers satisfying 

1 = i 1 < i2 < · · · < iv = n, 

n = i1 > i2 > · · · > jq = 1. 
(2) 

We define the caterpillar Cv= Cv(n; i 1, ... , iv) on the vertex set N={1, ... , n} 
with edges (im, k) for all k and m satisfying im < k ~ ~+1 , 1 ~ m ~ p -1. The 
caterpillar ch = Ch(n; jb ... 'jq) is defined on the vertex set N with edges Vm, k) 
for all k and m satisfying im+l ~ k <jm, 1 ~ m ~q -1. We call Cv and Ch vertical 
and horizontal caterpillars. Let C~, c-;, C~, Ch denote the directed graphs 
defined by the transitive orientations of Cv and Ch. (A tree has exactly two 
transitive orientations.) Now we define four linear orders, U, D, L, R on N as 
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1 

~ n-1 . . . 
boxes U D L R 3 

1 1 n n n-1 

2 2 1 n-1 n-2 

j2 
11 

3 3 2 n-2 n-3 

. 
I I I I -~ n-l n-1 n-2 2 l 

n n n-l l n 

Fig. 1. The caterpillar construction with two stars. 

i<ui if i<j and (i,j)iE(Cv) or (i,j)EE(C~), 

i <0 j if i <j and (i, j) i E( Cv) or (i, j) E E( C~), 

i <Lj if i > j and (i, j) i E( Ch) or (i, j) E E( C~), 

i <Ri if i > j and (i, j) ¢. E( Ch) or (i, j) E E( Ct;). 

1 
J 

(3) 

It is easy to see that (3) defines four linear orders on N = {1, ... , n} for each 
parameter set satisfying (2). These linear orders and the corresponding box system 
are referred as the caterpillar construction ( Cv, Ch)· Note that Cv and Ch are the 
vertical and horizontal overlap graphs of the box system ( Cv, Ch). Two special 
cases of the caterpillar construction are displayed in Figs. 1 and 2. Catalogues of 
caterpillar constructions for n = 3, 4 are given in Figs. 6 and 9, also in this section. 

-r-
b 

4 I 
u D L R J2 I 

l l 3 4 5 
2 2 l 3 4 

1-l I I 
L 

3 4 2 2 3 
4 3 5 5 l 

5 5 4 l 2 
~ r--

Fig. 2. A caterpillar construction for n = 5. 
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Theorem 2.1. Box systems defined by caterpillar constructions are box diagrams. 

Proof. We have to verify that a box system defined by the caterpillar construction 
with Cv= CJn; it. ... , iv) and Ch = Ch(n; j 1 , ... , jq) has 2n2 -6n +7 atoms for 
n ~ 2. We apply induction on n. The case n = 2 is trivial (see Fig. 5). 

Let us consider a caterpillar construction with Cv = CJn + 1; i 1 , •.. , iv) and 
Ch = Ch(n + 1; j 1, •.. , jq). We m'ay assume by obvious synlinetry reasons that the 
edges of C~ and C~ are going out of vertex 1. The consequence of this 
assumption is that 

U(1) = 1, D(2) = 1, L(1)= n, R(1) = n + 1. 

We have to look at four similar cases. 
Case (a) i2 = 2, jq_1 = 2. Now D(1) = 2, L(2) = n + 1, R(2) = n -1 (see Fig. 

3(a)). 
Case (b) i2 =2, jq_1 >2. Now D(1)=2, L(2)=n-1, R(2)=n (see Fig. 3(b)). 
Case (c) i2 >2, jq_1 = 2. Now U(2) = 2, L(2) = n + 1, R(2) = n -1, L(3) = n -1 

(see Fig. 3(c)). 
Case (d) i2 >2, jq_1 >2. Now U(2)=2, L(2)=n-1, R(2)=n (see Fig. 3(d)). 
The common feature of all four cases is that box b1 (in Cases (a) and (b)) or box 

b2 (in Cases (c) and (d)) is suitable to carry out the induction. We claim that b1 (in 
Cases (a) and (b)) or b2 (in Cases (c) and (d)) contains 4(n -1) atoms. 

In Cases (a) and (b), the atoms in b1 can be counted along the bottom line 12 of 
b2 . The intersections of b2 , b3 , • •• , bn+1 with 12 define n intervals with a connected 
overlap graph. By Lemma 1.1, there are 2n - 1 atoms on h and all but one 
support two box atoms in b1 . Thus we have 2(2n- 2) = 4(n -1) atoms in b1 . In 
Cases (c) and (d), the atoms of b2 can be counted along the top line 11 of b1 . In 
Case (d), the intersections of b1 , b3 , ••. , bn+1 with 11 define n intervals with 
connected overlap graph and the argument is the same as before. In Case (c), the 
intersections of b3 , b4 , .•• , bn+1 with 11 have a connected overlap graph, therefore 
they define 2n- 3 atoms. As 11 n b1 contains all these intervals, there are 2n- 2 
atoms defined by 11 n b1, 11 n b3 , ••• , 11 n bn+1 on 11 • Now every atom supports two 
box atoms in b2 , and our claim is proved. 

In Cases (a) and (b), all atoms of Bn+1 -{b1} having representative points inside 
bt. intersect the boundary of b1 . The consequence is the equality a(Bn+1) = 
a(Bn+1 -{b1}) + 4(n -1). Similarly we get a(Bn+l) = a(Bn+ 1 -{b2}) + 4(n -1) in 
Cases (c) and (d). Since Bn+1 -{b1} (Bn+ 1 -{b2}) is given by a caterpillar construc­
tion in Cases (a) and (b) (in Case (d)), the inductive hypothesis gives the theorem 
for the Cases (a), (b) and (d) because 2n2 -6n+7+4(n-1)= 
2(n+1)2 -6(n+1)+7. In Case (c), Bn+1 -{bJ=B' is not a caterpillar construc­
tion; however, it is very close to it. In B' L(1) = n and L(3) = n -1. Since b1 and 
b3 vertically overlap each other, the exchange of the left sides of b3 and b1 does 
not change a(B'). This operation leads to a caterpillar construction with n 
boxes. D 
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Now we introduce three minor modifications of the caterpillar construction 
(Cv, Ch). By symmetry reasons we assume (iv_ 1, n)EE(c:). 

Augmentation. Assume that iv_1 < n -l and let c+ denote the graph obtained 
by the addition of the edge (n, n -l) to c:. The box system defined by (3) with 
c+ and c- in the role of c: and c~ respectively' is called the augmentation of 
(Cv, Ch). The augmentation exchanges the order of bn_1 and bn under U. Since 
bn_1 and bn are horizontally overlapping, the augmentation does not change the 
number of atoms (see Fig. 4(a)). 

One-point cut. Let c+ denote the graph obtained from c: by removing the 
edge (ip-1, n). The box system defined by (3) with c+ and c- in the role of c: 
and C~ respectively, is called the one-point cut of ( Cv, Ch). The one-point cut 
exchanges the order of bip-l and bn under U. Since either bn <L bi

0
_

1 
or bn <R bip-l 

holds, the one-point cut does not change the number of atoms (see Fig. 4(b)). 

n.-1 n n-1 n 

n 

.------
I 

I 

n-1 

(a) augmen tatio!f 

n 

(c) two-point cut 

if ip-i< n-l 

0 

n 

n 

.......... ~ 

(b) o·i1Ye-point cut 

n 

(d) two-point cut 

if ip-i = n-1 

0 

11 

Fig. 4. The vertical transformations of caterpillar constructions. (a) augmentation; (b) one-point cut; 
(c) two-point cut if iv-l < n -l; (d) two-point cut if ip-l = n -1. 
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Two-point cut. Let c+ denote the graph obtained from C~ by removing the 
edges between the vertex sets {1, ... , n- 2} and {n -1, n}. The box system 
defined by (3) with c+ and c- in the role of c~ and c~ respectively, is called the 
two-point cut of (Cv, Ch)· By analysing the relation of the involved boxes under L 
and R, one can show easily that the two-point cut does not change the number of 
atoms. Its effect is illustrated in: Figs. 4(c) and 4(d) corresponding to the cases 
iP_1 < n -1 and iv-1 = n -1. 

The above-mentioned transformations which we call vertical transformations 
have horizontal analogons. It is easy to see that for n ;::: 4 the vertical and 
horizontal transformations can be applied simultaneously to a caterpillar construc­
tion without changing the number of atoms. These transformations for n = 3 are 
shown in Figs. 7 and 8. Suggested by the geometric view, the box systems 
obtained from a caterpillar construction by vertical and/or horizontal transforma­
tions, are referred as the peripheral liftings of the caterpillar construction. The 
discussion above is summarized in the following theorem. 

Theorem 2.2. Peripheralliftings of caterpillar constructions are box diagrams if the 
number of boxes is at least four. 

The caterpillar constructions and their peripheral liftings for n = 2 and 3 are 
shown in Figs. 5, 6, 7 and 8. Note that the box systems of Fig. 8 are not box 
diagrams. For n = 4, see Fig. 9. 

Fig. 5. The box diagrams for n = 2. 

c,c c,D D,D 

D 

Fig. 6. The caterpillar constructions for n = 3. 



The structure of rectangle families dividing the plane 

0 ~9 

'h ""' __ .p 
....... _-- ... 

Fig. 7. The box diagrams obtained by peripheralliftings for n = 3. 

0 0 0 

ct __ r-'o ~--~ ' / ....... _ _.., 

Fig. 8. Peripheralliftings, for n = 3, reducing the number of atoms. 
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..---- r-r-

I I 

~ r--

I I 
-~oR 

I I 
I I 

'---
- -

.._____ R, R R, s,s s 

Fig. 9. The caterpillar constructions for n = 4. 

3. Characterization of box diagrams 

Now we are ready to state the main result of the paper, the characterization of 
box diagrams. 

Theorem 3.1. All box diagrams can be obtained as caterpillar constructions and 

their peripheral liftings. 

The proof of Theorem 3.1 is given in Section 4; here we present some 
consequences. First we enumerate box diagrams. Congruent box diagrams are 

considered identical. By Theorems 3.1, 2.1 and 2.2, we have to enumerate 
caterpillar constructions and their peripheral liftings. 

Let ( Cv, Ch) be a caterpillar construction. The exchange of C~ and C~ in (3) 
yields the axial symmetry U ~D. Similarly, the exchange of C~ and Ch in (3) 
yields the axial symmetry L ~ R. If Cv = Cv(n; i1, ..• , ip) and Ch = 
Ch(n ;j1 , ... , jq) then let p' = q, q' = p, i~ = jq, g = jq_1 , ... , i~,= j 1 , j~ = iP, j~ = 
ip_1, ... , j~, = i 1 . Now C~= C~(n; i~, ... , i~) and C~ = C~(n; j~, ... , j~,) also define 
a caterpillar construction. The box diagrams belonging to ( Cv, Ch) and ( C~, C~) 
can be obtained from each other by the axial symmetry U ~ L, D ~ R. 

Since the inequalities of (2) have 2n-2 integer solutions for fixed n, the number 
of caterpillar constructions (apart from congruence) is equal to 

(
2n-2+ 1) 

2 
for n;::::2. 
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Inspection shows that each of the three transformations (augmentation, one­
point cut, two-point cut) define 2n-3 modified c:'s (for n ~4). Repeating the 
previous argument, we obtain that the number of caterpillar constructions to­
gether with their peripheral liftings is equal to 

(
2n-2 + 3 • 2n-3 + 1) 

if n~4. 
2 ' 

It is easy to see that these box diagrams are pairwise non-equivalent. So we 
obtain: 

Theorem 3.2. The number of non-equivalent box diagrams is equal to 

(
2n-2 + 3 • 2n-3 + 1) 

for n~4. 
2 

Remark. For n = 2 there are 3 non-equivalent box diagrams (see Fig. 5). For 
n = 3 there are 15 non-equivalent box diagrams (see Figs. 6 and 7). The formula 
of Theorem 3.2 is accidentally valid for n = 3. 

/]J 

Fig. 10. Venn-diagrams by 2 and 3 boxes. 
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It may happen that a box diagram has disconnected atoms. The caterpillar 
construction ( C, C) in Fig. 6 shows this possibility. We call a box diagram simple if 
its atoms are connected regions in the plane. Theorem 3.1 gives easily the 
following characterization of simple box diagrams. 

Theorem 3.3. A box diagram is simple if and only if it can be defined by one of the 
following constructions: 

(i) a caterpillar construction ( Cv, Ch) such that Cv and Ch have just one 
common edge; 

(ii) vertical, horizontal or simultaneous augmentation of (i); 
(iii) horizontal (vertical) one-point cut of a caterpillar construction ( Cv, Ch) 

where Cv is a star (Ch is a star). 

Since simple box diagrams for 2 ~ n ~ 4 are Venn -diagrams ( cf. [ 1 ]) , Theorem 
3.3 gives all Venn-diagrams formed by boxes. The catalogue of these Venn­
diagrams is shown in Figs. 10 and 11. 

4. Properties of box diagrams and the proof of the main result 

The aim of this section is to prove Theorem 3.1. 
A family of boxes is called connected if both its vertical and horizontal overlap 

graphs are connected. Our first theorem shows that the problem of characterizing 
box diagrams can be reduced to characterizing connected box diagrams. 

Theorem 4.1. Let B = {b1, .•. , bn} be a box diagram which is not connected. Then 
B can be obtained by (vertical and/or horizontal) one-point or two-point cuts from a 
connected box diagram. 

Proof. Assume that the vertical overlap graph of B is not connected. It is easy to 
see that B = B 1 U · · · U Bk for some k ~ 2 where the vertical overlap graph of Bi 
is connected for 1 ~ i ~ k; moreover, if bE Bi, b' E Bi and 1 ~ i <j ~ k then b <ub' 
and b<nb'. 

We are going to show IB1 1 ~ n- 2 which implies our theorem immediately. Let 
b denote the largest box of B 1 under U. LetS denote the half-strip consisting of 
the points above the upper side of b and between the lines defined by the vertical 
sides of b. The atom A of B is called separated if it has a representative point in S 
and the boundary of A does not intersect the upper side of b. If B has at least one 
separated atom then we can modify B by lifting the upper side of b until it 
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intersects a separated atom. This operation increases the number of atoms, 
contradicting the fact that B is a box diagram. We conclude that B has no 
separated atoms. 

Let bm bn_ 1 and bn_2 be the three largest boxes of B in descending U-order. 
Assume indirectly that IB1I<n-2, then bm bn_1 , bn_2 ¢B1 . Let b* be a box 
among bm bn_1 , bn_2 such that the projection of b* on the x-axis is covered by the 
union of the projections of the' other two boxes. It is easy to see that b* =1- bn 
(since B has no separated atoms) and the lifting of the upper side of b* over bn or 
bn_1 creates a separated atom while the number of atoms does not decrease-a 
contradiction. D 

The remaining part of this section is devoted to connected box diagrams. The 
main tool for handling connected box diagrams is the notion of overlay index. Let 
B be a family of boxes, b E B. If x is a corner of b then the overlay index of x, 
w(x), is defined as max{O, m -1} where m denotes the number of boxes of B 
containing x and different from b. The overlay index of b, w(b ), is the sum of 
overlay indices of the four corners of b. The overlay index of a subfamily B' s; B, 
w(B'), is defined as LbEB' w(b ). In particular, if B' = B, w(B) = LbEB w(b ). 

Theorem 4.2. Let Bn = {b1 , ... , bn} be a connected family of boxes. Let D denote 

the set of connected regions in the plane which belong to at least two boxes of Bn. 

Then 

Proof. Let D = D 1 U D 2 U D 3 U D 4 where Di c D denotes the subset of D having 
a non-empty intersection with the ith orthant, i = 1, 2, 3, 4. Let dEDi and choose 
the point p of d with the largest distance from the origin. If p is a corner of a box 
bi then we associate to d a pair (bh bi) such that j =1- i and p E bi. We have w (p) + 1 
possible choices for bi. If p is not a corner of any box then we associate to d the 
uniquely determined pair of boxes (bi> bi) whose boundary lines intersect each 

other at p. This argument shows that IDJ:::=; (~)-I ~(x) where the summation is 

extended to all corners x of boxes in the ith orthant. Repeating this argument for 
the four orthants, we obtain 

(4) 

The domains of D intersecting exactly two orthants 'were estimated twice in the 
right-hand side of (4); there are 2(2n- 3) such domains. If we subtract 2(2n- 3) 
from the right-hand side of (4) then the domains of D intersecting exactly three 
orthants were estimated three times and were subtracted twice. The domains of D 
intersecting four orthants and not twice connected were estimated four times and 
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subtracted three times. The connectedness of the family Bn ensures that the only 
twice connected domain of D which intersects four orthants is n~=t bi; this 
domain was estimated four times and subtracted four times, thus 1 must be added 
to the right-hand side of (4) to· get the correct estimation. This sieve argument 
leads to 

Corollary 4.3. If Bn = {b1 , ... , bn} is a connected family of boxes then a(Bn) ~ 
2n2

- Sn +5 -w(Bn). 

Proof. The number of atoms covered by one box is at most n. D 

Let Bn be a family of n boxes. A vertical order on Bn is an indexing of the 
boxes of Bn by 1, ... , n such that for every i, 1 ~ i ~ n, at least one of the 
following two properties holds: 

(i) bi is U-minimal in {hi> bi+l, ... , bn}. If i > 1 then, for some j, 1 ~j < i, 
bi >ubi. 

(ii) bi is D-minimal in {bi, bi+1 , .•. , bn}. If i > 1 then, for some j, 1 ~ j < i, 
bi >vbi. 
A horizontal order on Bn is defined similarly by using L and R instead of U and 
D. 

Proposition 4.4. A connected family Bn of boxes has a vertical (horizontal) order. 

Proof. It is enough to show the existence of a vertical order. Let b1 be the 
U -minimal box of Bw Assume that for some k, 1 ~ k < n, b1 , ••• , bk are already 
defined so that (i) or (ii) is satisfied for 1 ~ i ~ k. We show that either the 
U-minimal element b of Bn -{b1, ... , bd or the D-minimal element b' of 
Bn -{b1 , ... , bd can be chosen as bk+l to satisfy (i) or (ii). If b does not satisfy (i) 
and b' does not satisfy (ii) then bi <ub and bi <vb' tor all j ~ k. The transitivity of 
U and D implies that bi <ub* and bi <vb* for all j, 1 ~j ~ k and for all 
b* E Bn -{b1 , ... , bk}. We have a contradiction to the assumption that Bn is 
vertically connected. D 

A box bi is called U-minimal, D-minimal or UD-minimal in a vertical order if 
(i), (ii) or both hold for i. The box bi, defined for all i > 1 in (i) or in (ii), is called 
the overlap predecessor of bi in the vertical order (bi and bi vertically overlap each 
other). The vertical overlap tree is defined for a vertical order by taking the set of 
vertices {1, ... , n} and defining an edge (j, i) if bi is the overlap predecessor of bi. 
The analogous notions can be obviously defined for a horizontal order. 

From now on we assume that the families of boxes are connected and are 
indexed in a vertical order. 
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Let Bn = {b1, ... , bn} and 1 ~ i <j ~ n. We say that {bi, bi+1, ... , bi_1} = I(i, j) = 

I is an L-block if bi <Lbi and bk >Lbi for all k, 1 ~ k ~ i -1. The box bi is called 
the head of the block. The definition of an R-block is similar, we must replace L 
by R. A block is either an L-block or an R -block. Note that bi ¢I( i, j) by 
definition. 

Lemma 4.5. Let I be a block irt Bn = {b1, •.• , bn}. Then 

{
III if the head of I is not b1, 

w(I)~ 
III-1 if the head of I is b1. 

(5) 

Proof. Assume that I= I(i, j) is an L-block. We divide the boxes of I, different 
from the head, into two disjoint sets X, Y as follows: 

X={bk: i <k <j, bi <Lbd, 

y = { bk: i < k < j, bi >L bk} · 

We estimate w(I) in two steps. 

(6) 

Step 1 (the overlay index of bJ. Suppose that bi is U-minimal (D-minimal). 
Now the overlap predecessor of bb the boxes of X and bi cover the upper left 
(lower left) corner of bi. Then w(bJ ~ lXI + 1 if i > 1 and w(bi) ~ lXI if i = 1. 

Step 2 (the overlay index of Y). We show that w(Y) ~I Yl. We proceed by 
induction on I Yl. The case I Yl = 0 is trivial. Let bP be the box of Y with the 
largest index. Clearly bP <L bi by the definition of Y and by the transitivity of L. 
Assume that bp is U -minimal (D-minimal) and let bq denote the overlap pre­
decessor of bP. If bq >L bv then the upper left (lower left) corner of bP is covered 
by bq and bi, i.e. w(bv) ~ 1, and we are home by the inductive hypothesis on 
Y -{bp}. If bq <Lbp then bq E Y and bq <Lbi by transitivity. Now bP covers the 
upper left (lower left) corner of bq thus the overlay index of bq in Bn is larger than 
in Bn -{bp}, and we are home again. 

Putting together the estimations of Step 1 and Step 2, we get the statement of 
the lemma, since lXI +I Yl =III. 0 

A block is called extremal if equality holds in (5). 
Now we define a partition of Bn -{bn} into blocks, called the block partition of 

Bn. Let j 1 = n and let I 1(i1, j 1) be a block. If I 1, ... , Im are already defined and 
I 1 U · · · U Im does not cover Bn -{bn} then we continue by choosing a block 
Im+1(im+1' im+1) such that im+1 < im ~im+1 . The connectivity of the horizontal over­
lap graph of Bn ensures that eventually it= 1 for some block It (it, it), i.e., we get a 
partition. 

By applying Lemma 4.5 for the blocks of a block partition, we obtain im­
mediately 

Corollary 4.6. If Bn is a connected family of boxes then 

w(BJ~n-2. 0 



The structure of rectangle families dividing the plane 193 

The facts established until this point allow to state some properties of con­
nected box diagrams. 

Theorem 4.7. A connected box diagram Bn has the following properties: 
(i) w(BJ ~ n -2; 

(ii) a(Bn) = 2n2 -6n +7; 
(iii) the blocks of a block partition of Bn are extremal; 
(iv) the atoms of Bn belonging to at least two box.es of Bn are connected regions. 

Proof. Corollaries 4.3 and 4.6 imply (i) and (ii) since the caterpillar construction 
defines 2n2 -6n+7 atoms. Also, (iii) follows because the presence of a non­
extremal block would violate (i). To prove (iv), let a 2 and d2 denote the number 
of atoms and the number of connected regions belonging to at least two boxes. 
We have to show a2 =d2 • From (i), (ii) and Theorem 4.2 we obtain 2n2 -6n+ 
7 = a (Bn) ::::; a2 + n ::::; d 2 + n ::::; 2n 2 - 6 n + 5 - w (Bn) + n = 2n 2 - 6n + 7 and a 2 = 
d2 follows. D 

For further analysis of connected box diagrams we have to study the structure 
of blocks. Let J(i, j) be an L-block (R-block) of Bn- The box bk for i < k <j 
belongs to one of the following three types: 

Type 1. bi <Lbb bk <Lbi (bi <Rbb bk <Rbi); 
Type 2. bi <Lbb bk >Lbi (bi <Rbb bk >Rbi); 
Type 3. bi >Lbb bk <Lbi (bi >Rbb bk <Rbi). 

Lemma 4.8. If J(i, j) is an extremal L-block (R-block) then the following proper­
ties hold: 

(i) bv >L bq (bP >R bq) for all p, q satisfying i < p < j < q::::; n; 
(ii) bv >R bq (bP >L bq) for all p, q satisfying either (a) p < i < q::::; n, or (b) 

i::::; p <min{j, q} and (p, q) :f (1, 2); 
(iii) Type 2 boxes precede the other boxes in the block, i.e., if bv, bq E J(i, j) and bv 

is of Type 2 and bq is not, then p < q; , 

(iv) if b~ E J(i, j) and bv is of Type 1 or Type 3 th~n bv is not UD-minimal in the 
vertical order; 

(v) if bv E J(i, j) and 1::::; q < r < p then no corner of bv is covered by both bq and 

Proof. We show that the falsity of any of the five properties allows to find a box 
with an 'extra overlay index', i.e., an overlay inde~ which was not used in the 
estimation of w(J(i, j)) in Lemma 4.5. Let X and Y be the sets defined by (6). 

If (i) does not hold then we have two cases. If bi <L bv then bi <L bq, implying 
w (bi) ~ lXI + 2 for i > 1 or w(bi) ~ lXI + 1 for i = 1. We have an extra overlay index 
in Step 1. If bi >L bv then bv E Y and bq gives an extra overlay index on bv in Step 
2. 
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Condition (ii) follows from the fact that Step 1 and Step 2 used only left (right) 
corners for the overlay index estimation if J(i, j) was an L-block (R-block). 

Assume that (iii) does not hold. Let bP, bq E J(i, j), where bq is of Type 2 and 
p < q. If bP is of Type 1 then bP <L bq, bP <L bi. Since bP EX, neither Step 1 nor 
Step 2 defined .overlay index on bP, therefore bq and bi define an extra overlay 
index on bp. If bp is of Type 3 then bP <L bq, bP <L bi. Since bq EX, bP E Y, bq 
increases the overlay index assigned to bp in Step 2. 

Condition (iv) follows from the fact that a box bP of Type 1 or Type 3 must be 
in Y where the overlay index was assigned according to the U- or D-minimality 
of bp. 

Condition (v) follows from the observation that the index of at least one box 
defining an overlay index of bp is larger than p. D 

Lemma 4.9. Let 11 , ... , ~ be the blocks of the block partition of the connected box 
diagram Bn- If bi is a Type 2 box in Jj then j = t and i = 2. 

Proof. Let Jm = Jm (i, j) be a block of the block partition (1::::;; m::::;; t). Assume that 
Jm is an L-block and let bp be a Type 2 box in Jm with the largest index. Note 
that bi+V ... , bp are all of Type 2 by Lemma 4.8(iii). 

Claim. For all q, r satisfying if. r < p < q, br >L bq and bP >R bq hold. 
Firstly, br>Rbq follows from Lemma 4.8(ii). For q;::;:j, r<i, br>Lbq follows 

from the definition of the block partition. For i < r::::;; p and q > j, br >L bq follows 
from Lemma 4.8(i). For i < r < p, q = j, br >L bq follows from the fact that br is of 
Type 2. Finally, if i < r < p <q <j then bq is of Type 1 or Type 3, therefore 
bq <L bi, bi <L br which implies bq <L br and the claim is proved. 

We continue the proof by the indirect assumption that the lemma is not true. 
Assume that the head of Jm is U -minimal. If m = t and there are at least two 
boxes of Type 2 in Jt then put b' = bb b" = b3 • If m < t and Jt contains a box of 
Type 2 then let b' be such a box and let b" denote the overlap predecessor of the 
head of It. The smaller of b' and b" under U is denoted by b*. 

If b*>ubq, for some q>p then the transitivity of U implies b'>ubq, b">ubw 
However, b'>Lbq, b">Lbq by the previous claim which contradicts Lemma 4.8(v). 
We conclude that b* <ubq if bq E {bp+l' ... , bn} =C. Consider the following set of 
boxes: 

D ={bs: 1::::;s ::::;p, bs >ub*}. 

Obviously D is not empty (the larger of b' and b" under U is in D) and bi f= D. 
The set CUD contains all the boxes larger than b* under U. 

Let l be the upper horizontal side of b*. Let X denote the union of the 
projections of the boxes of C into l, and let Y denote the intersection of the 
projections of the boxes of D into l. Our previous claim ensures that X is 
properly contained by Y, therefore the two intervals of Y- X belong to the same 
atom A of Bn- The atom A belongs to at least two boxes (to b* and to the boxes 
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of D). Moreover, A is disconnected since bi <ub* and either bi >nb* (if b* is the 
overlap predecessor of bJ or bi >Lb* (if b* is a Type 2 box of 1mJ We get a 
contradiction to Theorem 4.7(iv) D 

Let bi and bi be two boxes vertically overlapping bk (i, j, k are different). We 
say that bi and bi give a UD-overlap on bk if either bi >ubk >ubi or bi >nbk >nbi 
holds. The definition of an LR·-overlap is similar. 

Lemma 4.10. Let Bn = {b1 , ..• , bn} be a connected box diagram indexed in vertical 

order. Then the vertical overlap graph of Bn is the vertical overlap tree with one 

possible additional edge (i, n). If the edge (i, n) is present then bi and the overlap 

predecessor of bn give an UD-overlap on bn-

Proof. Assume that bi and bi vertically overlap bk for 1 :o:::; i <j < k :o:::; n. We are 
going to show that in this case bi and bi give an UD-overlap on bk and k = n 
which clearly implies our lemma. 

Case 1. Assume that bi and bi do not give an UD-overlap on bk. We may 
assume (by symmetry) that bi >ubk and bi >ubk. Consider the block 1 in the 
block partition of Bn which contains bk or let 1 = 11 if k = n, i.e. bk is not 
contained in any block. Lemma 4.8(ii) shows that bi >R bb bi >R bk if 1 is an 
L-block, or bi >Lbb bi >Lbk if 1 is an R-block. In any case, we get a contradic­
tion to Lemma 4.8(v). 

Case 2. Assume that bi and bi give an UD-overlap on bk. First we prove that 
bk is UD-minimal in the vertical order. Assume that bk is U -minimal but it is not 
D-minimal. Then there exists a k'> k such that bk >nbk'· Since bk <ubk'' bk' and 
bk vertically overlap each other. By transitivity we get that bi and bi vertically 
overlap bk' but they do not give an UD-overlap on bk'· Now we get a contradic­
tion through Case 1. 

We know therefore that bk is UD-minimal. If k < n then bk is in a block of the 
block partition of Bn- Since 1 :o:::; i < j < k implies k =f 2, bk is not of Type 2, by 
Lemma 4.9. If bk is of Type 1 or Type 3 then bk is not UD-minimal by Lemma 
4.8(iv), a contradiction implying k = n. D 

Theorem 4.11. Let Bn = {b 1, •.• , bn} be a connected box diagram. Then Bn can be 

obtained by a caterpillar construction or by vertical and/ or horizontal augmentation 

of a caterpillar construction. 

Proof. Let 11 , •.. , lr be the blocks of the block partition of Bn-

Step I. Assume that there is a Type 2 box bk in so~e block. Lemma 4.9 implies 
that k = 2 and b2 E 1t = 1t(1, j). By symmetry, assume that 1t is an L-block; now 
b1 <L b2 by the definition of the Type 2 box. 

We prove that b1 >R b2 • Assume in the contrary that b1 <R b2 • Now b1 does not 
overlap b2 horizontally. For any q ?::=3, b2 >Rbq holds by Lemma 4.8(ii) (with 
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condition (b)). For q = j, b2 >Lbq follows from the fact that b2 is of Type 2. For 
any q satisfying 3 ~ q < j, b2 >L bq follows from the fact that bq is not a Type 2 box 
(because of bq <Lbi <Lb2). Finally, b2 >Lbq for q > j follows from Lemma 4.8(i). 
Therefore no box of Bn overlaps b2 horizontally, contradicting the connectivity of 
Bn-

Now we exchange b1 and b2 • In this way another vertical order is defined on En­
The block partition belonging tc this new order is 1; = ~ for i < t, 1~ = ~- {bJ, 
1~+ 1 = {b2}. It is obvious that there are no Type 2 boxes in this block partition. 

Step II. Assume that there are no Type 2 boxes and Jt = Jt(1, j), j ~ 3, i.e. 
~=f:{b1}. Assume that ~ is an L-block. Now b1 <Lbi and b2 <Lbi; moreover, 
b1 >R bi, b2 >R bi by Lemma 4.8(ii). The exchange of b1 and b2 gives a new vertical 
order; the block partition relative to this new order is J'[ = ~ for i < t, I':= 
{b2 , b1 , b3 , b4 , .•• , bi_1}. It is obvious that there are no Type 2 boxes in this block 
partition. 

In the light of steps I and II, by the possible exchange of b1 and b2 in a vertical 
order, we can always obtain a vertical order b1 , ... , bn on Bn and a block 
partition 11, ... , ~ such that the following two properties hold: 

there are no Type 2 boxes, 

if It =f {b1} and Jt is an L-block (R -block) 
then b1 >Lb2(b1 >Rb2)· 

Further on, (7) and (8) are assumed. 

(7) 

(8) 

Claim 1. Let 1m= 1m (i, j) be an L-block (R -block) where m < t. Then Jm+1 = 

Jm+ 1(i', j') is an R-block (L-block) and j' = i. 
To prove the claim, assume that Jm is an L-block. If Jm+1 is an L-block then 

bi,<Lbi'. Since br is not of Type 2 in Jm by (7), br<Lbi and by transitivity bi,<Lbi 
follows, contradicting the definition of the block Jm. Therefore Jm+1 is an 
R -block. If j' > i then applying Lemma 4.8(ii)(b) for Jm, one can see that bi >R br. 
This implies that bi is of Type 2 in Jm+1 , contradicting (7); therefore j' = i and the 
claim is proved. 

Claim 2. If b' is the last element in a horizontal; order of Bn then b' = b1 or 
b'= b2. 

Assume in the contrary that b' = bm, m ~ 3, and let It be an L-block. If 
b1 , b2 Elt then b1 >Rbm, b2 >Rbm by Lemma 4.8(ii). Now either b1 >Lbm or 
b2 >L bm contradicts the definition of bm since b1 or b2 is neither L- nor 
R -minimal in the horizontal order. If b1 <L bm and b2 <L bm then b1 and b2 are 
two overlap predecessors of bm in the horizontal order which do not give an 
RL-overlap on bm, contradicting the 'horizontal version' of Lemma 4.10. If b1 E Jt, 
b2 E ~-1 = ]t_1 (2, jt_1) then assume ~-1 to be an L-block. Now b1 >R bm, b2 >R bm 
by Lemma 4.8(ii), and the contradiction follows as in the previous case. 

Now we define the caterpillar Ch on the vertex set N = {1, ... , n} with edges 
(k, im) where 1 ~ m ~ t, im+1 ~ k <im· (Because of Claim 1, Chis a caterpillar.) Let 
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c~ be the transitive orientation of chin which (j2, j1) is a directed edge if 11 is an 
L-block and (j1, j2 ) is a directed edge if 11 is an R-block. Let Ch denote the 
'reverse' orientation of C~. Finally, let c+ = C~ U (2, 1), c- = Ch U (1, 2) ((2, 1) 
and (1, 2) denote directed edges). 

Claim 3. The L and R orders on Bn are defined by the caterpillars C~, Ch or 
by the augmented caterpillars c+' c- according to the caterpillar construction, 
i.e., according to the third and fourth lines of (3) in Section 2. 

To prove Claim 3, let L' and R' denote the linear orders on N according to the 
caterpillar construction. Let p, q EN, 1::::::; p < q. Since p < n, the box bP is an 
element of some block, say 1m= 1m (im+1, im) (1::::::; m::::::; t, it+1 = 1). We shall prove 
that p and q are compared by L' and R' in the same way as bP and bq are 
compared by L and R. In the special case (p, q) = (1, 2), b1 >Lb2 , b1 <R b2 are also 
acceptable since this is in accordance with the orders defined by c+ and c-. We 
distinguish some cases in the proof. 

Case 1. p = im+1, q = im· If (p, q) =/= (1, 2) then we should rely on Claim 1 and 
Lemma 4.8(ii)(b) (If (p, q) = (1, 2) then condition (b) does not hold.) Assume that 
(p, q) = (1, 2). Since 1t = 1t(1, 2) in this case and 1t is an L-block, b1 <Lb2 follows. 
If b1 <R b2 then b2 <R bj,_

1 
implies b1 <R bj,_

1
, contradicting the definition of the 

R-block 1t_1. Therefore b1>Rb2 and we are home since L' and R' compare 
1, 2EN in the same way by Claim 1. 

Case 2. im+1 < p <im, q = im· Now p <L' im and p >R' im since c~ and ch have 
transitive orientations. As bP is of Type 1 or Type 3 in 1m by (7), bP <L bim follows. 
On the other hand, bP >Rbim follows from Lemma 4.8(ii)(b). 

Case 3. p = 1, q = 2. We may assume im =it;?!: 3; otherwise the case was hand­
led at Case 1. Now b1 >L b2 holds by (8). If b1 >R b2 then L' and R' compare 
1, 2 EN in the same way. If b1 <R b2 then it is in accordance with the orders 
generated by c+ and c-. 

Case 4. im+1 ::::;p, q=/= im, p, q=/= (1, 2). Now (p, q) is not an edge of Ch; therefore 
p >L' q, p >R' q by the definition (3) of the caterpillar construction. From Lemma 
4.8(ii)(b), we get bP >Rbw We have to show that bv >Lbw The indirect assumption 
bP <Lbq implies that bP and bq horizontally ove~lap each other, therefore the 
horizontal overlap graph of Bn contains a cycle. (We have proved in Cases 1 and 
2 that pairs of boxes corresponding to the edges of Ch are overlapping.) By 
applying Lemma 4.10 for horizontal orders, one can see that the only excuse of 
having a cycle is that an RL-overlap is defined on the last box of the horizontal 
order. The only possibility is that the RL-overlap is defined on bq in our case. 
However, q;?!: 3 and we have a contradiction with Claim 2-so Claim 3 is proved. 

It is easy to see that bm bn_1, ... , b1 is a horizon~al order of Bn- Starting from 
this horizontal order, one can define U-blocks, D-blocks, horizontal block 
partitions etc. to state Lemmas 4.5, 4.8, 4.9 and 4.10 in a dual form (L and U, R 
and D exchange roles). Steps I, II, moreover, Claims 1, 2 and 3 can be 
dualized in the same spirit. Then Claim 3 in the dualized form gives the missing 
point of the proof of Theorem 4.11 D 
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Putting together Theorem 4.1 and Theorem 4.11, we obtain Theorem 3.1, the 
main result of the paper. 
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