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May 12, 2021

Abstract

A linear triple system is a 3-uniform hypergraph H = (V,E), where E
is a set of three-element subsets of V such that any two edges intersect
in at most one vertex. For linear triple systems H,F we say that H is
F -free if H does not contain any subsystem isomorphic to F . We consider
F fixed and call it a configuration. The (linear) Turán number exL(n, F )
(or simply just ex(n, F )) of a configuration F is the maximum number of
edges in F -free linear triple systems with n vertices.

Here we call attention to some properties of the wicket W , formed by
three rows and two columns of a 3 × 3 point matrix. On one hand we
show that the problem whether ex(n, F ) = o(n2) can be decided for all
configurations with at most five edges, except for F = W , which remains

undecided. On the other hand we prove that ex(n,W ) ≤ (1−c)n2

6
with

some c > 0, separating it from the conjectured asymptotic of ex(n,G3×3),
where G3×3, the grid, formed by three rows and three columns of a 3 × 3
point matrix.

1 Introduction

A linear triple system is a 3-uniform hypergraph H = (V (H), E(H)), where
E(H) is a set of three-element subsets of V (H) such that any two edges intersect
in at most one vertex. When it is clear from the context, we just use V,E for
the set of vertices and for the set of edges, respectively.

In this paper we just use the term triple system for linear triple systems.
For triple systems H,F we say that H is F -free if H does not contain any
subsystem isomorphic to F . We consider F fixed and call it a configuration.
More generally, fixing a family F of configurations, we say that H is F-free if
H does not contain any member from F .
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The most well-known triple systems are the Steiner triple systems, STS(n),
they have n vertices and each pair of vertices is covered by an edge. They exist
if and only if n ≡ 1 or n ≡ 3 (mod 6), such values of n are called admissible
(see [3]).

A configuration F is 3-partite if V (F ) can be partitioned into three sets
V1, V2, V3 so that all edges intersect each Vi in exactly one vertex.

The (linear) Turán number exL(n,F) (or simply just ex(n,F)) of a family F
of configurations is the maximum number of edges in F-free triple systems with

n vertices. For F = {F} we just write ex(n, F ). Note that ex(n, F ) = n(n−1)
6

is equivalent to the statement that an F -free STS(n) exists, in this case F is
called avoidable. Let F(k,`) denote the family of all (linear) triple systems with
` triples on at most k vertices.

Let’s call a configuration small if it has at most five edges. The complete
catalogue of configurations with two, three and four edges and some of the ones
with five edges are exhibited in the book of C. J. Colbourn and A. Rosa ([3],
Figure 3.1 and Figure 13.4). There are 1 + 2 + 5 + 16 + 56 small configurations
with 1, 2, 3, 4 or 5 edges, respectively. Many of them obtained a name and one of
them, the wicket, plays the main role in this note. Figures 1, 2 and 3 below show
some important configurations among these, and one six-edge configuration, the
grid. The edges of the configurations are represented as straight line segments.
Note that all of them, apart from the sail are 3-partite.

1

Figure 1: The triangle, 4-cycle and D3

1

Figure 2: Configurations C14, C15 (sail) and C16 (Pasch configuration)
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1

Figure 3: The wicket W and the grid G3×3

Determining Turán numbers is one of the most fundamental problems in
hypergraph theory. For example a celebrated conjecture of Brown, Erdős and
T. Sós [1], [4] reduces to the following.

Conjecture 1.1 ([4]). We have ex(n,F(k+3,k)) = o(n2).

For k = 3 there is only one member in the (6, 3)-family, the triangle (see
Figure 1). A celebrated theorem of Ruzsa and Szemerédi [13] proves Conjecture
1.1 for the triangle. However, already the cases k = 4 or 5 are wide open.

Motivated by Conjecture 1.1 and continuing our earlier studies in [9], here
we address the problem whether ex(n, F ) = o(n2) for a fixed configuration F
(as opposed to a family). Our starting point is the following.

Problem 1. ([9]) Is it true that ex(n,W ) = o(n2)?

Our first result shows that the wicket is the only small configuration for
which ex(n, F ) = o(n2) is in doubt.

Theorem 1.2. For all small configurations F apart from W either ex(n, F ) =
o(n2) or ex(n, F ) ≥ n2/9.

In fact, the inequality in the second possibility is sharp, since ex(n,C15) =
n2/9 for n ≡ 0 (mod 3) [5]. Using the following two general remarks, we can
make Theorem 1.2 more explicit (Theorem 1.3).

Remark 1. If F contains a subconfiguration F ′ such that there exists F ′-free

STS(n) for every large enough n, (i.e. F ′ is avoidable), then ex(n, F ) = n(n−1)
6 .

Remark 2. If F contains a subconfiguration F ′ that is not 3-partite then

ex(n, F ) ≥ n2

9 . Indeed, there exists 3-partite triple systems with n vertices and
n2/9 edges when n ≡ 0 (mod 3) (transversal designs with three groups).

These remarks (since C14, C16 are avoidable and C15 is not 3-partite) allow
the reduction of Theorem 1.2 to the following.

Theorem 1.3. Every small configuration F satisfies at least one of the follow-
ing.
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• (i) ex(n, F ) = o(n2),

• (ii) there is an F ′ ⊆ F such that F ′ ∈ {C14, C15, C16},

• (iii) F = W .

Our second result is a small step forward in Problem 1.

Theorem 1.4. There exist c, n0 > 0 such that ex(n,W ) ≤ (1−c)n2

6 for n ≥ n0.

Theorem 1.4 relates to a conjecture of Füredi and Ruszinkó [6] who proved
that

Ω(n1.8) ≤ ex(n,G3×3) ≤ n(n− 1)

6
,

and they conjectured that the upper bound is the truth asymptotically. They
formulated an even stronger conjecture: for every sufficiently large admissible
n there is a grid-free STS(n), i.e. that the grid is avoidable. Gishboliner and
Shapira [7] got close to the conjecture improving the lower bound of ex(n,G3×3)
to Ω(n2).

Note that Theorem 1.4 separates ex(n,W ) from the conjectured value of
ex(n,G3×3).

2 Projections, proof of Theorem 1.3

2.1 Projections

Assume that a configuration F has an independent transversal S ⊂ V (F ) which
means that |S∩e| = 1 for every e ∈ E(H). Then we can represent F with a graph
G = G(F, S) = (V ′, E′), the projection of F , as follows. Let α be a bijection
from V to V ′ and for every s ∈ S and every {s, v1, v2} ∈ E(F ) let (α(v1), α(v2))
be an edge of G. We consider G as a properly edge-colored graph where the
color classes are defined by the elements of S. For example, Figure 4 shows how
the wicket can be projected to the path abcab. (In these figures for simplicity
we identify V and V ′ and projection points are always shown by capitalizing
the letters of the corresponding patterns.) This is a natural and well-known
technique going back to the induced matching lemma of Szemerédi, where the
triangle was projected to the path aba, see [11]. Note that the projection of the
grid is the abcabca cycle.

An s-pattern, defined in [9], is a graph forest with a proper s-edge-coloring
where the color classes (matchings) M1,M2, . . . ,Ms satisfy the following prop-
erty: for any 1 ≤ i ≤ s every edge in Mi has a vertex that is not covered by any
edge of any Mj , i < j ≤ s. For example Figure 5 shows how D3 can be projected
to the 3-pattern path abcba. On Figure 1 the configurations have projections to
2- or 3- patterns, but the configurations on Figures 2 and 3 have no projections
to any s-pattern. The connection of s-patterns with Turán numbers is shown
by the main result of [9].

Theorem 2.1 ([9]). If F has a projection to an s-pattern for some s, then
ex(n, F ) = o(n2).
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Figure 4: Projecting the wicket to the path abcab
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Figure 5: Projecting D3 to the 3-pattern path abcba

2.2 Proof of Theorem 1.3

Theorem 2.1 allows us to replace (i) in Theorem 1.3 with the following (i′).

Theorem 2.2. Every small configuration F satisfies at least one of the follow-
ing.

• (i’) F has a projection to an s-pattern for some s,

• (ii) there is an F ′ ⊆ F such that F ′ ∈ {C14, C15, C16},

• (iii) F = W .

Proof of Theorem 2.2: Consider a counterexample small configuration F
with as few edges as possible. By the assumption F does not fall into any of
the three categories in Theorem 2.2.
Case I: There is an edge e ∈ E(F ) with at least two vertices of degree one.
Remove e from E(F ) and denote the resulting configuration by F ′. By the
minimality assumption F ′ must fall into one of the three categories (i′), (ii) and
(iii), clearly this must be (i′), i.e. F ′ has a projection π to an s-pattern G for
some s.
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Clearly |F ′ ∩ e| ≤ 1 and if F ′ ∩ e is a projection point P of F ′ then π is also
a projection of F to the s-pattern obtained from G by adding an isolated edge
labeled with p. Otherwise one of the degree one vertices of e can be used as a
new projection point Q extending the s-pattern G to an (s+ 1)-pattern with an
isolated edge labeled with q. Thus we reach a contradiction, F has a projection
to an s- or (s+ 1)-pattern.

Case II: There is no edge e ∈ E(F ) with at least two vertices of degree one.
We can easily see (using that the last edge e of a longest path of F does not
satisfy Case I) that F must contain a cycle.

Subcase II.1: The shortest cycle of F is a triangle T , say with edges 123, 345, 561.
Since T has a projection to a 2-pattern (aba) we must have further edges in F .
However, a further edge f cannot intersect T in two or three vertices because
that would result in one of the configurations F ′ in (ii). Thus further edges
of F intersect T in at most one vertex. Moreover, to avoid Case I, the only
possibility is to have two further edges f1, f2 forming a path connecting two
vertices of T . There are four possibilities for these paths according to choosing
corners or midpoints of T (corner to midpoint (2), midpoint to midpoint, cor-
ner to corner). All of these have projections to 2- or 3-patterns, leading to a
contradiction (see Figure 6 for these patterns).

a b a c b a b c b a

1

a b a a b a b ac c

1

Figure 6: The 4 patterns in Subcase II.1

Subcase II.2: The shortest cycle of F is a four-cycle Q, say with edges
123, 345, 567, 781. Since Q has a projection to a 2-pattern (two disjoint ab
paths) we must have one further edge f in F . To avoid Case I and Subcase
II.1, f must connect two opposite degree one vertex of Q, defining a wicket, a
contradiction.

Subcase II.3: F is a five-cycle, it has a projection to a 3-pattern, a contradic-
tion. �
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3 Properties of the wicket and the proof of The-
orem 1.4

3.1 Ramsey property

Although it is not known whether ex(n,W ) = o(n2) (see Problem 1), the wicket
has a strong Ramsey-type property.

Theorem 3.1 ([9]). For any fixed t there is an n0 = n0(t) such that for any
admissible n > n0 in every t-coloring of the edges of any STS(n) there is a
monochromatic copy of W .

For t = 1 we have n0(1) = 7 which can be expressed as follows.

Proposition 3.2 ([9]). Every STS(n), except the Fano plane, contains W .

Proposition 3.2 is a consequence of the following lemma, which will be ap-
plied in the proof of Theorem 1.4.

Lemma 3.3 ([9]). Assume that H = (V,E) is a triple system containing two
disjoint edges {x1, x2, x3}, {y1, y2, y3} and containing all the nine edges covering
the pairs xi, yj. Then H contains a wicket.

The proof of this lemma amounts to checking that every proper edge coloring
of K3,3 contains a rainbow perfect matching.

3.2 Proof of Theorem 1.4

Assume that H is a wicket-free (linear) triple system. We will show that

|E(H)| ≤ (1− c)n2

6

for c = 3/52 and n ≥ n0. Let u denote the number of uncovered (unordered)
pairs of vertices, i.e. pairs of vertices which are not contained in any edge of H.
Then

3|E(H)|+ u =

(
n

2

)
,

hence

|E(H)| = 1

3

((
n

2

)
− u

)
. (1)

Next we will find a lower bound on u resulting in an upper bound on |E(H)|.
Let us take a maximal matching M in H, say with k edges for some 1 ≤ k ≤

n/3. Using Lemma 3.3, between two edges in M there is at least one uncovered
pair, so we get immediately at least

(
k
2

)
uncovered pairs. We will add some

more uncovered pairs of V (H) \ V (M).
Note that all edges of H not covered by V (M) intersect V (M), since other-

wise we could extend M . Let E1 denote the set of edges of H which intersect

7



V (M) in one vertex. Observe that if a vertex in an edge of M has degree at
least three in E1 then the other two vertices of this edge have degree zero in E1,
otherwise again we could extend M . Thus each edge in M have total degree at
most

max(6,
n− 3k

2
)

in E1. Therefore at most k ·max(6, n−3k2 ) pairs of V (H) \V (M) are covered by
E(H). Then we get the following lower bound:

u ≥
(
k

2

)
+

(
n− 3k

2

)
− k ·max(6,

n− 3k

2
). (2)

We distinguish two cases.
Case 1: max(6, n−3k2 ) = n−3k

2 .
Here from (1) and (2) we get

|E(H)| ≤ 1

3

((
n

2

)
−

(
k

2

)
−

(
n− 3k

2

)
+ k

n− 3k

2

)
≤

≤ 1

6
(7kn− 13k2). (3)

The maximum of the expression in (3) is attained at k = 7n/26, thus indeed

|E(H)| ≤ (1− c)n2

6

with c = 3/52.
Case 2: max(6, n−3k2 ) = 6.
In this case we must have

k ≥ n

3
− 4. (4)

Here from (1) and (2) we get

|E(H)| ≤ 1

3

((
n

2

)
−

(
k

2

)
−

(
n− 3k

2

)
+ 6k

)
≤

≤ 1

6
(6kn− 10k2 + 4k). (5)

In the range of the k-s satisfying (4) the maximum of the expression in (5)
is attained at n

3 − 4 and thus we get

|E(H)| ≤ 1

6

(
8n2

9
+ 4n

)
≤ (1− c)n2

6

for c = 3/52 and n ≥ n0 (n0 = 75 may be chosen). �
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4 Conclusion

First we showed that for all small configurations F 6= W the problem whether
ex(n, F ) = o(n2), can be answered. For the wicket the question remains open.
We believe that ex(n,W ) = o(n2) and we have some evidence to back this up:
we can derive it from a strong version of the k = 5 case of Conjecture 1.1.

An immediate consequence of the lower bound of [13] is that ex(n, F ) = o(n2)
can happen “without an exponent”.

Remark 3. If F contains a triangle then for some constant c > 0

2−c
√

log(n)n2 ≤ ex(n, F ).

We suspect that “there is an exponent” if the triangle and the wicket are
both forbidden: ex(n, {W,C3}) ≤ cn2−ε holds for some ε > 0 (where C3 is the
triangle).

In Theorem 1.4 we merely wanted to separate the linear Turán number of
the wicket from the conjectured linear Turán number of the grid. The constant
3/52 in Theorem 1.4 can certainly be increased but its significance depends on
the outcome of Problem 1.

Concerning lower bounds on ex(n,W ), we do not know of anything better
than Ω(n3/2), which can be reached by a random construction (see [6]), or by
lower bounds for C4-free triple systems (see [2], [12]).

For certain configurations F stronger upper bounds are known on the linear
Turán number. For example for Ct, the cycle with t > 3 edges, ex(n,Ct) ≤
cn1+1/bt/2c [2]. For acyclic triple systems F , ex(n, F ) is linear, the main problem
in this case is determining the asymptotic which seems difficult even for some
small configurations [10].

Among small configurations the wicket’s Turán mystery can be paralleled
by the sail’s Ramsey mystery (see [8], [9]): does Theorem 3.1 hold for the sail?
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[9] A. Gyárfás, G. N. Sárközy, Turán and Ramsey numbers in linear triple
systems, Discrete Mathematics, 344 (2021), 112258.
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V.T. Sós, and T. Szőnyi, Eds.), pp. 295-352, Bolyai Society Mathematical
Studies, Vol. 2, Budapest, 1996.
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